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Abstract

The image of a curved, specular (mirror-like) surface
is a distorted reflection of the environment. The goal of
our work is to develop a framework for recovering general
shape from such distortions when the environment is nei-
ther calibrated nor known. To achieve this goal we con-
sider far-field illumination, where the object-environment
distance is relatively large, and we examine the dense spec-
ular flow that is induced on the image plane through rela-
tive object-environment motion. We show that under these
very practical conditions the observed specular flow can
be related to surface shape through a pair of coupled non-
linear partial differential equations. Importantly, this rela-
tionship depends only on the environment’s relative motion
and not its content. We examine the qualitative properties
of these equations, present analytic methods for recovery
of the shape in several special cases, and empirically val-
idate our results using captured data. We also discuss the
relevance to both computer vision and human perception.

1. Introduction

An image of a specular (mirror-like) surface is a distor-
tion of the surrounding environment. Since this distortion
depends on surface shape, it is natural to ask how and if sur-
face structure can be recovered from such an image. Like
most vision problems this one is ill-posed; without knowl-
edge of the environment, veridical shape information is the-
oretically inaccessible. Indeed, as has often been observed,
it is possible to create any given image from any given spec-
ular surface by suitably manipulating the environment.

In spite of this difficulty, the human visual system is
quite adept at inferring specular shape in unknown environ-
ments, even when no other shape cues are available (Fig. 1).
Computationally, however, the recovery of specular shape
in such general conditions has proven illusive, and exist-
ing methods have been limited to recovering only sparse or
qualitative shape information, considering limited class of
surfaces, or requiring calibrated conditions where the envi-

Figure 1. Images of specular surfaces under dense, (approximately) far-
field illumination. As shown here, specular reflections can convey useful
shape information—in this case revealing a dent in the car, the imperfec-
tions in the building’s window, and the word that is pressed into a specular
sheet. Can this information be extracted computationally when the envi-
ronment is unknown?

ronment structure is known.
In contrast to previous work, this paper presents an ap-

proach to specular surface reconstruction that specifically
targets general surfaces in unknown real-world environ-
ments. Our approach is built on an image formation model
that is complex enough to be practical but simple enough
for tractable analysis. The model has two essential features:

1. The environment and observer are far from the spec-
ular surface relative to the surface relief. This im-
plies a parallel-projection camera and a reduced, two-
dimensional plenoptic function (i.e., an environment
map), which simplify the reconstruction problem.

2. The camera observes relative motion between the ob-
ject and the environment which induces a specular
flow [21] on the image plane. As we show, this flow
provides direct access to surface shape since it depends
only on the motion of the environment, not its content.

We show that based on this model one can derive differ-
ential equations relating observed specular flow to the en-
vironment motion and surface shape. In some cases these
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equations can be solved (analytically) to yield dense surface
shape, and here we explore two such cases in detail. We be-
gin our exploration in a two-dimensional world (Sec. 3) in
which the specular object is a plane curve, the image plane
is a line, and the surrounding environment is a function
defined on the unit circle. In this case, one can uniquely
recover the surface (convex or not) by solving a separable
non-linear ODE with initial conditions provided by an oc-
clusion boundary. We then consider a three-dimensional
world (Sec. 4) where the specular object is a surface, and we
derive a coupled pair of non-linear PDEs that relate specu-
lar flow to surface shape. We show how singularities of
these PDEs relate directly to the parabolic lines of the shape
(where the specular flow generically grows unbounded) and
how analytic reconstruction is feasible under a specific class
of environmentmotions. Based on the analytic approach we
demonstrate numerical shape recovery using both 2D and
3D experimental data.

2. Related work

Most studies of the relationship between specular reflec-
tions and surface shape consider environments that contain
a single point light source. In these cases, one observes a
small number of ‘specularities’, each of which induces a
constraint between a surface point, its normal, and its local
view and illumination directions. In addition, small changes
in viewpoint induce specular motion, and by observing this
specular motion relative to the motion of fixed surface tex-
ture, one can make local inferences about the sign of the
Gaussian curvature [4, 5, 28, 6]. In order to obtain more
quantitative surface information from sparse specular ob-
servations, however, one must employ significant regular-
ization [25].

More information regarding surface shape can be ob-
tained by observing the motion of sparse specularities over
extended motion sequences. Qualitatively, it is known that
as the observer moves, specularities are created and anni-
hilated in pairs at (or in the near-field case, close to [7])
parabolic surface points [17, 19]. More quantitatively, the-
ory suggests that one can recover a complete surface profile
(i.e., a curve) by observing the specular motion induced by
continuous camera motion [28]. Practical methods for do-
ing so, however, have been developed for convex (or con-
cave) surfaces and do not allow parabolic points [20].

Specular shape inference in natural, uncontrolled envi-
ronments has received significantly less attention. Since
curved specular surfaces reflect illumination from all di-
rections, real-world environments induce dense specular
reflections that are qualitatively very different from the
sparse specularities described above. For still images of this
type, it has been observed that humans often (but not al-
ways [24]) infer accurate shape, even when the illumination
environment and bounding contour of the surface are un-

known [11]. While the exact mechanisms underlying these
results are not yet known, it has been suggested that humans
exploit the fact that image gradient directions are often cor-
related with second derivatives of the surface [11].

Computationally, the inference of shape in such general
conditions is severely ill-posed. One can obtain additional
constraints, however, through observations of dense spec-
ular flow induced by relative motion of an object, viewer,
and/or environment. In a qualitative analysis, Walden
and Dyer [26], show that specular flow is singular along
parabolic curves when either the environment or viewer is
far from the surface, and that singularities can drift from
parabolic curves when both are nearby. More quantitatively,
Roth and Black [21] present an optical flow algorithm that
estimates a specular flow field and simultaneously identi-
fies a surface from a parametric family of implicit functions
(e.g., spheres of varying radii).

It should be mentioned that previous work on the re-
covery of specular shape also include ‘3D scanning’ sys-
tems that use calibrated environments to obtain shape in-
formation. Example configurations include extended light
sources with object or source motion [27, 15], and one or
more views of a fixed object under one or more ‘grid-like’
environments [23, 12, 8, 9].

In contrast to previous work, we seek quantitative shape
recovery for general surfaces that are not constrained to be
convex or of a particular parametric form. We consider
completely unknown, dense illumination environments and
surfaces that are absent of diffuse texture that could other-
wise assist in the reconstruction process. The main contri-
bution of our work is to show that shape can be recovered
under these conditions.

3. Specular shape from specular flow in 2D

Before addressing the general three-dimensional prob-
lem, important insights can be gained from analyzing the
inference of specular shape in two dimensions (i.e., surface
profiles). In this case, surfaces are reduced to plane curves,
images and specular flow fields are one-dimensional, and
the space of illumination directions is a circle (Fig. 2). Here
we show that under the conditions of our model (i.e., far-
field illumination and observer), one can analytically re-
cover an arbitrary continuous surface profile from the ob-
served specular flow.

As is shown in Fig. 2, the visible part of a smooth surface
profile is assumed to be the graph of a function f(x), and
the far-field illumination environment E(θ) describes the
incident radiance, which is independent of x. At a point x
on the image plane, we observe the radiance reflected from
a point on the surface having normal orientation φ(x), and
the radiance measured at I(x) is simply the value of the il-
lumination environment E(θ(x)) in the mirror-reflected di-
rection θ(x). Since the viewing direction is aligned with
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Figure 2. The specular shape reconstruction problem in two dimensions.
A surface profile f(x) (a plane curve) is illuminated by a far-field illumi-
nation environment E(θ), and is viewed orthographically to produce a 1D
image I(x). The sign convention for the angular dimension is shown in
the inset.

θ = 0, it follows that θ(x) = 2φ(x).
To recover shape from specular flow, we seek a relation-

ship between motion of the environment ω = dθ/dt and
the induced motion field—or specular flow—on the image
plane u = dx/dt. From the sign convention in Fig. 2 it
follows that

tan(θ(x)/2) = −fx(x).

Taking temporal derivatives of this expression and using the
fact that sec2(θ/2) = 1+ f2

x we obtain the desired relation-
ship:

u(x) =
−ω

2κ(x)
√

1 + fx(x)2
, (1)

where κ(x) = fxx/(1 + f2
x)3/2 is the curvature at point x.

Equation 1 is a generative equation for specular flow, and
it shows that specular flow is well defined everywhere ex-
cept at the projections of surface points having zero curva-
ture. Furthermore, as is exemplified in Fig. 3, projections
of these points behave as either ‘sources’ or ‘sinks’ of spec-
ular flow, in accordance with the pair-wise specular ‘birth’
and ‘death’ that is expected at parabolic lines in three di-
mensions [17, 19]. In this example, where the environment
rotates in a counter-clockwise manner, the flow is divergent
(expands ‘outwards’ in both directions) at the left inflection
point. This point behaves as a flow source—a point where
new regions of the environment come into view on the im-
age plane. By the same reasoning, the right inflection point
is a sink because the flow is convergent there. Their roles
would change if one were to reverse the direction of envi-
ronment rotation.

In order to recover the surface from the observed specu-
lar flow, we rearrange Eq. 1 to obtain a Riccati equation,

2u(x)fxx + ωf2
x + ω = 0. (2)

This second order non-linear ODE can be reduced to a
separable first-order equation by making the substitution
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Figure 3. Recovering a surface profile from specular flow. A surface pro-
file f(x) (top, blue solid curve) is viewed under a rotating environment as
depicted in Fig. 2. This induces a specular flow (bottom) that is singular at
inflection points. Using this flow, we recover the surface by solving Eq. 4
using the left-hand surface boundary as an initial condition. The surface is
recovered (top, red dashed curve) despite the singularities in specular flow
because reconstruction relies on the integration of inverse flow, which is
well-defined everywhere.

v = fx, and it has a relatively simple analytic solution. We
first obtain the first derivative of the surface using

fx(x) = tan
(
−ω

2

∫ x

xi

dλ

u(λ)
+ C

)
,

where λ is a dummy variable, xi is some initial point on
the image plane, and C is an arbitrary constant that can be
determined using an initial condition, C = tan−1 (fx(xi)).
Once the first derivative is known, the surface f can be re-
covered through integration. This introduces another arbi-
trary constant which determines the absolute depth of the
surface and can be set to zero.

3.1. Object boundaries as initial conditions

When the surface profile is a smooth closed curve, object
boundaries occur where the surface normal is orthogonal to
the viewing direction, and the derivative is therefore known
at these points (see x0 and xf in Fig. 2). Thus, object
boundaries provide a convenient source for initial condi-
tions. Using the surface parameterization proposed above,
however, the initial conditions at the left and right object
boundaries are fx(xo) → ∞ and fx(xf ) → −∞, which
are inconvenient for numerical purposes.

To get around this, we can re-parameterize the surface
derivative fx using a stereographic projection [16], accord-

3



ing to which we define:

q =
2fx

1 +
√

f2
x + 1

fx =
4q

4 − q2
. (3)

Substituting in Eq. 2 yields an equation of the same form:

u(x)qx +
ω

8
q2 +

ω

2
= 0, (4)

whose solution is

q(x) = 2 tan
(
−ω

4

∫ x

xo

dλ

u(λ)
+ C

)
.

Here, C is an arbitrary constant that can now be determined
using the initial condition provided by one of the object
boundaries

C = tan−1 (q(xo)) = tan−1 (−2) .

To recover the surface f(x), the solution q(x) is trans-
formed via Eq. 3 and then integrated as before.

A demonstration of this procedure is shown in Fig. 3.
Here, a sequence of 1D images is rendered under an envi-
ronment that rotates in a counter-clockwise direction. The
environment is extracted from a great circle of the captured
“St. Peter’s” environment map [18]. Flow is estimated nu-
merically and independently at each pixel using the optical
flow equation Ixu + It=0, and the surface is recovered by
solving Eq. 4 using the left-most point as an initial condi-
tion.

3.2. Observations

Since it enables the recovery of surface shape, we refer
to Eq. 4 as the shape-from-specular-flow (SFSF) equation
in two dimensions. It has a number of notable properties.
The ODE can be solved analytically given an analytic ex-
pression for the specular flow, and a unique solution can be
readily obtained using an ‘occluding contour’ (or any other
point at which the first derivative is known) as a boundary
condition. Since there is no aperture problem in two dimen-
sions, specular flow can be estimated independently at ev-
ery image point from as few as two images. Thus, provided
that the illumination environment exhibits sufficient angu-
lar radiance variation, we are able to completely recover a
two-dimensional surface profile from as few as two frames.

Another important property is that the 2D SFSF equation
enables the recovery of arbitrary smooth surfaces, includ-
ing those with points of zero curvature. As noted above, the
specular flow approaches±∞ at the projection of an inflec-
tion point. Surface reconstruction requires the integration
of the inverse flow, however, which is well defined every-
where.

φ
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z

f(x, y)
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n̂

r̂

I(x, y)

Figure 4. The specular shape reconstruction problem in three dimensions.
A surface f(x, y) is illuminated by a far-field illumination environment
and is viewed orthographically to produce a 2D image I(x, y). The illu-
mination sphere is parameterized using spherical coordinates (θ, φ).

These nice properties of the 2D SFSF equation fol-
low directly from an image formation model that in-
cludes a far-field viewer and environment and relative
object/environment motion. As we show in Sect. 4.2,
many of these desirable properties carry over to the three-
dimensional case as well.

4. Specular shape from specular flow in 3D

Much like the two-dimensional case described in the pre-
vious section, we begin the three-dimensional analysis by
considering a surface S(x, y) = (x, y, f(x, y)) that is the
graph of a (bi-variate) function. As before the surface is
viewed orthographically from above and illuminated by a
far-field environment (see Fig. 4).

Let v̂ = (0, 0, 1) be the viewing direction, n̂(x, y) the
surface normal at surface point (x, y, f(x, y)), and r̂(x, y)
the mirror-reflection direction at the same point. An image
of S(x, y) on the orthographic image plane constitutes radi-
ance values of the distant illumination environment. In the
3D case this environment constitutes a sphere of directions,
which we parameterize with two spherical angles (zenith
and azimuth). In particular, we represent reflection direc-
tions as (α, β) and normal directions as (θ, φ), both under
the usual sign convention shown in Fig. 4. As in the previ-
ous section, these directions are related by

α(x, y) = 2θ(x, y)
β(x, y) = φ(x, y) .

In order to relate displacements on the image plane to those
on the illumination sphere, we note that the reflection vec-
tor at each point can be expressed both in terms of surface
derivatives and spherical coordinates;

r̂ = (sin α cosβ, sin α sinβ, cos α)

=
(−2fx,−2fy, 1 − f2

x − f2
y )

f2
x + f2

y + 1
.
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From this relationship we can deduce that

tan α = 2‖∇f‖
1−‖∇f‖2

tan β = fy

fx
.

(5)

As in the two-dimensional case, we are interested in the
effects of environment motion. In three dimensions, the an-
gular motion of a far-field environment can be represented
as a vector field on the unit sphere. We use the following
notation to describe this environment motion field:

ω(α, β) = (ωα(α, β), ωβ(α, β))) =
(

dα

dt
,
dβ

dt

)
.

This is a general representation that can describe both
‘rigid’ motion (i.e., an environment that rotates around
some fixed axis) and an arbitrary ‘non-rigid’ motion. In
the rigid case, when the environment rotates about axis
â = (sin α◦ cosβ◦, sin α◦ sin β◦, cosα◦) with angular ve-
locity ω, the environment motion field is [1]

ωα(α, β) = ω sin α◦ sin(β◦ − β)
ωβ(α, β) = ω (cos α◦ − sin α◦ cos(β − β◦) cot α) .

(6)

Environment motion induces a motion field, or a specular
flow, on the image plane. This flow, represented as

u = (u(x, y), v(x, y)) =
(

dx

dt
,
dy

dt

)
,

is related to the environment motion through the Jacobian:

ω =
d(α, β)

dt
=

∂(α, β)
∂(x, y)

d(x, y)
dt

= Ju. (7)

The Jacobian J can be expressed in terms of surface shape
by taking temporal derivatives of Eq. 5, which yields:

J
�
=

∂(α, β)

∂(x, y)
=

0
@

fxfxx+fyfxy

‖∇f‖·(1+‖∇f‖2)

fxfxy+fyfyy

‖∇f‖·(1+‖∇f‖2)

fxfxy−fyfxx

2‖∇f‖2
fxfyy−fyfxy

2‖∇f‖2

1
A . (8)

Implicit in Eq. 7 is the fact that the environment direction
reflected by each point is determined by the surface geome-
try. That is,

ω = ω(α(fx, fy), β(fx, fy)) = ω̃(fx, fy) .

When the environment motion field is known and we ob-
serve the induced specular flow u on the image plane, one
hopes to recover the shape by solving Eq. 7, which repre-
sents a system of non-linear PDEs in f(x, y). Thus, we re-
fer to this equation as the shape from specular flow (SFSF)
equation in three dimensions.

4.1. Behavior at parabolic points

While Eq. 7 may be used to solve for an unknown shape
f(x, y) from a known specular flow (u, v), it can be rear-
ranged, through inversion of the Jacobian J, to derive a gen-
erative equation for an unknown specular flow u induced by
a known surface f(x, y) under a given environment motion
ω

u = J−1ω . (9)

Important insight into this relationship is revealed from the
determinant of J, which can be written as

Det(J) =
2K(1 + ‖∇f‖2)

‖∇f‖ , (10)

where K is the Gaussian curvature of the surface, i.e.,

K = (fxxfyy − f2
xy)/(1 + ‖∇f‖2)2.

Eq. 10 tells us that the environment motion field and specu-
lar flow are related by an isomorphism at all surface points
except parabolic points, where the Gaussian curvature van-
ishes1. This is directly analogous to the two-dimensional
case in which the specular flow is infinite at inflection
points. In the three-dimensional case, the magnitude of
the specular flow generically grows unbounded at the im-
age projection of a parabolic point on the surface. (Note
that this is different from the near-field case [26], where
the flow singularities can drift away from parabolic points.)
One synthetic example of this phenomenon, with the spec-
ular flow computed using Eq, 9, is demonstrated in Fig. 5

4.2. Environment motion around the view direction

One special case in which Eq. 7 assumes a simple form
that can be solved analytically occurs when the axis of envi-
ronment rotation â is aligned with the view direction v̂. In
our spherical coordinate system, environment rotation about
the view direction induces the motion field

ωα(α, β) = 0
ωβ(α, β) = ω

(11)

with ω being the scalar angular velocity.
To exploit the reduced complexity, we define two auxil-

iary functions corresponding to the surface gradient magni-
tude and orientation:

h(x, y)
�
= f2

x + f2
y (12)

k(x, y)
�
= tan−1(fy/fx), (13)

1Another singular case in this context are points with ‖∇f‖ = 0, i.e.,
fronto-parallel surface points. Note that these points reflect the observer
who, unlike the rest of the environment, does not move relative to the sur-
face and hence provides little in the way of shape information.
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Figure 5. The magnitude of the specular flow induced by a specular sur-
face under environment motion. Top left: The shape of a synthetic spec-
ular surface with parabolic lines superimposed. Top right: One frame of
a rendered image sequence under a rotating environment. Superimposed
are the projection of the parabolic curves. Bottom: A zoomed image of
the log-magnitude of the induced specular flow in the marked region of in-
terest. Note how the flow magnitude is generally very large near parabolic
lines.

where tan−1 is the four quadrant arctangent of its argument.
Given these definitions and the flow from Eq. 11, the two
coupled non-linear equations in Eq. 7 reduce to two linear
PDEs in h and k:

u(x, y)hx(x, y) + v(x, y)hy(x, y) = 0 (14)

u(x, y)kx(x, y) + v(x, y)ky(x, y) = 2ω. (15)

These equations immediately suggest the following recon-
struction procedure:

Reconstruction algorithm:

1. Use observed specular flow (u, v) to solve
Eq. 14 for h(x, y) and Eq. 15 for k(x, y).

2. Recover fx and fy from h(x, y) and
k(x, y) using definitions in Eqs. 12 and 13.

3. Integrate fx and fy to obtain f(x, y).

Both Eqs. 14 and 15 can be solved using the method of char-
acteristics, and in both cases the characteristics correspond
to the integral curves of the specular flow. Of course, the
surface will be recovered through this procedure provided
that requisite initial conditions are available, i.e., that ∇f
is known at one or more points along each integral curve
of the specular flow. Clearly, the absolute depth of the sur-
face cannot be recovered unless the absolute depth of one
or more surface points is given by some other means.

4.3. Observations

In addition to facilitating a shape recovery procedure,
Equations 14 and 15 have straight-forward and useful geo-
metric interpretations: they constrain the directional deriva-
tives of h and k in the direction of the specular flow.

Eq. 14 dictates that h be constant along each characteris-
tic. Thus, iso-contours of h necessarily correspond to inte-
gral curves of the specular flow. Similarly, since Eq. 15 can
be written in terms of the unit specular flow û

û · ∇k =
u
‖u‖ · ∇k =

2ω

‖u‖ , (16)

it implies that the rate of change in k along each arc-length
parameterized characteristic must be proportional to ω and
inversely proportional to the flow magnitude ‖u‖. This
observation becomes particularly interesting once we real-
ize that k is an angle (i.e., an orientation) and its rate of
change can be interpreted as a curvature measure (in the
spirit proposed in studies of oriented patterns and visual
flows, e.g. [3]). Given the specular flow u of a specular ob-
ject under environment rotation around v̂, we can therefore
define its specular curvature based on Eq. 16 as

κs
�
=

2ω

‖u‖ . (17)

Moreover, since the characteristics (or, equivalently, the in-
tegral curves of the specular flow) are generically closed
curves, integrating κs along each such curve must yield a
multiple of 2π (or else the system violates integrability).
Although not exploited in our paper, this observation could
be used to recover the angular velocity ω and hence to fa-
cilitate specular shape recovery even when the environment
angular velocity is unknown.

4.4. Experimental results

Although the contribution of this paper is primarily theo-
retical, as a proof of concept, the approach developed above
was applied to image data acquired using the system de-
picted in the top of Fig. 6. A camera (Canon 10D, EF 75-
300mm lens, EF 25 II extension tube) was placed 1m from
a 2” diameter chrome sphere. In an unknown, far-field illu-
mination environment, both the camera and sphere rotated
as a fixed pair about an axis parallel to the camera’s optical
axis. One frame of the captured image sequence is shown
in the middle of Fig. 6.

Given an image sequence captured at a known angular
velocity of 0.5◦/frame, specular flow was recovered using
the Horn and Schunck algorithm [14]. Based on this flow,
the surface was recovered as described in the previous sec-
tion. Initial conditions were provided manually by speci-
fying the surface gradient along the red curve shown in the
figure. The integral curves of the specular flow were deter-
mined by numerically integrating the flow field, and these
curves served as characteristics for the numerical integra-
tion of Eqs. 14 and 15 to recover h and k. With h and k
known at each point, the surface derivatives fx and fy are
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optical axis

rotation axis

Figure 6. Recovering general shape from specular flow in three dimen-
sions. Top: Under far-field illumination, a camera and object rotate as a
fixed pair around a line parallel to the optical axis. Middle-left: One image
from a captured sequence. Middle-right: estimated specular flow. Bot-
tom: Shape recovered by solving the 3D shape-from-specular-flow equa-
tion as described in Sec. 4.2. The surface gradient is assumed known along
the red curve, which provides the necessary initial conditions.

easily computed with

fx =
√

h cos k

fy =
√

h sink

and then integrated to yield the surface shown in the bottom
of Fig. 6. The RMS error in the reconstruction as a fraction
of the sphere radius was found to be 1.2%.

5. Discussion

This paper introduces a novel theoretical framework
for the reconstruction of smooth specular shapes from ob-
served motion in natural, unknown, and uncontrolled en-
vironments. Using far-field view and illumination condi-
tions and relative object/environment motion, we analyze
the relationship between observed specular flow and spec-
ular shape, and we derive a system of coupled nonlinear
PDEs that can be solved for reconstruction. We show that in
the particular case of environment rotation around the view-
ing direction, this system can be reduced to a pair of linear
PDEs and solved either analytically or numerically.

Several extensions and research directions arise naturally
from our results. First, we show that the shape from specu-
lar flow (SFSF) equation can be solved in three dimensions
when the environment rotates about the view direction, but

is likely that one can extend this analysis to include more
general rotation directions, either through a change of an-
gular coordinates applied to the Z-axis equations (Eqs. 14
and 15), or by attempting to solve the SFSF equation (Eq. 7)
with ω defined via Eq. 6 rather than Eq. 11. Second, al-
though we restricted our attention to the case of environ-
ment rotation in this paper, it is likely that small relative ob-
ject/observer motion can be described in a similar manner.
Third, while we focus on a distant observer, it may be pos-
sible to extend our analysis to a near-field viewer by replac-
ing the constant v̂ vector with a vector field corresponding
to perspective projection.

The problem of recovering the specular flow itself was
not discussed in this paper, but it is possible that the dif-
ferential geometric analysis we provide may be useful for
this aspect of the problem as well (perhaps using the frame-
work described in [2]). In this context, the unique behav-
ior of specular flow around parabolic curves may be use-
ful for identifying them and distinguishing them from other
types of flow singularities(e.g., due to surface discontinu-
ities). This, in turn, could facilitate the reconstruction of
piecewise smooth specular shape as well. In any case, a
study of the specular flow itself should also assist in recov-
ering or estimating initial conditions for the solution of the
SFSF equation, either from the regular parts of the flow, or
from its singularities either around parabolic lines, or in the
vicinity of the object’s occluding contour.

In addition to these computational issues, this analysis
may also aid our understanding of human perception of
specular shape. While the human visual system seems to ex-
ploit specular flow in distinguishing between surfaces that
are specular and diffuse [13], whether flow is used to re-
cover shape is less certain [22]. But since we often move
our heads while inspecting specular objects (e.g., when lo-
cating a dent in a car), it seems plausible that shape recovery
might utilize specular flow. In particular, the distinguished
behavior at parabolic points would seem to play a role in
this process.

Finally, similar analysis to that presented here might
be used to recover shape from still images under natu-
ral lighting as well. The relationship between the image
gradient ∇I in a still image and the angular derivatives
∇E at the corresponding point of an illumination sphere
is ∇I = J�∇E, with J being the same as in the SFSF
equation (Eq. 7). Analysis of this type could lead to statis-
tical methods for shape recovery that exploit the structure
of natural lighting [10], and it could help to elucidate the
mechanisms underlying the human ability to recover spec-
ular shape from such images [11].
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