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Abstract

Nowadays, Real-Time Optimization (rto) and nonlinear as well as linear Model

Predictive Control (mpc) are standard methods in operation and control of process

systems. Hence there exists a good understanding of how to combine rto and set-

point tracking mpc schemes. However, recently there has been substantial progress in

analyzing the properties of so-called economic mpc schemes.

This paper proposes a conceptual framework to blend ideas from (output) modifier

adaptation and offset-free economic mpc with recent results on economic mpc without

terminal constraints. Specifically, we leverage recent insights into economic mpc based

on turnpike and dissipativity properties of the underlying optimal control problem.

Interestingly, the proposed scheme alleviates the need for a dedicated computation of

steady-state targets by exploiting the turnpike property in the open-loop predictions.

Two detailed simulation examples show that the proposed schemes delivers excellent

performance, while being conceptually much simpler.
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Introduction

The operation of process systems is facing steadily growing efficiency requirements driven

by economical considerations. In other words, the goal of optimal process operations is to

maximize profit ,1 which, for example, in view of the discussion on CO2 certificates and regu-

lations also implicitly includes ecological aspects. Hence for several decades there have been

tremendous research efforts and progress on attempting to synthesize a feedback optimizing

control structure, [...] to translate the economic objective into process control objectives .2

Hence nowadays in industry a hierarchical approach composed of scheduling, Real-Time

Optimization (rto) and advanced control prevails.3,4

In case of rto so-called Modifier Adaptation (ma) approaches5–7—whose origins can

be traced back to8,9—have received considerable attention. The conceptual idea of ma is

using first-order correction terms that enforce matching the plant kkt conditions (i.e. plant

optimality) upon convergence. It can be shown that the ma approach exhibits significant

advantages over the conventional two-step procedure of sequential parameter estimation and

model-based optimization; i.e. ma allows handling structural plant-model mismatch. Recent

progress includes convergence analysis based on higher-order corrections,6,10,11 dimensional-

ity reduction by means of directional subspace projections,12,13 exploitation of interconnected

system structures14 and so-called nested approaches.15 We refer to6 for a recent ma overview.

However, one limitation of ma is that—except for periodic and batch operations—obtaining

gradient information of transient processes can be quite difficult.

Given the industrial success of Model Predictive Control (mpc),16 which was mostly

incubated and driven by the process industries since the late 1970s, it cannot be surprising

that there exists a mature body of literature on how to combine/coordinate rto and mpc

layers.17–21 Typically, the (static) rto layer and the mpc layer are combined such that the

former provides (static) setpoint targets to be tracked by the latter.3,22–24 However, all these

works consider so-called tracking mpc formulations (tmpc), i.e. mpc tailored to track a

given target by minimizing the distance in receding-horizon fashion.
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Figure 1: Typcial combination of rto and mpc layers.

Thus, in conventional combinations of rto and mpc one has to ensure that the setpoint

targets are reachable by the mpc and, hence, a steady-state target computation is typically

added as a coupling layer between rto and mpc, cf. Figure 1. This layer can add substantial

complexity to the rto-mpc interaction, see e.g.24 Moreover, in many industrial applications,

while rto uses a static detailed nonlinear model of the process, mpc often uses a linear(ized)

dynamic model and which is, in general, not necessarily consistent with the rto static model.

Therefore, in order to track the setpoints without offset despite plant/model mismatch, mpc

algorithms require augmenting the model with integrating states which are estimated along

the nominal model states using plant output measurements. This leads to so-called offset-free

tmpc structures.25,26

Recently, there have been ongoing efforts in the mpc community to analyze the behavior

of so-called Economic mpc (empc) schemes, i.e. mpc formulations where the performance

criterion to be minimized is not directly related to the distance to a given setpoint.27–34

Indeed economic mpc can be seen as one approach towards Dynamic rto (drto).35 Despite

the recent breakthroughs in analyzing economic mpc schemes, the handling of uncertainties

and the integration of empc into the established hierarchical control structure still pose open

problems, see36,37 for the former and38–40 for the latter.

Interestingly, there is close connection between offset-free tmpc
26 and constraint adap-

tation rto,41 given that both approaches add bias terms to state/output predictions in the
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former and to constraint functions in the latter. Moreover, in both approaches these biases

are computed as the (filtered) difference between plant and model outputs. Nonetheless, the

literature has not yet established and analyzed such a connection in detail.

The present paper proposes a framework to blend concepts from rto based on ma with

recent developments in the area of empc. Specifically, we consider the offset-free formulation

for modifier-based empc.39,40 We combine this approach with recent results on empc without

terminal state constraints,34,42 which in turn rely on the occurence of a turnpike property in

the underlying open-loop optimal control problem.43 In other words, we construct an offset-

free modifier-based economic mpc, which upon convergence will guarantee plant optimality.

In contrast to39,40 we avoid the terminal state constraint in the mpc layer. Moreover, remov-

ing this constraint from the ocp alleviates the need for solving any optimization problem at

the rto level. Instead the main task of the rto layer will be the estimation of plant gradi-

ents. Hence the main advantage and contribution of this paper is showing that there is no

fundamental need for an optimizing rto layer. Indeed under suitable assumptions—mainly

availability of plant gradient information, presence of a turnpike property in the underly-

ing ocp—the proposed offset-free modifier-based empc without terminal constraints can be

expected to deliver equivalent performance while being conceptually much simpler.

In the present paper, we focus mostly on the underlying conceptual ideas and not on

rigorous mathematical proofs. Instead we will provide condensed summaries of the already

existing results, while limiting the mathematical technicalities to bare necessities. The no-

tational convention used in the present paper is summarized in Table 1.

Table 1: Notation overview of subscripts and superscripts.

Element Meaning Element Meaning

(·)p plant quantities

(·)k time index of plant (̂·) estimated quantities

(·)i time index of mpc predictions (·)⋆ optimal values of quantities

(·)j index of rto iterations (̄·) quantities at steady state
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Problem Statement and Preliminaries

Modifier Adaptation

Consider a static plant optimization problem given by

(

x̄⋆
p, ū⋆

p, ȳ⋆p
)

= arg min
x̄,ū,ȳ

ℓ(ȳ, ū) (1a)

subject to

x̄ = fp(x̄, ū), (1b)

ȳ = hp(x̄), (1c)

0 ≥ g(ȳ, ū), (1d)

where fp : R
nx×R

nu → R
nx , hp : R

nx → R
ny and g : Rny ×R

nu → R
ng and the subscript (·)p

is used to denote plant quantities/variables. Here we assume knowledge of the constraint

function g, while the plant model (fp, hp) and specifically the steady-state map u 7→ yp are

essentially never known precisely. Note that limiting the uncertainty to the plants input-

output behavior is without significant loss of generality, cf.44 Hence, at each rto iteration

j the modifier adaptation approach is built upon solving the modified model optimization

problem

(x̄j, ūj, ȳj) = arg min
x̄,ū,ȳ

ℓ(ȳ, ū) (2a)

subject to

x̄ = f(x̄, ū), (2b)

ȳ = h(x̄) + εj−1 + Λj−1(ū− ūj−1), (2c)

0 ≥ g(ȳ, ū), (2d)
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wherein the usual first-order corrections are employed, cf.5,6 The (output) modifiers ε ∈ R
ny

and Λ ∈ R
ny × R

nu are defined using

ε̃j = Hp(ūj)− H(ūj),

Λ̃j = DHp(ūj)−DH(ūj),

and a filtering step, i.e.

ξj+1 = ξj + σ(ξ̃j − ξj), ξ ∈ {ε, Λ}, σ ∈ (0, 1]. (3)

The filter is employed to avoid oscillations and to improve convergence properties.6 In the

definition of ε and Λ the matrices Hp(ūj) and H(ūj) are the steady-state input-output maps

of plant, respectively, the modified model. In other words, Hp : Rnu → R
ny is the plant

steady-state input-to-output map ū 7→ yp = Hp(ū), i.e. the solution of

x̄p = fp(x̄p, ū), ȳp = hp(x̄p),

and DHp : Rnu → R
ny×nu is its Jacobian. Likewise H : Rnu → R

ny is the steady-state

input-to-output map ū 7→ ȳ = H(ū) of the nominal model, i.e. the solution of

x̄ = f(x̄, ū), ȳ = h(x̄),

and DH : Rnu → R
ny×nu is its Jacobian.

Under suitable technical conditions—availability of exact plant gradients, linear inde-

pendence constraint qualifications for (1), uniqueness of the maps ū 7→ ȳp,j = Hp(ūj) and

ū 7→ ȳj = H(ūj)—it can be shown that upon convergence

lim
j→∞

ȳp,j = ȳ⋆p and lim
j→∞

ūj = ū⋆
p,
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see5,44 for details. We remark that sufficient convergence conditions for MA are also available,

see.6,10,45,46

Dissipativity, Turnpikes and Nominal Economic MPC

Recent years saw tremendous progress on mpc with (almost) generic cost functions, which is

commonly labeled economic mpc. We recall the nominal setting, i.e. assuming temporarily

the availbility perfect plant models. Moreover, we focus on a branch of empc whose analysis

relies on dissipativity properties of the underlying Optimal Control Problems (ocps). We

refer to29,47 for recent overviews.

Economic and non-economic mpc is based on finite-horizon ocps of the form

min
x,u

N−1
∑

i=0

ℓ(yi, ui) + Vf (xN) (4a)

subject to

x0 = x̂k, (4b)

xi+1 = f(xi, ui), i ∈ I[0,N−1], (4c)

yi = h(xi), i ∈ I[0,N−1], (4d)

0 ≥ g(yi, ui), i ∈ I[0,N−1], (4e)

xN ∈ Xf . (4f)

For the sake of simplicity, we assume that the problem data is sufficiently smooth and that

optimal solutions—denoted as (x⋆,u⋆)—exist. Moreover, whenever convenient, we will use

the following compact notation of the feasible set of ocp (4)

Z :=
{

(x, u) ∈ R
nx+nu | g(h(x), u) ≤ 0

}

.

Finally, we remark that x̂k refers to the estimate of plant state at time k.
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Turnpike and dissipativity properties of OCPs

While in tracking formulations of nmpc one commonly assumes that

ℓ(y, u) = ℓ(h(x), u) ≥ α(‖x− x̄‖), α ∈ K∞,

i.e. the stage cost ℓ is assumed to be lower bounded by a class K∞ of the distance to the

desired setpoint x̄.1 In economic nmpc one relaxes this condition. Many stability results

for empc require that there exists a so-called storage function S : Rnx → R
+ satisfying the

following strict dissipation inequality

S(f(x, u))− S(x) ≤ −α(‖(x, u)− (x̄, ū)‖) + ℓ(h(x), u)− ℓ(h(x̄), ū), (5)

for all (x, u) ∈ Z, where α is of class K, see29,30,48,49. Observe that on the right hand side

of (5) the setpoint (x̄, ū) appears. It is easy to verify that whenever (5) holds, the setpoint

(x̄, ū) is the unique globally optimal equilibrium with respect to the stage cost ℓ and the

constraints Z.

Moreover, the dissipation inequality (5) implies that the underlying system xi+1 =

f(xi, ui) is optimally operated at the steady state (x̄, ū); i.e. for all feasible pairs (x,u)

ℓ(h(x̄), ū) ≤ lim inf
N→∞

1

N

N−1
∑

i=0

ℓ(h(xi)), ui).

We refer to48,50 for details on the sufficiency and necessity of dissipativity.

In the context of this paper, it is worth to be remarked that optimal operation at steady

state is quite common in chemical processes. Implicitly it constitutes the motivation for the

hierarchical approach to combine rto and mpc sketched in Figure 1.2

1A function α : R+
0 → R

+
0 is said to be of class K if it is increasing strictly monotonous and α(0) = 0. It

is said to be of class K∞ if, additionally lim
s→∞

α(s) =∞ holds.
2There exist processes which are not optimally operated ate steady state, either due to intrinsic properties

of the dynamics51 or due to time-varying {disturbances, dynamics, constraints}.52 However, whenever a
process is not optimally operated at steady state it stands to reason whether or not one should apply the
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Furthermore, the dissipativity property of ocp (4) is of importance as (combined with a

reachability condition) it implies the existence of a turnpike property, see.29,43,49,53 Moreover,

we refer to43,54 for results showing that turnpike and dissipativity properties of ocps are

almost equivalent. Simply put, a turnpike property of an ocp implies that for different

initial conditions and different horizon lengths, the time that the optimal solution spend

outside of an ε-neighborhood of the optimal steady state (x̄, ū) is bounded independent of

the horizon length, which can be also phrased as the following conceptual definition: ocp

(4) is said to have a turnpike at (x̄, ū), if for all horizon N ∈ N, all x0 ∈ X0 and all ε > 0

[

time optimal pairs (x⋆,u⋆) spent outside of ε-neighborhood of (x̄, ū)
]

≤ C(ε) <∞.

For mathematically precise definitions of the turnpike properties we refer to.43,54

Under suitable differentiability assumptions the Necessary Conditions of Optimality (nco)

of ocp (4) are given by

xi+1 = f(xi, ui), i ∈ I[0,N−1], (6a)

λi =
∂

∂x

[

λ⊤

i+1f(xi, ui) + ℓ(h(xi), ui) + µ⊤

i g(h(xi), ui)
]

, i ∈ I[0,N−1], (6b)

0 =
∂

∂u

[

ℓ(h(xi), ui) + λ⊤

i+1(f(xi, ui)− xi+1) + µ⊤

i g(h(xi), ui)
]

, i ∈ I[0,N−1], (6c)

µi ≥ 0, i ∈ I[0,N−1], (6d)

and the boundary conditions are

x0 = x̂k and λN =
∂Vf

∂x

∣

∣

∣

∣

x=xN

. (6e)

We refer to the ncos above as the discrete-time Euler-Lagrange equations. It is easy to verify

that (under suitable technical assumptions) any steady state of (6) is also a kkt point of the

nominal model steady-state optimization problem (2a)—with εj = 0 and Λj = 0. In other

hierarchical approach to combine rto and mpc sketched in Figure 1.
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words, steady-state turnpikes occur only at equilibria of the Euler-Lagrange equations.34,42,55

Notably, turnpikes are a property of parametric ocps, hence their importance in the

analysis of (economic) mpc schemes is not surprising.29,42,49,56 Moreover, it deserves to be

said that the term turnpike was coined in 1958 in economics in a book of Dorfman, Solow and

Samuelson.57,58 The turnpike phenomenon has been observed already by John von Neumann

in the 1930s.59 See also60 and55,61 for more recent investigations.

Illustrative turnpike example. Throughout this paper we consider an isothermal Contin-

uous-Stirred Tank Reactor (cstr) in which two consecutive reactions occur A
k1−→ B

k2−→ C.

The system is subject to the following continuous-time dynamics:

ẋ1 =
u

V
(cA0 − x1)− k1x1,

ẋ2 =
u

V
(−x2) + k1x1 − k2x2,

(7)

in which x1 and x2 are the molar concentrations of A and B in the reactor, respectively; k1

and k2 are the two kinetic constants; u is the feed flow-rate (which is the manipulated input,

and is assumed equal to the outlet flow-rate); V is the (constant) reactor volume; cA0 is the

inlet concentration of A. We assume that both states (x1, x2) are measurable. The system

parameters for the true plant are as follows:

k1 = 1.0 min−1, k2 = 0.05 min−1, cA0 = 1.0 kmol/m3, V = 1.0 m3. (8)

The cost function ℓ represents the economics of the system (expenditure for raw material -

revenue from product):

ℓ(h(x), u) = αucA0 − βux2, (9)
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in which α = 1.0 e/kmol and β = 4.0 e/kmol are the prices of reactant and product,

respectively. State and input constraints are given by

0 ≤ x1 ≤ 1 kmol/m3, 0 ≤ x2 ≤ 1 kmol/m3, 0 ≤ u ≤ 2 m3/min. (10)

The optimal steady state of the plant reads

ū = 1.04298, x̄ =

[

0.51052 0.46709

]⊤

, λ̄ =

[

−1.8684 −3.8170

]⊤

, ℓ(x̄, ū) = −0.90568,

whereby λ̄ is the Lagrange multiplier corresponding to the dynamics at steady-state.

We consider the open-loop ocp (4) without any terminal constraint or penalty (i.e.

Xf = X and Vf (x) = 0). Without considering any plant-model mismatch we solve the open-

loop ocp for different horizon lengths N ∈ {4, 8, 20, 40} which considering the sampling time

h = 0.25 min corresponds to T ∈ {1, 2, 5, 10}min. The initial conditions, corresponding to

the different horizons, are x0 ∈ {[0.3, 0.3]
⊤, [0.75, 0.75]⊤, [0.3, 0.3]⊤, [0.75, 0.75]⊤}.

The results are obtained using a direct multiple shooting implemented in CasADi,62 in

which the system and cost are discretized using the backward Euler scheme, as detailed.

Given a sampling time h, the system (7) and the cost (9), this yields

x+
1 =

x1 +
u
V
cA0h

1 + k1h+ u
V
h
,

x+
2 =

x2 + k1h
(

x1+
u
V
cA0h

1+k1h+
u
V
h

)

1 + k2h+ u
V
h

,

(11)

ℓ(x, u) = (αucA0 − βux+
2 )h. (12)

The results are shown in Figure 2. As one can see in the top three plots that with in-

creasing horizon length N the state and inputs approach a neighborhood of their optimal

steady-state values (dotted green). The quintessence of the turnpike property is that the

longer the horizon is the more time is spend close to the optimal steady state (aka the turn-
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Figure 2: Comparative open-loop results considering Xf = X and Vf (x) = 0 for N ∈
{4, 8, 20, 40} (T ∈ {1, 2, 5, 10}min) and different initial conditions: states (top two), input
(middle) and adjoints (bottom two).
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pike). Moreover, the adjoints—i.e. the multipliers corresponding to the equality constraints

stemming from the discretized dynamics—also approach the values corresponding to the op-

timal steady state. This is in line with the continous-time results of Trelat and Zuazua55 or

with.42 Eventually, as the open-loop ocp does not entail any terminal constraint or penalty,

the adjoints obey the terminal condition

λN = 0,

cf. (6) and see42,63 for a detailed discussion.

Stability of nominal EMPC

Coming back to nominal empc based on ocp (4), it is apparent that there are three main

ingredients for stability:

• the terminal penalty Vf : Rnx → R;

• the terminal constraint set Xf ⊆ R
nx ; and

• the horizon length N ∈ N.

In the context of dissipativity-based results on stability of empc one can distinguish three

main approaches as summarized in Table 2.3

The results in30,48 use Xf = x̄ and Vf (xN) = 0—while the horizon N is chosen such that

ocp (4) is feasible—to show under suitable technical conditions (dissipativity and continuity

of the optimal value function) asymptotic stability of x̄, cf. for example Theorem 3.2 and

Corollary 3.3 in.29 This approach can also be generalized to terminal sets.64

Moreover, in31,49,65,66 it is shown that, for sufficiently large N , the choice Xf = R
nx and

Vf (xN) = 0 leads to practical asymptotic stability of x̄, whereby the size of the attractive

neighborhood of x̄ depends on the horizon length. Core assumptions are dissipativity and

3There also exist analysis results that do not require dissipativity, see29,47 for recent overviews.
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Table 2: Overview of dissipativity-based stability conditions for nominal economic Nmpc.

Vf Xf N Closed Loop Prop. References

0 x̄ chosen for feasibility asympt. stable 30,48

of ocp (4)

0 R
nx sufficiently long prac. asympt. stable 49,61,66

λ̄⊤xN R
nx sufficiently long asympt. stable 34,42

exponential reachability of x̄, cf. for example Theorem 4.1 in.29 Recursive feasibility can be

shown under mild assumptions.29,66

Finally, the recent papers34,42 propose Xf = R
nx and Vf (xN) = λ̄⊤xN , where λ̄ is the

Lagrange multiplier corresponding of the stationary dynamics x = f(x, u) corresponding to

the optimal steady-state (x̄, ū). Assuming dissipativity and exponential reachability of x̄

(and technical regularity conditions) it is shown that, for sufficiently large horizon N , the

optimal steady state x̄ will be asymptotically stable. In essence this approach combines

ideas on the local rotation of the stage cost ℓ from67,68 with the turnpike approach from.49,66

Actually, the linear end penalty Vf (xN) = λ̄⊤xN has two interpretations. From the primal

point of view it is a correction of the gradient of ℓ at steady state, while from the dual/adjoint

point of view it imposes a terminal condition on the adjoints of the ocp (4). We refer to34,42

for an in-depth discussion.

Illustrative turnpike example revisited. To illustrate the effect of the linear end

penalty Vf (xN) = λ̄⊤xN on the open-loop predictions, we revisit the cstr example. Similar

to before we solve the open-loop ocp for different horizon lengths N ∈ {4, 8, 20, 40} which

considering the sampling time h = 0.25 min corresponds to T ∈ {1, 2, 5, 10}min. The ini-

tial conditions are as before x0 ∈ {[0.3, 0.3]
⊤, [0.75, 0.75]⊤, [0.3, 0.3]⊤, [0.75, 0.75]⊤}. While

Figure 2 shows open-loop optimal solutions for Vf (xN) = 0, Figure 3 depicts open-loop pre-

dictions for Vf (xN) = λ̄⊤xN , where λ̄ is Lagrange mutliplier corresponding to the optimal

steady state (x̄, ū).
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Figure 3: Comparative open-loop results for N ∈ {4, 8, 20, 40} (T ∈ {1, 2, 5, 10}min),
Vf (xN) = λ̄⊤xN and different initial conditions: states (top two), input (middle) and adjoints
(bottom two).
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Observe that, in contrast to Figure 2, in Figure 3 towards the end of the horizon states and

input do not leave their turnpike values. Moreover, also note that the adjoints converge to

their optimal steady-state values. As shown in34,42 it is this difference between Figure 2 and

Figure 3—or equivalently between ocp (4) with Vf (xN) = 0 and with Vf (xN) = λ̄⊤xN—

which modulo technical assumptions leads to the difference between practical asymptotic

stability and asymptotic stability of the closed empc loop.

Offset-free EMPC with Terminal Constraints

We now address the case in which there is mismatch between the model (f, h) and the actual

plant (fp, hp). Depending on the extent of such model error, it is possible that closed-loop

stability properties are lost, but even if stability still holds, the closed-loop system may not

converge to the true plant optimal equilibrium
(

ȳ⋆p, ū⋆
p

)

.

The same situation is typically faced and addressed in offset-free tmpc algorithms by

augmenting the nominal model with additional states having integral dynamics, and esti-

mating them along with the model states from plant outputs. Such formulations ensure

that, if the closed-loop convergences to an equilibrium, then the output tracks a given out-

put setpoint.69 Recent formulations of offset-free mpc have been developed to achieve the

same goal in the context of economic mpc by merging the approach of offset-free tracking

mpc with Modifier Adaptation rto.39,40 In particular, the goal of such formulations here

reviewed is that if the closed-loop system reaches an equilibrium, this corresponds to the

most profitable equilibrium for the actual plant. Such a controller, name offset-free economic

mpc, is composed by three main modules, as depicted in Figure 4:

(i) an augmented state and disturbance observer;

(ii) a modifier-adaptation target optimizer; and

(iii) a modifier-adaptation optimal control problem solver.
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Figure 4: Block diagram of offset-free empc with terminal constraints.

State and disturbance observer. Given the nominal model functions, (f, h), an aug-

mented system is defined in order to obtain, asymptotically, zero prediction error despite

plant/model mismatch. Among the many different available disturbance models and ob-

servers69, we consider the following augmented prediction model:

xk+1 = f(xk, uk) + Bddk,

dk+1 = dk,

yk = h(xk) + Cddk,

(13)

in which d ∈ R
ny is usually referred to as disturbance, and the matrices Bd ∈ R

nx×ny and

Cd ∈ R
ny×ny can be chosen by the designer to model the effect of such disturbance on the

state and output maps.

Given the plant output measurement at time k, denoted by yp,k and the corresponding

output predicted by the augmented model (13), denoted by yk, we define the prediction error

as

ek = yp,k − yk. (14)
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Given the state and disturbance predictions obtained from the augmented model (13), de-

noted by (xk, dk), we compute the corresponding estimates as

x̂k = xk +Kxek,

d̂k = dk +Kdek,

(15)

in which the matrices Kx ∈ R
nx×ny and Kd ∈ R

ny×ny are chosen to form a (nominally)

asymptotically stable observer. This implies, in particular, that Kd is invertible.70

We note that in the special case of state feedback, i.e. hp(x) = h(x) = x, a state

disturbance model can be used by choosing Bd = I and Cd = 0 coupled with a deadbeat

observer Kx = I and Kd = I. This leads to the following deadbeat filtered state and

disturbance:

x̂k = xk + (xp,k − xk) = xp,k,

d̂k = dk + (xp,k − xk) = xp,k − f(x̂k−1, uk−1).

(16)

Hence, it follows that the model state is realigned to the true plant state, and the disturbance

is equal to the so-called innovation xp,k − f(x̂k−1, uk−1).

Steady-state target optimization with modifier adaptation. A target calculation

is needed at each sampling time to compute the equilibrium (x̄k, ūk, ȳk) given that the

disturbance estimate d̂k changes if ek 6= 0. In tracking mpc, this equilibrium pair is com-

puted so that the augmented model steady-state output is equal to the given setpoint. In

economic mpc instead we compute the equilibrium so-that the equilibrium cost function

ℓ(ȳk, ūk) is minimized. However, in order for this equilibrium to converge to the true optimal

equilibrium, we need to add a first-order modifier as in (2c).
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Thus, the target problem to be solved at time k is:

(x̄k, ūk, ȳk) = argmin
(x,u,y)

ℓ(y, u) (17a)

subject to

x = f(x, u) + Bdd̂k, (17b)

y = h(x) + Cdd̂k + Λk(u− ūk−1), (17c)

0 ≥ g(y, u), (17d)

in which Λk ∈ R
ny×nu is the current modifier matrix, later defined. The modifier matrix is

initialized as Λ0 = 0, and updated at each decision time as follows:

Λk+1 = (1− σ)Λk + σ
(

DHp(ūk)−DH(ūk, d̂k)
)

, (18)

in which H : R
nu×ny → R

ny is the augmented model steady-state input-to-output map

ū 7→ ȳ = H(ū, d̂k), i.e. the solution of

x̄ = f(x̄, ū) + Bdd̂k, ȳ = h(x̄) + Cdd̂k,

and DH : Rnu×ny → R
ny×nu is its Jacobian with respect to ū.

Remark 1 (rto and mpc sampling rates). It is important to remark that, for simplicity of

presentation, we are assuming that the plant Jacobian update occurs at the same rate as the

three offset-free mpc modules (observer, target calculation, and ocp), and hence we are not

explicitly distinguishing between rto (i.e. plant gradient estimation) index j and mpc index

k. In general, it is possible that in (18) the plant Jacobian DHp(·) is updated at a different

(obviously lower) rate. However, note that even in this case, as the offset correction Cdd̂k

in (17c) is updated at each time step k, one still needs to resolve the target problem at each
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time-step k. Moreover, the modifier update (18) also runs at time index k and would read

Λk+1 = (1− σ)Λk + σ
(

DHp(ūj)−DH(ūk, d̂k)
)

.

Remark 2 (Relation to Modifier Adaptation). We remark that the estimation of the dis-

turbance d̂k—and especially the underlying deadbeat observer—bear substantial similarity to

constraint adaptation, which is a specific variant of ma relying on zeroth-order corrections,

see.41 Moreover, the recent approach to using transient measurements in constraint adapta-

tion71 is closely related to a deadbeat observer.

We also notice that, compared to (2a), the zero-order term ε is not present in (17c) given

that its role is replaced by the disturbance estimate d̂k. Furthermore, notice that if we set

Bd = 0, Cd = I, Kx = 0 and Kd = I, the target optimization problem (17) is equivalent to

the ouptut modifier-adaption rto problem (2a).

OCP with modifier adaptation. As last module, the ocp solved at each decision time

is here described, which takes into account the augmented system dynamics and it embeds

a steady-state modifier, as in the target optimization (17), to ensure convergence towards

the target, and hence towards to the true plant equilibrium. Given the current state and
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Initialize d̂0 = 0, Λ0 = 0, ū0 = 0;
while do

Get measurement yp,k;
Compute state, disturbance and output predictions from (13);
Solve the target optimization problem (17) to obtain state, input targets (x̄k, ūk);
Solve the ocp (19) to obtain optimal solution (x⋆,u⋆);
Apply feedback uk = u⋆

0(x̂k) to plant;
Get plant gradient information DHp(ūk);
Update modifier matrix Λk+1 (18);
Update time index k ← k + 1;

end

Algorithm 1: Offset-free empc with terminal constraints.

disturbance estimates (x̂k, d̂k) and the current input target ūk, we solve the following ocp:

min
x,u

N−1
∑

i=0

ℓ(yi, ui) (19a)

subject to

x0 = x̂k, (19b)

xi+1 = f(xi, ui) + Bdd̂k, i ∈ I[0,N−1], (19c)

yi = h(xi) + Cdd̂k + Λk(ui − ūk), i ∈ I[0,N−1], (19d)

0 ≥ g(yi, ui), i ∈ I[0,N−1], (19e)

xN = x̄k. (19f)

Denoting the optimal solution of this problem as (x⋆,u⋆), the first input of the optimal

sequence is actually implemented in closed loop, according to the usual receding horizon

principle, i.e.

uk = u⋆
0(x̂k). (20)

The offset-free empc is summarized in Algorithm 1.

We can state the main properties of this offset-free economic empc, which can be proved

by kkt matching techniques as in5,6,38, taking into account the fact that the prediction
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errors goes to zero39 and the convergence properties of empc with terminal constraint30.

Conjecture 1 (Optimality properties).

Assume that problems (17) and (19) remain feasible at all times, and that the closed-loop

system:

xp,k+1 = fp(xp,k, uk),

yp,k = hp(xp,k),

(21)

with uk given in (20) reaches an equilibrium with input and output:

lim
k→∞

uk = u∞, lim
k→∞

yp,k = yp,∞.

It follows that the reached equilibrium is the optimal one for the plant, i.e.:

yp,∞ = lim
k→∞

ȳk = ȳ⋆p, u∞ = lim
k→∞

ūk = ū⋆
p. (22)

Remark 3 (Estimation of plant gradients). We observe that a crucial step in Algorithm 1

is the estimation of steady-state input-output plant Jacobian, DHp(ūk), which can be done

in difference ways,6 e.g. by using finite-difference approximations, Broyden’s methods, fitted

surfaces, or dynamic (linear) systems identification.39 In the sake of simplicity this (impor-

tant) aspect of the considered method is not elaborated in this work, and we assume that plant

gradients are available.

Offset-free EMPC without Terminal Constraints

The previous section has already shown how one can closely integrate offset-free empc with

modifier adaptation. However, as mentioned in Remark 1, so far the need for resolving the

target optimziation problem at each time step k could not be alleviated. Next, we show how

the recent progress on empc without terminal constraints allows doing so.

22



To the end of removing it from the picture, lets recapitulate the purpose of the target

optimization problem (17) in Algorithm 1: it provides the steady state (x̄k, ūk) which enters

the ocp (19) in the terminal constraint (19f) and in the modified output equation (19d).

However, as we have seen earlier in the paper—and especially in the results of Figure 2—

the turnpike property implies that for sufficiently long horizons the open-loop predictions of

states and adjoints will stay close to their optimal steady values for a substantial part of the

prediction horizon. In other words, provided the open-loop predictions exhibit the turnpike

phenomenon, the solution to the open-loop ocp also gives estimates/approximations of the

optimal steady state (x̄k, ūk).

Based on this observation we suggest using the following ocp in the mpc scheme

min
x,u

N−1
∑

i=0

ℓ(yi, ui) + λ̂⊤

k xN (23a)

subject to

x0 = x̂k, (23b)

xi+1 = f(xi, ui) + Bdd̂k, i ∈ I[0,N−1], (23c)

yi = h(xi) + Cdd̂k + Λk(ui − ûk), i ∈ I[0,N−1], (23d)

0 ≥ g(yi, ui), i ∈ I[0,N−1]. (23e)

Observe that this ocp does not entail any terminal constraint, it does however use the

gradient correcting end penalty λ̂⊤

k xN .

As usual in the mpc context, x⋆(i|x̂k−1) denotes the value of the optimal predicted state

trajectory at time i ∈ I[0,N−1] corresponding to the initial condition—i.e. the state estimate—

x̂k−1.
4 Likewise let u⋆(i|x̂k−1) and λ⋆(i|x̂k−1) denote the optimal input and adjoint trajec-

tories. Then, instead of obtaining λ̂k and ûk by solving an explicit target optimization, we

4For the sake of readability we surpress here that the predicted state trajectories also depend on d̂k and
Λk.
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Figure 5: Block diagram of proposed scheme.

suggest using the following estimates:

ûk
.
= u⋆(N

2
|x̂k−1), (24a)

λ̂k
.
= λ⋆(N

2
|x̂k−1). (24b)

That is, we approximate the turnpike values of inputs and adjoints by evaluating the most

recent prediction in the middle of horizon at i = N
2
. The choice i = N

2
is motivated by the

observation that it is in the middle of optimization horizon where the open-loop predictions

stay close to their turnpike values, cf. the example in Figure 2. Put differently, we exploit

the turnpike property as an implicit predictor of the optimal steady state input (and the

corresponding Lagrange multiplier). We remark that this combines the offset-free empc
38

with the results on empc without terminal constraints.42 Moreover the idea to use the open-

loop predictions as approximators of the optimal steady state adjoint has first been suggested

in.42

ocp (23) leads to the blend of modifier adaptation and offset-free empc summarized in

Algorithm 2 and in Figure 5. Observe that in the proposed scheme the modifier computation,

solving the ocp and the gradient estimation take the role of the classical rto loop, cf. also

Figure 4.

Instead of providing a detailed formal analysis of the properties of Algorithm 2, we phrase

a conjecture backed up by existing results from rto and mpc.

24



Initialize d̂0 = 0, Λ0 = 0, û0 = 0, λ̂0 = 0;
while do

Get measurement yp,k;
Compute state, disturbance and output predictions from (13);
Solve the ocp (23) to obtain optimal solution (x⋆,u⋆,λ⋆);
Apply feedback uk = u⋆

0(x̂k) to plant;

Get λ̂k+1 and ûk+1 from (x⋆,u⋆,λ⋆) via (24);
Get plant gradient information DHp(ûk);
Update modifier matrix Λk+1 (18);
Update time index k ← k + 1;

end

Algorithm 2: Offset-free economic mpc without terminal constraints.

Conjecture 2 (Stability and optimality properties).

Consider Algorithm 2.

1. Suppose that Bd = 0, Cd = I, Kx = 0 and Kd = I in (15).

2. Let exact steady-state plant gradient estimates be available at each iteration k.

3. Let the steady-state input-output maps of plant and model DHp and DH be real-valued

functions.5

4. For all d̂k and all Λk let the ocp (23) have a turnpike property with respect to (x̄k, ūk, λ̄k),

whereby (x̄k, ūk) ∈ intZ.

5. Let ocp (23) be feasible at all iterations k ∈ N.

Then, for sufficiently large prediction horizon N , upon convergence one has

yp,∞ = lim
k→∞

ȳk = ȳ⋆p, u∞ = lim
k→∞

ūk = ū⋆
p. (25)

Conditions 1–3 are motivated by the fact that under the hood the proposed scheme is

based on output modifier adaptation. Conditions 4–5 stem from empc without terminal

constraints.42 However in contrast to42 it might be necessary to assume recursive feasibility

5Hence the image ȳp = DHp(ū) is unique for all ū, likewise for DH.
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as the location of the turnpike will vary as the offset estimate d̂k and the modifier Λk change

over time. Moreover, the analysis in42 indicates that the horizon N should be sufficiently

long a) to ensure that the quality of the steady-state approximation (24) and b) to foster

recursive feasibility of ocp (23). A detailed analysis and the proof of the conjecture above

is postponed to future work.

The role of turnpike properties in merging RTO and MPC. Observe that Algo-

rithm 2 does not involve any target optimization problem. Instead it relies on the fact

that—provided ocp (23) exhibits the turnpike property—the open-loop predictions provide

approximations of the solution to the target optimization problem (17). Hence the turnpike

property is crucial in ensuring that (24) provides an approximation of the (input, adjoint)

values at steady state. As mentioned earlier, this is no coincidence as steady-state turnpikes

are steady states of the nco (6). A detailed analysis of the relation between the turnpike

values of states, inputs and adjoints and the corresponding optimal steady state values can

be found in.34,55

Moreover, it deserves to be noted that, whenever the open-loop predictions do not ex-

hibit the (steady-state) turnpike phenomenon, then the underlying system is not optimally

operated at steady state. In this case it might indeed be better—from the point of view of

minimizing
∑

i ℓ(xi, ui)—to track an optimal orbit. However, it is so far not clear how this

can be incorporated into the classical hierarchy of rto and mpc (Figure 1).

The role of RTO in merging RTO and MPC. Interestingly, while in Algorithm 1

one can still identify an explicit presence of rto—i.e. the target optimization problem

(17) takes this role and it can be shown to be equivalent to output modifier adaptation—in

the merged framework of Algorithm 2 there is no explicit occurrence of any steady-state

optimization. Rather the turnpike property implies that the open-loop optimal predictions

provide approximate solutions to the steady-state optimization.

This observation leads to the question of what is the remaining role of rto in merging
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rto and mpc? As already pointed out in,72 in general, plant gradient estimation is an

important issue in rto. One might even say that the whole family of modifier adaptation

schemes (except constraint adaptation) hinges crucially on the availability of accurate esti-

mates of plant gradients. Likewise the performance of the proposed Algorithm 2 is expected

to rely on the availability of gradient estimates. Hence in the proposed framework the active

role of rto is in providing tools and methods for estimating steady-state plant gradients

from available measurement data.

Illustrative Examples

Example 1: isothermal CSTR with consecutive reactions

Steady-state plant-model mismatch analysis. We return to the illustrative cstr ex-

ample from before. We consider the available model not to match the plant, i.e. the plant

considers both reactions A
k1−→ B

k2−→ C with k1 = 1.0 min−1, k2 = 0.05 min−1, while in the

model the side reaction B
k2−→ C is neglected and an incorrect kinetic constant k1 is used, i.e.

k1 = 0.9 min−1, k2 = 0.0 min−1. Observe that the steady-states x̄1, x̄2 can be parametrized

by ū

x̄1 =
ū

V k1 + ū
cA0, (26a)

x̄2 =
V k1

V k2 + ū
· x̄1 =

V k1
V k2 + ū

·
ū

V k1 + ū
cA0. (26b)

Hence the steady-state stage cost ℓ(h(x̄), ū) can be parametrized by ū as well. Figure 6

depicts the feasible steady states and the steady-state stage cost for plant and model. As

one can see, there exists a considerable plant-model mismatch.

Comparative simulation study. We compare the following control strategies:

• Nominal empc, i.e. the mpc controller uses the inexact model (EMPCNom).
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Figure 6: CSTR – Steady states for plant and model (top) and steady-state stage cost
(bottom).

• Offset-free tmpc with terminal constraint (TMPCMA).
6

• Offset-free empc with terminal constraints as illustrated in Figure 4 (EMPCMA).

• Offset-free empc without terminal constraints as illustrated in Figure 5 (EMPCNoTerm).

Both plant and model are given by the discretized model (11) in which h = 0.25 min, but

the MPC model uses incorrect parameters. For all strategies we consider a sampling period

of h = 0.25 min and a prediction horizon of N = 24 which corresponds to T = 6 min. The

simulation horizon for the closed-loop is set to Tsim = 10 min. We assume that at each

sampling time k exact plant gradient information is available. For the schemes EMPCMA

TMPCMA, and EMPCNoTerm we consider the modifier update (18) to be executed at the same

sampling rate as the MPC controller. Moreover, TMPCMA, and EMPCNoTerm consider the

filter gain σ = 0.2, while EMPCMA uses σ = 0.075.7 For the sake of simplicity, all terminal

6In this scheme the continuous-time stage cost is ℓ(x, u) = (x− x̄k)
⊤Q(x− x̂k)+(u− ūk)

⊤R(u− ûk) with
Q = I and R = 0.0001.

7Using larger values of σ the target optimization starts to oscillate close to the plant optimum. In contrast
the EMPCNoTerm scheme converges to the true plant optimum for all σ ∈ (0, 1].
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equality constraints are approximated by the end penalty VN(x) = 103 · ‖x − x̂k‖
2. The

initial condition is xp,0 = [0, 0]⊤.
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Figure 7: CSTR – Closed-loop trajectories for the control schemes EMPCNom, EMPCMA,
TMPCMA, and EMPCNoTerm.

The closed-loop trajectories are shown in Figure 7. As one can see the nominal empc

shows the expected behavior, i.e. it does not converge to the true plant optimum, while the

other three schemes do converge despite the plant-model mismatch. Note that both offset-

free economic MPC schemes converge in similar fashion—although EMPCMA uses a small

modifier filter gain of σ = 0.075, while EMPCNoTerm considers the gain σ = 0.2. Moreover,

observe that the usual combination of tmpc with ma uses more aggressive inputs early on.
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control schemes EMPCMA, TMPCMA, and EMPCNoTerm.
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Figure 9: CSTR – Evolution of modified stage cost for EMPCNoTerm at selected time in-
stances k ∈ {0, 4, 8, 40}.

Table 3: CSTR – Overview of averaged performance for the control schemes EMPCNom,
EMPCMA, TMPCMA, and EMPCNoTerm, Tsim = 15 min (Nsim = 60).

N EMPCNom EMPCMA TMPCMA EMPCNoTerm

(σ = 0.075) (σ = 0.2) (σ = 0.2)

16 -0.1815 -0.1828 -0.183 -0.1815

24 -0.1816 -0.1832 -0.1825 -0.1832

Moreover, Table 3 shows the averaged performance of all simulations for Tsim = 25 min

(Nsim = 100) for two prediction horizons N ∈ {16, 24}. As one can see the performance is

not affected. Only in case of EMPCNoTerm there appears to be a minor degradation which

is likely related to the approximation of the steady-state inputs and adjoints in (24).

Figure 8 shows the trajectories of steady-state input targets ūk respectively ûk computed

via EMPCMA, TMPCMA, and EMPCNoTerm. For EMPCNoTerm we consider three different
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values of the filter gain σ ∈ {0.2, 0.4, 0.6}, while the value for EMPCMA is set to σ = 0.075

(which is the highest value for which no oscillations of the target steady state occur). This

plot confirms that the turnpike-based approximation of the steady-state input and the steady

state adjoint (24) is indeed effective.

Finally, Figure 9 shows the evolution of modified steady-state cost ℓ(Hm,k(ū), ū) at the

time instances k ∈ {0, 4, 8, 40} for the EMPCNoTerm scheme. Here Hm,k : Rnu → R
ny is the

steady-state input-output map of the modified model at iteration k

x̄ = f(x̄, ū), ȳ = h(x̄) + d̂k + Λk(ū− ûk).

As one can see, as the scheme converges to the true plant optimum, the local steady-state

approximation of the true plant stage cost improves.

Example 2: non-isothermal Williams-Otto CSTR

As a second, more elaborated, case study we consider the Williams-Otto reactor which is a

well-known process control example, also used as benchmark for rto and ma.6

Plant, model, cost and constraints. The Williams-Otto example considered in this

study consists of a non-isothermal continuous, stirred-tank reactor in which the following

reactions occur in the liquid phase:

A + B
k1−→ C, r1 = k1(Tr)cAcB,

B + C
k2−→ P + E, r2 = k2(Tr)cBcC ,

C + P
k3−→ G, r3 = k3(Tr)cCcP .

The reactor is fed with a constant flow-rate stream containing species A (rate QA, molar

concentration cA0) and a variable flow-rate stream containing species B (rate QB, molar

concentration cB0). The reactor temperature Tr is allowed to vary by adjusting the cooling
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rate, while the reactor volume Vr is kept constant by setting flow-rate Qr always equal to the

sum of the two inlet flow-rates, i.e. Qr = QA +QB. Thus, the reactor has two manipulated

variables, i.e. QB and Tr, while we assume that only the molar concentration of the two

desired products, P and E are measured. The kinetic constants follow an Arrhenius type

law, i.e. ki(Tr) = ki0 exp(−Ei/Tr) for i = 1, 2, 3 in which Tr is expressed in Kelvin. The

process economics is expressed by the following (instantaneous) cost:

ℓc(t) = QAcA0pA +QBcB0pB −QrcPpP −QrcEpE, (27)

in which pA, pB, pP , pE are the unit (molar) prices of reactants and products. All process

parameters are summarized in Table 4.

Table 4: Williams-Otto Reactor – Process parameters

Parameter Value Unit

k10 9.9594 · 106 dm3/(mol ·min)
k20 8.66124 · 109 dm3/(mol ·min)
k30 9.9594 · 106 dm3/(mol ·min)
E1 6666.7 K
E2 8333.3 K
E3 11111 K
Vr 2105 dm3

QA0 112.35 dm3/min
pA 7.623 $/mol
pB 11.434 $/mol
pP 114.338 $/mol
pE 5.184 $/mol

The (mole based) material balances describing the actual reactor dynamics are given
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below:

ċA =
QAcA0 −QrcA

Vr

− r1,

ċB =
QBcA0 −QrcB

Vr

− r1 − r2,

ċC = −
QrcC
Vr

+ r1 − r2 − r3,

ċP = −
QrcP
Vr

+ r2 − r3,

ċE = −
QrcE
Vr

+ r2,

ċG = −
QrcG
Vr

+ r3.

(28)

The following constraints should be fulfilled at all times:

180 dm3/min ≤ QB ≤ 360 dm3/min, 75 oC ≤ Tr ≤ 100 oC. (29)

An approximate model is used for EMPC design, which comprises two reactions only

A + 2B
k∗
1−→ P + E, r∗1 = k∗

1(Tr)cAc
2
B,

A+ B + P
k∗
2−→ G, r∗2 = k∗

2(Tr)cAcBcP .

Consequently, the (mole based) material balances describing the model reactor dynamics are

given below:

ċA =
QAcA0 −QrcA

Vr

− r∗1 − r∗2,

ċB =
QBcA0 −QrcB

Vr

− 2r∗1 − r∗2,

ċP = −
QrcP
Vr

+ r∗1 − r∗2,

ċE = −
QrcE
Vr

+ r∗1,

ċG = −
QrcG
Vr

+ r∗2,

(30)

in which the kinetic parameters are reported in Table 5.

We note that in this case, the model state has five components x =

[

cA cB cP cE cG

]⊤
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Table 5: Williams-Otto Reactor – Model parameters

Parameter Value Unit

k∗

10 1.3134 · 108 dm6/(mol2 ·min)
k∗

20 2.586 · 1013 dm6/(mol2 ·min)
E∗

1 8077.6 K
E∗

2 12438.5 K

and differs from the actual plant state xp =

[

cA cB cC cP cE cG

]⊤

. Furthermore, the

measured output is yp =

[

cP cE

]⊤

and hence the model state vector needs to be estimated

from the output.

Comparative study. As in the previous example, we compare the performance of different

control strategies:

• Nominal empc (EMPCNom).

• Offset-free tmpc with terminal constraint and σ = 0.2 (TMPCMA).
8

• Offset-free empc with terminal constraints and σ = 0.2 (EMPCMA).

• Offset-free empc without terminal constraints and σ = 0.2 (EMPCNoTerm).

In all mpc controllers the model dynamics (30) are integrated with a 4-th order Runge-Kutta

method, the chosen sampling time is h = 0.25min and the horizon is N = 120, corresponding

to T = 40 min. For all offset-free controllers, we use as disturbance model matrices Bd = 0

and Cd = I and as augmented observer gains Kx = 0 and Kd = I.

Closed-loop inputs and outputs are reported in Figure 10, from which we notice the

expected behavior of all controllers: nominal empc does not converge to the true plant

optimum, while all other controllers converge despite the fact that they use the incorrect

model (30).

8In this scheme the continuous-time stage cost is ℓ(x, u) = (x − x̄k)
⊤Q(x − x̂k) + (u − ūk)

⊤R(u − ûk),
with Q = I and R = 0.1I.
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Figure 10: Williams-Otto Reactor – Closed-loop trajectories for the control schemes
EMPCNom, EMPCMA, TMPCMA, and EMPCNoTerm.
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Figure 11 shows the trajectories of steady-state input targets ūk respectively ûk computed

via EMPCMA, TMPCMA, and EMPCNoTerm, in which for EMPCNoTerm we consider three

different values of the filter gain σ ∈ {0.2, 0.4, 0.6}. Also in this case, we note that the

turnpike-based approximation of the steady-state input and the steady state adjoint (24) is

very effective.
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Figure 11: Williams-Otto Reactor – Trajectories of steady-state input targets ūk, respec-
tively, ûk for the control schemes EMPCMA, TMPCMA, and EMPCNoTerm.

Finally, the averaged performance of all control strategies, using different prediction

horizons, is compared in Table 6. As in the previous example, we notice that the turnpike-

based approximation of steady-state input and adjoint does not induce a relevant degradation

of performance.
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Table 6: Williams-Otto Reactor – Overview of averaged performance for the control schemes
EMPCNom, EMPCMA, TMPCMA, and EMPCNoTerm, Tsim = 30 min (Nsim = 120).

T/N EMPCNom EMPCMA TMPCMA EMPCNoTerm EMPCNoTerm EMPCNoTerm

(σ = 0.2) (σ = 0.2) (σ = 0.2) (σ = 0.4) (σ = 0.6)

20/80 -142.1 -193.5 -184.4 -189.1 -190.4 -191.0

25/100 -140.8 -192.8 -184.4 -188.74 -190.0 -190.6

30/120 -140.8 -192.54 -184.4 -188.54 -189.8 -190.36

Outlook and Conclusions

This paper has investigated the combination of rto and economic mpc. We have provided

a conceptual framework to blend concepts from modifier adaptation into economic mpc.

Specifically, we propose combining three main elements: an augmented state estimator,

which provides estimates of the slowly varying offsets on states and outputs, estimation of

plant gradients and a tailored formulation of the ocp to be solved at each mpc iteration. In

the ocp we suggest using a recently proposed formulation considering a gradient correcting

end penalty and no terminal constraints. Our results show that, provided the open-loop

optimal solutions of the ocp exhibit the turnpike phenomenon, then it is possible to avoid

any explicit computation of steady-state targets from the picture. Instead, the required

quantities—i.e. estimates of the optimal steady state input and of the steady-state adjoint—

can be obtained from the open-loop optimal predictions.

Interestingly, in comparison to the combination of tracking mpc with modifier adaptation

and to offset-free empc with terminal constraints, the proposed scheme delivers equivalent

performance while being conceptually much simpler. Unsurprisingly (at least from the rto

perspective) our results illustrate that the crucial element in combining rto and mpc is the

estimation of steady-state plant gradients.

While the present paper has focused on conceptual ideas, future work will investigate the

formal analysis of the proposed scheme.
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