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Abstract—This paper presents our progress toward a user-
guided manipulation framework for High Degree-of-Freedom
robots operating in environments with limited communication.
The system we propose consists of three components: (1) a user-
guided perception interface which assists the user to provide
task level commands to the robot, (2) planning algorithms that
autonomously generate robot motion while obeying relevant
constraints, and (3) a trajectory execution and monitoring system
which detects errors in execution. We have performed quanti-
tative experiments on these three components, and qualitative
experiments of the entire pipeline with the PR2 robot rotating a
valve for the DARPA Robotics Challenge. We ran 20 tests of the
entire framework with an average run time of two minutes. We
also report results for tests of each individual component.

I. INTRODUCTION

We seek to create a user-guided manipulation framework

for High Degree-of-Freedom (DOF) robots such as humanoids

and mobile manipulators operating in environments with lim-

ited communication. Application of our framework to these

robots is conducive to greater autonomy and enables tasks

ranging from home maintenance and care for the elderly or

disabled, to disaster response in conditions that are hazardous

to humans. While a great deal of research has explored meth-

ods for perception [1], error-recovery [2], motion planning

[1, 3, 4], and tele-operation [5, 6], for such applications our

goal is to unify existing algorithms in a reliable general-

purpose manipulation framework.

This paper presents our progress toward such a framework.

We will evaluate our framework by performing valve turning,

which is one of the tasks required for the DARPA Robotics

Challenge (DRC) [7]. The task requires that a robot locate,

approach, grasp, and turn an industrial valve with two hands.

Valve turning presents a challenging test-case for our system

due to the perception and dexterous manipulation required.

A core constraint for the DRC is that communications

with the robot are limited, making conventional tele-operation

infeasible and necessitating the use of a framework such as

ours. Thus, the valve-turning task requires a straightforward

way for a user to command the robot to perform complex

actions. These actions require accurate localization of the valve

relative to the robot, constrained motion planning for closed-

chain kinematic systems, and autonomous error detection to

Fig. 1: System diagram showing data flow through the frame-

work.

report problems back to the user. These goals align well with

creating a general-purpose manipulation system.

The system we propose consists of three main parts:

(1) a user-guided perception interface which provides task-

level commands to the robot, (2) planning algorithms that

autonomously generate robot motion while obeying relevant

constraints, and (3) a trajectory execution and monitoring

system which detects errors in execution. Our goal is that all

three of these parts be usable on different robots in both the

real world and simulated environments.

In the first component, a user roughly aligns a model of the

relevant object (e.g. a valve) to a point cloud provided by the

robot’s sensors. While autonomous perception algorithms have

previously been developed for such tasks, they are unsuitable

for highly unstructured environments and underspecified tasks

like those encountered in real world situations. Thus, we use

Iterative Closest Point algorithms to reduce error and “snap”

the rough user-generated alignment into place locally. Once

satisfied with the alignment, the user commands the robot to

perform the task.

The manipulation planning component of the system con-

sists of the CBiRRT algorithm [8], which is capable of gen-

erating constrained quasi-static motion for High-DOF robots.

Once a motion path is constructed by the planning compo-

nent, it is executed by the execution monitoring component.

The monitoring component compares the execution of the

current trajectory to a library of previous executions of the

same task (generated from previous runs) to detect errors.

This component uses Dynamic Time Warping (DTW) [9] to

compute an error metric between trajectory executions. We

have found that our user interface has a success rate between



97% when given a good user guess at the objects position. The

planning algorithm we used successfully generated feasible

object manipulation trajectories under constraints 93.84% of

the time, and our trajectory execution error detector correctly

identified 88% of the erroneous trajectories.1

The rest of the paper is structured as follows: Section II

gives a background on the relevant technologies and topics,

Section III describes the system architecture and components.

Section IV shows the quantitative analysis of our framework

and Section V shows the preliminary results on the PR2 and

Hubo robots. In Section VI we discuss future work and finally

Section VII concludes the paper.

II. BACKGROUND

There are a variety of robot frameworks and simulation

sofware that is freely and commercially available [10, 11].

Different robot control architectures are made based on these

frameworks or designed from scratch for different purposes

such as remote teleoperation and control of unmanned vehicles

from a command post [12, 13, 14]. Although previous research

has covered the effects of limited bandwidth communication

channels [15], and planetary exploration with limited com-

munication [16], to the best of our knowledge, there is no

available framework for high degree of freedom robots, unlike

UAVs or rovers, that is tailored for user guided object manip-

ulation in unstructured environments with limited connection

to the robot.

III. ARCHITECTURE

Our framework,shown in Figure 1, is implemented using

ROS [17] for communication and robot control and Open-

RAVE [18] for motion planning.

A. Data Aggregation

The principle function of the data aggregation package is

to format data coming from the robot. The data aggregation

package takes in sensor data coming from the robot, which

varies depending on the robot, and re-publishes it in a standard

format so that the framework can be easily implemented on

a variety of robots. As shown in Figure 1, data aggregation

is the only component of the framework that receives data

such as point clouds, encoders, and accelerometers directly

from a robot’s sensors. This design allows the system to be

highly modular and quickly switch between different robots,

including switching between robots operating in real and

simulated environments. If necessary, this component can

be reconfigured online to handle changes in the available

sensor data, such as changing which point cloud topic to use

throughout the system.

The aggregation package also provides synthesized informa-

tion such as collision maps and object proximity that is derived

from raw sensor data. This information synthesis is performed

on-board the robot to reduce the need for communication for

instance; collision maps generated from downsampled point

1A video of the framework in operation can be seen at: http://www.youtube.
com/watch?v=xRcUO2mXt3s

(a) Misaligned Interactive Marker (b) Auto-aligned Interactive
Marker

Fig. 2: Iterative Closest Point being used to align an object

in RVIZ. (a) the object before ICP has been run, (b) the final

translation after ICP has finished.

clouds reduce the data needs by nearly 90%, and object

proximity information provides an even greater reduction.

B. User Interface

Due to the difficulty of autonomous perception, a graphical

user interface (GUI) was created to aid the detection of objects.

Using the GUI, as shown in Figure 2a, the user manipulates

an interactive marker [19] to hint at an object’s location.

Object alignment is performed using the Iterative Closest

Point (ICP) algorithm which minimizes the error between

two specified groups of points. ICP “snaps” a given input

to the target world, as shown in Figure 2b, by iteratively

computing the transformation between the two groups of

points. Larger transformations can be found by increasing the

number of iterations performed. To decrease computation time,

a bounding box is used to extract a subset of the point cloud.

For our testing, the point cloud from the robot is generated

using an ASUS Xtion RGBD camera.

In addition to user input and feedback, the GUI controls the

flow of data over the unreliable link to the robot. Data from

the robot is only transmitted when specifically requested to

minimize communication. This architecture takes advantage

of the assumption that the robot inhabits a largely static

environment, such as the DRC’s valve turning task, while still

remaining suitable for use in more dynamic environments.

C. Planning

The planning package plans trajectories for high degree of

freedom robots so that they can perform object manipulation.

The initial configuration of the robot is critical to manipulation

because the robot must be able to:

(1) reach and manipulate the object for the entirety of the

desired trajectory,

(2) maintain balance during execution,

(3) avoid self-collisions and collisions with the environment

Motion planning is provided by the Constrained BiDirec-

tional Rapidly-exploring Random Tree (CBiRRT), an effi-

cient and probabilistically complete manipulation planning

suite. CBiRRT consists of three main components: constraint

representation, constraint-satisfaction, and a general planning

http://www.youtube.com/watch?v=xRcUO2mXt3s
http://www.youtube.com/watch?v=xRcUO2mXt3s


algorithm. For full details of CBiRRT and its implementation,

see [8].

D. Trajectory Execution

The trajectory execution package executes a planned tra-

jectory and detects errors encountered during execution. For

this error detection, trajectories are recorded during execution

using only the data available from joint encoders. No other

contextual data, such as the planned trajectory or the pose of

the object being manipulated, is required.

Error in trajectory execution is identified by using the

dynamic programming technique Dynamic Time Warping

(DTW) to match executed trajectories against a library of

known successful and unsuccessful trajectories. DTW iter-

atively calculates the best alignment between elements of

two or more time sequenced data [9] and produces a cost

metric that quantitatively represents the similarity of those

sequences to either the successful or unsuccessful class, which

facilitates error detection during execution. To account for

trajectories significantly different from those in the library,

cases in which the computed DTW cost metric is greater than

an experimentally-determined threshold can be automatically

identified as error conditions.

This method of error detection using DTW is ideal as it

requires no complex visual feedback and no special sensors,

and is thus applicable to a wide range of robots using only the

data already available from basic joint encoders. In particular,

this method is well-suited for the DRC where it may not

be possible to determine the state of the valve though other

means. For our testing, we used this approach to determine if

the valve manipulated by the PR2 was successfully turned.

IV. FRAMEWORK VALIDATION

The framework we have developed allows for a user to

hint at the location of an object in the world and have the

robot approach and manipulate the object. In order to perform

this action the pose of the object needs to be determined, a

trajectory generated to manipulate it from a start position, and

finally the trajectory must be monitored for errors. Quantitative

experiments were performed on the three aforementioned

components of the architecture, and qualitative experiments

were run with the PR2 robot turning a wheel in both simulation

and the real world. Additionally, we report on preliminary

validation experiments performed using the Hubo humanoid

robot.

A. Valve Alignment

To enable semi-automated testing, the GUI provides an

option to automatically generate an object alignment with

a configurable amount of noise. This testing configuration

includes the number of tests to run, a maximum amount

of translation error, and a maximum amount of rotational

error. We used the semi-automated tester to evaluate the valve

alignment system by randomly perturbing the valve’s position.

A simulated user guess error is calculated by adding the

total translation offset in cm to the total quaternion angle

Fig. 4: Success rate (final error less than .3 units) of Iterative

Closest Point to find the actual valve position given a randomly

generated perturbation in the user’s estimated position.

offset in degrees. The true position of the valve is denoted

as Vo = [Xo, Yo, Zo] and the guessed position of the valve is

denoted as Vg = [Xg, Yg, Zg]. The total translation value Et

is calculated as the euclidean distance between the two points.

Each valve’s pose also contains a quaternion that represents

its orientation in space. The difference in angle between the

quaternion representing the valve’s position and the guessed

position is represented.

Eq = arccos(2∗((xo∗xg)+(yo∗yg)+(zo∗zg)+(wo∗wg))
2−1)

(1)

Finally, the user guess error is calculated by the sum of

the translational error and rotational error, and is denoted by

E = Et + Eq .

Figure 4 shows the success rate of 450 sample alignments

with random perturbations, where success is defined as a final

error of less than .3 units. The ”user guess error” is the

amount of error that was present when the semi-automated

tester requested ICP to align the valve to the point cloud. We

qualitatively categorized the results through experimentation.

One to five error units is considered a good user guess, six

to ten error units is considered an acceptable user guess, and

eleven to fifteen error units is a ”poor” user guess. ICP was

capable of matching the interactive marker to the point cloud

97% of the time for a good guess, 79% of the time for an

acceptable guess, and 58% of the time for a poor guess. The

number of ICP iterations, 500, remained constant throughout

all tests. The number of iterations was determined so that ICP

returns with a new valve alignment in under one second. The

number of iterations ICP runs can be increased, allowing larger

transformations to be found at the cost of longer runtime.

B. Planning

We tested the CBiRRT trajectory planner’s performance

with the constraints described in Section III under different

sensing disturbances of the object (in this case, the valve). We

first fixed the position of the object to a point in space, where

we knew the planner was able to succeed. We then added

random translation and rotation perturbations to the transform



(a) PR2 in RViz (b) OpenRAVE (c) The Real PR2

Fig. 3: The PR2 Robot as seen in (a) the RVIZ visualization engine performing valve alignment, (b) OpenRAVE for motion

planning, and (c) the real world performing valve turning.

(a) Initial Configuration (b) Start Pose (c) Goal Pose

Fig. 5: Configurations for valve turning path.

of the valve and tried to generate a trajectory plan for the

translated and rotated model of the valve.

For each test generated, we defined six pose constraints

and two path constraints in the CBiRRT framework. For the

valve turning task, we designed a path that consists of four

trajectories:

(1) From initial pose (init) to valve grasping configuration

(start),

(2) From valve grasping configuration (start) to the configura-

tion right after clockwise turning the valve 45 degrees (turned),

(3) From turned back to start,

(4) From start back to init.

Init, start and goal configurations are shown in Figure. 5.

For all four trajectories, there were three positions that each

hand must pass through; an initial position, start position and

a goal position. There was one path constraint for each end

effector for turning the valve about its axis of rotation during

trajectories (2) and (3).

We used random quaternion angle difference perturbations

between zero and 85 degrees and translational perturbations

between 0 and .1 meters. The randomly generated poses were

first validated by the inverse kinematics (IK) solver to ensure

that the start and end configurations necessary for the robot

were collision-free; 422 points were confirmed valid by the

IK solver and used for testing. Of those 422 points in the

space, the trajectory planner succeeded in planning all four

trajectories 93.84 percent of the time.

C. Trajectory Execution

We generated a library of known valid and invalid tra-

jectories to test the validity of the execution of planned

trajectories. When both hands maintained contact with the

object throughout the entire trajectory it was considered valid,

if either hand missed or lost contact with the valve it was

considered invalid.

We introduced random rotational noise between 0 and 10

degrees and translational noise between 0 and .025 meters.

These values were selected to represent reasonable valve

misalignments given the observed noise and error of the

sensors on the PR2.

We manually created an initial library of 22 known valid and

invalid example trajectories by providing correct and incorrect

alignments of the valve to the planner, and tagged the resulting

trajectory as either successful or not. The library was then

grown to 526 trajectories through experiments.

In this system, DTW is sufficiently fast to enable online

evaluation of individual trajectories. Each evaluation against

the 526-element library is completed in less than four seconds,

whereas execution of the actual trajectories requires approxi-

mately 32 seconds. We performed leave-one-out testing of the

library itself in which each known trajectory in the library

was compared against the other trajectories in the library to

test the ability of the error detector to correctly identify if

an error was encountered. This testing resulted in an overall

correct identification rate of 88%, the false positive rate was

10% and the false negative rate was 16%.

This discrepancy between identification rates is acceptable

because the cost potentially incurred from a false negative

identification (which would result in a retry of the alignment

and planning) is significantly lower than that from a false

positive (which would result in prematurely terminating the

valve turning task).

D. Full Framework Testing

In order to test the communication and data collection

across the system, we ran 20 complete test cycles of the full

framework. The test procedure was as follows: we manually



drove the PR2 to a random location in the room from where

it could see the valve, then an expert user identified the

location of the valve using the GUI, and sent the location of

the valve to the planning component. Once the PR2 received

the valve’s location, it approached the valve autonomously,

planned valve turning trajectories, and then executed those

trajectories. The average time to run the entire framework from

start to finish was approximately two minutes. On average,

turning towards the valve and driving to a location where it

could be manipulated took 30 seconds, planning took two to

three seconds depending on the PR2’s position relative to the

valve, and turning the valve took approximately 90 seconds.

Trajectory execution accounted for 64 of those seconds, tra-

jectory classification with DTW took 12 seconds, and closing

and opening the grippers accounted for the remainder.

V. ROBOT EXPERIMENTS

We have applied this framework to a Willow Garage PR2

performing the valve turning task. We created a valve analog

from a commercially available force feedback racing wheel.

We tested our framework on the PR2, after validating the

safety of all tests in a simulation environment. The distance the

PR2 started away from the valve was varied randomly between

one meter and three meters. The orientation of the PR2 was

also varied so that it was not directly facing the wheel, with the

requirement that the wheel be in the point cloud. The addition

of a search algorithm to find valves not visible in this starting

position is discussed in the Future Work section.

Observed performance of the trajectory execution system

on the PR2 shows that false negative identifications correlate

to cases where the compliance in the PR2’s arms can cause

the same trajectory to either succeed or fail. Notably, the

overall correct identification rate for unsuccessful trajectories

is higher than that for successful trajectories, most likely a

result of known unsuccessful trajectories outnumbering known

successful trajectories in the library.

A. Hubo Testing

In contrast to the more systematic testing on the PR2

robot described above, our preliminary experiments with the

Hubo were centered around validating our method of motion

planning for the robot and evaluating the robot’s capabilities

in relation to the requirements of our DRC task (turning the

valve). These tests were performed on the Hubo2 Plus at MIT,

housed in the lab of Professor Russ Tedrake.

Hubo2 Plus is a 130 cm (4′3′′) tall humanoid robot com-

monly refered to as Hubo, see Fig. 6. It was designed and

constructed by Prof Jun-Ho Oh at the Hubo Lab in the Ko-

rean Advanced Institute of Science and Technology (KAIST)

[20, 21]. Hubo is anthropomorphic to a human meaning it

has two arms, two legs and a head. There are six degreese of

freedom (DOF) in each leg, six in each arm, five in each hand,

three in the neck, and one in the waist, all totalling 38 DOF.

We executed several open-loop valve-turning trajectories

generated by the planning system on the Hubo. Our exper-

iments confirmed that the planning system enabled control of

Fig. 6: Hubo2 Plus turning a valve.

the Hubo and that the Hubo was physically capable of turning

the valve.

VI. FUTURE WORK

Our framework provides significant room for expansion to

the user interface, planning system, and trajectory execution

monitor. The current interface provides neither a method of

searching for an object nor autonomous object detection.

Future versions will combine these with a variety of improve-

ments to increase user situation awareness.

Our current motion planning system is dependent on the

manual generation of both initial configurations and task

constraints. Automatic generation of these is an important

avenue for further work. We plan to develop an automated

configuration predictor using human-agent knowledge transfer

techniques that have been shown to be effective for teaching

agents different types of tasks [22, 23].

For trajectory execution, the final stage in our system, we

will extend our implementation to identify different kinds of

error conditions. We plan to improve the performance of the

underlying DTW implementation using a variety of established

[9] and novel techniques [24] to use not only larger trajectory

libraries, but also to increase the resolution at which we

evaluate the trajectories for errors.

VII. CONCLUSION

In this paper, we presented the foundation of a novel

framework for user-guided manipulation in environments with

limited communication. We described techniques for object

identification, constrained trajectory generation, and trajectory

monitoring. We presented a quantitative evaluation of all major

components in simulation, and qualitative experiments on the

framework as a whole.
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