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Abstract. The Pleiades is the best-studied open cluster in the sky. It is one of the primary open
clusters used to define the ‘zero-age main sequence,’ and hence it serves as a cornerstone for
programs which use main-sequence fitting to derive distances. This role is called into question by
the ‘Pleiades distance controversy:’ the distance to the Pleiades from Hipparcos of approximately
120 pc is significantly different from the distance of 133 pc derived using other techniques. To
resolve this issue, we plan to use Very Long Baseline Interferometry to derive a new, independent
trigonometric parallax distance to the Pleiades. In these proceedings we present our observational
program and report some preliminary results.
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1. Introduction

Because of its proximity and its youth, the Pleiades open cluster has been the subject
of extensive observational and theoretical work throughout the 20th Century. It remains
so in the 21st Century, with almost 100 refereed journal papers having ‘Pleiades’ in
the title since 2000. Thanks to the wealth of existing knowledge, the Pleiades cluster
stars are often used as templates with which to define the properties of other young
stars (e.g., the Pleiades’ lithium abundance versus color is used to define the locus for
pre-main-sequence stars; the Pleiades’ v sin i distribution is often compared to that for
other clusters when discussing the evolution of angular momentum on the main sequence;
the first brown dwarf in an open cluster was a Pleiades member; and the Pleiades now
has the best-defined substellar locus of any open cluster). One would expect that all
critical astrophysical parameters for such an important sample of stars would be well
characterized. However, there still remains an open debate regarding the distance to the
Pleiades.

Currently there are two main camps. On one side is the Hipparcos team (van Leeuwen
& Hansen Ruiz 1997; van Leeuwen 2007) who state that their satellite’s trigonometric
parallaxes put the Pleiades at a distance of 118.3±3.5 pc and, more recently, 122.2±1.9 pc
(van Leeuwen & Hansen Ruiz 1997; van Leeuwen 2007). On the other side are various
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Table 1. Pleiades parallaxes (updated from Soderblom et al. 2005)

Method πabs (mas) D (pc) m − M (mag) Ref.

Hipparcos all-sky 8.45±0.25 118.3±3.5 5.37±0.06 2
Hipparcos new reduction 8.18±0.13 122.2±1.9 5.44±0.03 7

Main-sequence fitting 7.58±0.14 131.9±2.4 5.60±0.04 1
Allegheny Observatory parallaxes 7.64±0.43 130.9±7.4 5.59±0.11 3
Interferometric orbit 7.41±0.11 135.0±2.0 5.65±0.03 4
Dynamical parallax 7.58±0.11 131.9±3.0 5.60±0.05 5
HST FGS parallax of 3 Pleiads 7.43±0.17 134.6±3.1 5.65±0.05 6

References: 1, Pinsonneault et al. (1998); 2, van Leeuwen (1999); 3, Gatewood et al. (2000); 4,
Pan et al. (2004); 5, Munari et al. (2004); 6, Soderblom et al. (2005); 7, van Leeuwen (2007).

ground-based and Hubble Space Telescope (HST)-based teams employing methods from
main-sequence fitting to dynamical parallax determinations using binary stars (see Table
1). These teams, whose work can be theory-dependent or rely on a small sample of
stars, offer a distance of 133 ± 0.9 pc (see Table 1 for a summary of Pleiades distances).
Outside the Hipparcos community, the most often cited physical mechanism to explain
the Hipparcos distance to the Pleiades is that there are unmodeled correlations in the
Hipparcos data on angular scales of ∼ 1◦, which can (under some circumstances) bias
distance estimates (Narayanan & Gould 1999)

Although what is listed above amounts to a 10% difference in the distance, the resultant
discrepancies as propogated into the Pleiades Hertzsprung–Russell diagram, and the
necessary revisions of physical models to obtain agreement with the Hipparcos result,
are quite significant. The Hipparcos result, if correct, means that stars in the Pleiades
are of order ∼0.2 magnitudes fainter than otherwise similar field stars. According to
Soderblom et al. (2005):

“This large discrepancy has forced a careful re-examination of the assumptions
and input parameters of the stellar models, as well as a thorough study of the
Hipparcos data itself and potential errors in it. The controversy has not been fully
resolved in that builders of star models find that the changes in physics or in-
put parameters needed to account for the Hipparcos distance are too radical to
be reasonable, whereas the Hipparcos team has resolutely defended the Hipparcos
result.”

The final comment regarding the Hipparcos team has held true, despite the recent ‘new’
reduction of the Hipparcos raw data (van Leeuwen 2007). As stated by van Leeuwen:

“The new Hipparcos reduction results largely confirm the earlier results, including
what has been referred to as errors in the published data: the parallaxes of the
Pleiades... The new reduction leaves little, if any, room for an explanation of these
differences as due to errors in the Hipparcos data.”

What can be done to reach a resolution regarding the distance to the Pleiades? Do
models fall short of describing the Hipparcos Pleiades main sequence because of im-
portant, albeit overlooked, additional physics? Van Leeuwen (1999) considered whether
plausible errors in the assumed helium or metal abundance of the Pleiades could explain
the distance discrepancy, but concluded that this seemed very unlikely. The difference
is instead ascribed to some unspecified, age-related property that causes young stars to
be underluminous relative to current theoretical models (van Leeuwen 1999). Or does
Hipparcos contain a systematic or instrumental error that has yet to be characterized? A
clear resolution to the Pleiades distance problem requires a new approach that is free of
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the limitations of previous optical astrometric measurements. Such a technique is radio
interferometric astrometry as afforded by Very Long Baseline Interferometry (VLBI).
The highly accurate radio reference frame combined with the exquisite precision of VLBI
astrometric measurements (e.g., Loinard et al. 2007, 2008; Reid et al. 2009) can be used
to settle the Pleiades distance debate.

CONT: HII2147  IPOL  8432.927 MHZ  HII2147.ICL001.1

HII2147 NW

HII2147 SE

Cont peak flux =  3.5051E-04 JY/BEAM 
Levs = 1.900E-05 * (-3, 3, 6, 9, 12, 15, 18, 21)

D
E

C
L

IN
A

T
IO

N
 (

J
2

0
0

0
)

RIGHT ASCENSION (J2000)
03 49 06.129 06.128 06.127 06.126 06.125 06.124

23 46 51.94

51.93

51.92

51.91

51.90

51.89

51.88

51.87

51.86

Figure 1. (top) Epoch 05 May 2012 VLBI image of the binary Hii 2147 system. Both compo-
nents are clearly detected. The projected separation between the binary components is 50 mas
or roughly 6 AU. (bottom) Three epochs of Keck II/NIRC2-NGSAO imaging of Hii 3197. The
system is resolved into a triple and significant orbital motion of the close pair is seen from
2006 (left) to 2011 (middle) and 2012 (right). North is up and East is left in each image. The
separation between the close pair and the tertiary is ≈0.6′′.

2. NRAO Key Science Project

Using the full High Sensitivity Array (HSA: Very Long Baseline Array, Green Bank,
Effelsberg, and Arecibo antennas), we are conducting a large (≈900 hr) program to
determine the most accurate trigonometric parallax to the Pleaides cluster and hence
resolve the ‘Pleiades distance controversy.’

Of course, one needs radio sources with sufficient flux to enable VLBI measurements.
Previous studies of the Pleiades at radio wavelengths have proven largely unsuccessful
(e.g., Bastian et al. 1988; Lim & White 1995; and references therein). Pleiades members

https://doi.org/10.1017/S1743921312021114 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921312021114


The Pleiades distance controversy 63

Table 2. VLA-detected Pleiads

Star log(LX ) (B − V ) v sin i Radio program Flux Binary?
(ergs s−1 ) (mag) (km s−1 ) (µJy)

Hii 174 30.19 0.81 28 AM978,JVLA 90–120 Y
Hii 253 30.46 0.64 37 AL361 90 N
Hii 314 30.28 0.60 38 JVLA 115 N
Hii 625 30.19 0.78 94 LW95,JVLA 110–160 Y
Hii 1136 30.14 0.72 75 LW95,AL361 110–930 Y
Hii 1883 29.67 0.99 140 LW95 50-100 N
Hii 2147 30.5 0.76 27 AM978 130–180 Y
Hii 2244 29.99 0.99 45 JVLA 60 N
Hii 3197 30.14 1.03 33 AM978 90 Y
PELS75 30.1 0.91 56 JVLA 150 Y

X-ray data taken from Stauffer et al. (1994) and Micela et al. (1996, 1999). LW95 = Lim &
White (1995). The binary column indicates whether any hint of binarity is noted in literature
studies of the Pleiades (e.g., Mermilliod et al. 1992; Bouvier et al. 1997; and references therein).

have only been detected in a deep survey carried out by Lim & White (1995). However,
the lesson learned through the study of Lim & White is that some Pleiads have quasi-
steady radio luminosities on the order of 2×1015 ergs Hz−1 s−1 . Such luminosities equate
to flux levels on the order of ∼0.2 mJy. Capitalizing on these previous observations, and
with the eventual goal of a VLBI survey in mind, we attempted deep Very Large Array
(VLA) observations of the brightest X-ray-emitting Pleiads. Our VLA sample targeted
ultra-fast rotators (UFRs) that have X-ray luminosities on the order of log(LX) ∼ 30 [ergs
s−1 ]. UFRs are known to exhibit enhanced coronal activity and are often detectable non-
thermal radio emitters. Note that this target-selection strategy did not take into account
whether or not sources were suspected members of binary systems. That is to say, our
input VLA target catalog was unbiased with respect to binarity and included roughly
equal numbers of (believed) single and binary stars. We designed our VLA experiment to
test the quasi-steady flux level of known radio-emitting Pleiads, aiming for rms flux levels
of ∼ 16 µJy beam−1 . Our program was successful (Table 2), with a ∼50% detection rate
when we reached our sensitivity threshold. The flux levels we measure are on the order
of ∼50–100 µJy.

The HSA is capable of detecting the elevated flux levels (≈100 µJy) and will be able to
obtain even deeper detections (≈30–50 µJy) once 2 Gbps sampling, the phased Jansky
VLA (JVLA), and the VLBA C-band receiver upgrades are complete.

2.1. Project Path

Our VLBI observational strategy includes nine total epochs of positional measurements
for 10 Pleiads. Five target sources are being monitored with the HSA and will continue
to be monitored until early 2013; after that time, five new sources will be monitored
for roughly one year. This strategy is driven by two considerations: target binarity and
cluster-depth issues.

Binarity

Through astrometric monitoring and literature searches, we have determined that most
(if not all) of our VLBI target sources reside in binary systems. This preference for binary
systems was not explicit in our source selection procedure; our targets were selected based
solely on bright radio emission detected in preliminary VLA surveys. There is mounting
evidence that radio-bright stars tend to reside within binary systems, so it is unlikely
that there is a population of radio-loud targets in single systems.
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Figure 2. Astrometric model for Pleiad Hii 1136 that includes proper motion, parallax, and
orbital acceleration from an unseen binary companion. The top-panel curve and data points
show right ascension angular offsets on the sky of the source position relative to an arbitrary
reference position. The bottom-panel curve and data points show declination offsets. Proper
motion has been removed in the data points to accentuate the parallax motion. The fit allows
for acceleration as might come from a widely separated (orbital period greater than 10 yr) stellar
companion. However, the fitted accelerations are small and do not change the parallax.

In some special cases, suspicions of binarity are confirmed by detection of light emitted
by the binary component (e.g., Fig. 1). To properly determine the parallax motion of any
astrometric binaries requires complete mapping of the binary system’s orbital motion.
To do this requires ≈9 astrometric measurements spaced over one year. Such a data
set (18 measurements taking R.A. and Dec as independent parameters) will allow us
to decouple parallax and proper motion (5 model parameters) from orbital motion (7
model parameters). Longer-period (>1 yr) systems, despite having incomplete orbital-
period information, may still have an accurate parallax determined by the inclusion of
acceleration terms in place of complete orbital fits. Such a strategy was successfully
implemented by Loinard et al. (2007) in their determination of the parallax of the T Tau
binary system with the VLBA.

Cluster Depth

The sample size of Pleiades objects is necessary to decouple cluster-depth issues from
individual cluster member parallax measurements. In the new reduction of the Hipparcos
data, van Leeuwen (2007) raises an important issue when discussing the HST parallax
measurements of three low-mass cluster members by Soderblom et al. (2005). To derive
the cluster’s absolute parallax, one must include with the measurements of the individual
stars the additional uncertainty of the star’s position with respect to the cluster center.
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It is thus of the utmost importance to have enough members to average out positionally
dependent effects like the (unknown) distance between the target source and the true
cluster center. A rough estimate of this uncertainty can be made (with simplifications) as
follows: the half-mass radius of the Pleiades is 1.9 pc (Raboud & Mermilliod 1998). With
10 targets, and if the uncertainties are dominated by the physical depth of the cluster,
our final distance uncertainty would be of order 1.9/

√
10, or ∼0.6 pc.

3. Preliminary Results

One star in particular in the Lim & White sample exhibited a radio flare that peaked at
a flux density of ∼1 mJy. This star, Hii 1136, became the subject of VLBI pilot surveys to
determine the feasibility of a full-scale Pleiades parallax program. We have now amassed
VLBI detections for this system spanning almost 10 years. With these data we attempt
a preliminary parallax fit. Two automated least-squares fits are performed (for fit details
see, e.g., Reid et al. 2009; and references therein): one fit only allows parallax and proper
motion as free parameters, while in the other fit we also allow for a constant acceleration
term, the likes of which would be obtained if the Hii 1136 system was composed of a
long-orbital-period (>10 yr) binary.

The preliminary fit for the case of a constant acceleration term is shown in Fig. 2.
Note that the addition of the constant acceleration term, although resulting in lower rms
residuals, does not affect the parallax obtained. For this particular system we obtain a
parallax of ≈7.2 mas. Such a distance is slightly farther away than the non-Hipparcos
distances reported in Table 1. It could be the case that Hii 1136 is on the far side of the
cluster, since it lies within the cluster tidal radius regardless of which cluster distance is
assumed.
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