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Towards Achieving Robust Low-level and

High-level Scene Parsing
Bing Shuai∗, Henghui Ding∗, Ting Liu,

Gang Wang, Senior Member, IEEE, and Xudong Jiang, Senior Member, IEEE

Abstract—In this paper, we address the challenging task of
scene segmentation. We first discuss and compare two widely
used approaches to retain detailed spatial information from pre-
trained CNN - “dilation” and “skip”. Then, we demonstrate that
the parsing performance of “skip” network can be noticeably
improved by modifying the parameterization of skip layers.
Furthermore, we introduce a “dense skip” architecture to retain
a rich set of low-level information from pre-trained CNN,
which is essential to improve the low-level parsing performance.
Meanwhile, we propose a convolutional context network (CCN)
and place it on top of pre-trained CNNs, which is used to
aggregate contexts for high-level feature maps so that robust
high-level parsing can be achieved. We name our segmentation
network enhanced fully convolutional network (EFCN) based on
its significantly enhanced structure over FCN. Extensive experi-
mental studies justify each contribution separately. Without bells
and whistles, EFCN achieves state-of-the-arts on segmentation
datasets of ADE20K, Pascal Context, SUN-RGBD and Pascal
VOC 2012.

Index Terms—Scene parsing, convolution neural network,
convolutional context network, fully convolutional network, skip
layers.

I. INTRODUCTION

S
CENE segmentation refers to parsing a scene image into

a set of coherent semantic regions. It is a challenging

task that implicitly subsumes object recognition as well as

boundary delineation. It demands multi-level parsing ranging

from low-level (e.g., boundary localization) to high-level (e.g.,

object recognition). Thus, it’s understandable that a well-

performed segmentation network should effectively incorpo-

rate different scale information.

State-of-the-art segmentation networks are based on pre-

trained classification network (e.g., CNN). However, detailed

spatial information are largely lost in its output feature maps.

In order to incorporate the detailed low-level features, re-

searchers usually adapt the architecture of pre-trained CNN

[4][11][23][39] based on two approaches: (1) “dilation” - it

removes pool layers (in pre-trained CNN) and then performs

subsequent convolution operations with higher dilation factors

(i.e. stride rate); or (2) “skip” - it adds skip branches (usually

linear classifier) from early layers of pre-trained CNN such

that low-level features are explicitly incorporated into image

parsing. Recent literatures [4][39][36] as well as our experi-

ments suggest that “dilation” network 1 outperforms its “skip”

counterpart. However, there are some defects using the dilation

∗Equal Contribution
1Hereafter, we simply use “skip” and “dilation” network to notate the above

two network architectures.
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Fig. 1: (Best viewed in color) Semantic segmentation demands

robust high-level as well as low-level parsing. EFCN out-

performs FCN for both the high-level smoothing/recognition

(“train” and “ground” in the first and third example) and

the low-level boundary localization (e.g., bird legs in second

example).

to retain spatial information. First, the resolution of feature

maps does not decrease after the layer where dilated (atrous)

convolution is applied, so it requires more computations to

process “dilation” network. Similarly, memory consumption is

also much more severe in “dilation” network. These motivate

us to explore using skip layers to retain spatial information.

In this paper, we demonstrate that the parsing performance

of “skip” network can be significantly improved by re-

parameterizing the skip layers. Importantly, skip layers entail

very few computation overhead. Hence, “skip” segmentation

network can be further combined with a complex up sampling

module to recover detailed information. In contrast, “dilation”

networks [4] usually exclude extra up sampling module due

to efficiency issues. Next, we introduce a “dense skip” ar-

chitecture to retain rich set of low-level information from pre-

trained CNN. In detail, we consider every possible informative

lower-level feature maps into semantic parsing. These dense

skip layers enable the segmentation network to incorporate

very rich low-level contexts, which is essential to improve

its performance on low-level parsing. In comparison with the

popular “dilation” network, we demonstrate that the “dense

skip” architecture is more effective as well as more efficient

in terms of retaining low-level detailed information from pre-

trained CNN. Besides, dense skip layers offer an effective

approach to address the large scale variation of objects in scene
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segmentation.

Feature maps generated by pre-trained CNN are usually

robust enough for image-level visual recognition, but they are

not equally discriminative and representative at every spatial

location. Take images from Fig. 1 for example, local features

for upper-right “train” regions (first image) and lower-right

“ground” regions (third image) are not discriminative such that

their unary predictions are noisy. Thus, feature context aggre-

gation (CA) is essential to improve their representation capa-

bility. Specifically, context aggregation allows local features to

embed their neighborhood informative context so that even a

linear classifier (fc layer) can easily distinguish their genuine

categories. In this paper, we propose a convolutional context

network (CCN) and place it on top of pre-trained CNN to ag-

gregate context for high-level feature maps. CCN is employed

to contextualize high-level features using basic convolutional

kernels to achieve high-level consistency. Different from atrous

convolution [4][39], there will be no “holes” during the convo-

lution operations. Thus, it can incorporate every feature within

the contextual window into corresponding features. CCN could

also aggregate multi-scale context information to overcome

the challenge of the existence of objects at multiple scales. It

is empirically demonstrated that CCN is able to significantly

improve the parsing performance of segmentation networks.

Meanwhile, CCN delivers a more effective CA module than

many state-of-the-arts [4][21][30][39] including Atrous Spatial

Pyramid Pooling (ASPP) in DeepLab [4] and DAG-RNN [30].

Our segmentation network is fully convolutional, and it

has dense skip layers from pre-trained CNN and CCN. Thus,

we name it enhanced FCN (EFCN) based on its enhanced

structure over FCN. The qualitative parsing results in Fig. 1

illustrate that EFCN outperforms FCN in terms of both high-

level as well as low-level parsing. Overall, EFCN presents

a strong segmentation network architecture, which achieves

state-of-the-art performance on standard semantic segmenta-

tion datasets including ADE20K [42], Pascal Context [25],

SUN-RGBD [34] and VOC 2012 [8]. In summary, this paper

makes the following contributions to yield the network archi-

tecture of EFCN.

• We study and compare two adaptation approaches to

retain low-level information from pre-trained CNN -

“dilation” and “skip”. By modifying the parameterization

of skip layers, we improve the parsing performance of

“skip” network significantly.

• We further propose a “dense skip” architecture to retain

rich set of low-level information from pre-trained CNN,

which is demonstrated to be more effective as well as

more efficient than its “dilation” counterpart.

• We propose a convolutional context network (CCN) to

aggregate context for high-level feature maps. We show

that CCN is very effective to boost the parsing perfor-

mance of segmentation networks.

Note that these contributions can also be integrated to

other segmentation network architectures, such as SegNet [1],

PSPNet [40] and DeconvNet [26].We also compare qualitative

results of EFCN with state-of-the-art segmentation networks,

which gives deeper insight to understand our contributions.

We will release the training code and the trained model upon

the acceptance of this paper.

II. RELATED WORK

A. Retaining detailed information

State-of-the-art segmentation networks [23][6][7][40][5][4]

are adapted from pre-trained classification networks (e.g.,

CNN trained from ImageNet [28]). Thus, it’s essential to

address the issue that the detailed low-level information is

progressively lost in higher-level feature maps. The seminal

work - FCN [23] - demonstrated that more detailed parsing

maps can be generated if lower-level feature maps are incor-

porated into predictions. From the perspective of architecture

designs, this is achieved by adding skip layers from lower-

level feature maps of pre-trained CNN. Recently, DeepLab

[4] and DilatedNet [39] advocated to mitigate the loss of

detailed spatial information by removing pooling layers in

pre-trained CNN. Afterwards, they perform the subsequent

convolution operations with higher dilation factors (i.e. stride

rate) so that parameters in pre-trained CNN can be reusable.

Most recent segmentation networks are based on the latter

architecture design due to its superior parsing performance,

such as [36][4][37][40]. In this paper, we demonstrate that the

performance of “skip” network can be significantly enhanced

by re-parameterizing skip layers. Moreover, we propose “dense

skip” architecture to retain rich set of low-level detailed

information, which is shown to be more effective as well as

more efficient than its “dilation” counterpart.

In addition, researchers have also been dedicated to devel-

oping networks (i.e. decoder network) [1][26][36] to recover

the lost spatial details. As it will be shown later, our work in

this paper is orthogonal to this line of research.

B. Contextual modeling

One branch of work introduces new computational layers

to achieve contextual modelling, which are usually placed

on top of pre-trained CNN to enhance high-level parsing

performance. For example, Liu et al. [22] adopted local

convolution layers to approximate the mean field algorithm

for pairwise terms in deep parsing network (DPN). Lin et

al. [19] inserted convolution layers to model the semantic

compatibility between image regions. Visin et al. [35] and

Shuai et al. [30] employed recurrent neural networks (RNNs)

to propagate local context in feature maps. Chen et al. [4]

proposed an atrous spatial pyramid pooling (ASPP) network

to aggregate multi-scale context for feature maps. Recently,

Yu et al. [39] introduced a convolutional network using

dilated convolution kernels to perform context aggregation

over class likelihood maps. All these computational layers are

designed to encode extra context into local features so that

their representation capabilities are enhanced. In this paper,

we propose convolutional context network (CCN) to achieve

this functionality, and we demonstrate that CCN is more

effective than many state-of-the-art CA modules. An in-depth

comparison between CCN and its counterparts is elaborated

in Section III-C.
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Different from [22][19][39], our context network has mul-

tiple shortcut connections, which allow it to have deeper

architecture by mitigating its optimization difficulties. Thus,

our context network is able to expand the receptive fields

significantly larger than those networks. Moreover, shortcut

connections enable EFCN to fuse rich-scale contextual predic-

tions, whereas the network architectures in [22][19][39] don’t

have such property. In contrast to [30], EFCN is more efficient

as features (in feature maps) are processed in parallel rather

than sequentially as in [30].

Another representative branch of work leverages fully con-

nected CRF [17] (CRF) to contextualize the unary predictions

of segmentation networks. For example, Chen et al. [4] applied

CRF to the unary predictions of DeepLab network, and they

observed obvious improved visual quality of parsing maps.

Subsequently, Zheng et al. [41] formulated CRF as a Recurrent

Neural Network (CRF-RNN) so that it can be jointly trained

with segmentation networks. Even though CRF is effective

towards refining the label maps, they are more like a post-

processing refinement step. As demonstrated in [4] [39], these

works are expected to be orthogonal to the contribution of the

proposed CCN.

C. Multi-scale aggregation

Multi-scale aggregation (feature or class-likelihood) is es-

sential to address the large scale/size variation of objects in

semantic segmentation. Technically, there are multiple ways to

achieve this goal. For example, the multi-resolution approach

[9][19] generates an image pyramid and then concatenates

the corresponding features from different resolutions. Alterna-

tively, the hyper-column approach [2][13] combines different-

levels of convolutional feature maps. Both approaches are

expected to incur either higher computation time or larger

memory consumption. Thus, in practice, they are limited to

aggregate only few scale contextual predictions. The skip

layers introduced in [23] locally classify feature maps of

different scales and then fuse their predictions, which is

proven effective as well as economic to achieve multi-scale

aggregation. In this paper, we introduce dense skip approach

to enable segmentation networks to fuse rich-scale contextual

predictions, which is critical to deliver detailed parsing maps.

As linear fusion strategy is adopted in FCN, more advanced

fusion method like in [10] can be utilized to further improve

the parsing performance.

III. SEGMENTATION NETWORKS

Scene segmentation requires both robust low-level and high-

level parsing. Specifically, low-level spatial information is

important to detect small-size objects as well as to delineate

their boundaries. On the other hand, context-aware and high-

level feature representation is essential to recognize stuff re-

gions (e.g., ‘building’ and ‘ground’ in Fig. 1) and appearance-

inconsistent or zoom-in objects (e.g., ‘train’ in Fig. 1). In this

paper, we discuss how to integrate robust high-level and low-

level parsing in an efficient segmentation network.

Networks Type IOU Speed (hz)

FCN-8s (Orig) [42] skip 29.5% 10.0

FCN-8s skip 31.4% 10.0

FCN dilation 32.8% 3.60
FCN-8s our skip 32.6% 10.0

DeepLab-v2 skip 33.5% 10.8

DeepLab-v2 dilation 35.1% 7.30
DeepLab-v2 our skip 34.7% 10.8

TABLE I: Two approaches - “Dilation” and “Skip” - are used

to adapt pre-trained CNN (in this case, VGG-16 [33]). Results

of their corresponding networks are evaluated on ADE20K

dataset [42]. Networks are trained under the same condition

(details are elaborated in Section IV) except that FCN-8s

(Orig) is trained without class-weighted loss [30]. Speed refers

to the inference time of segmentation networks on a single

NVIDIA Titan X.

A. Two approaches to retain detailed spatial information:

dilation and skip

Pre-trained CNN (i.e. local representation module) usually

outputs high-level semantic features that are essential for

robust object recognition. However, low-level and mid-level

features are also important for image parsing. For example,

localizing small-size objects and delineating object boundaries

requires robust low-level visual recognition. Thus, how to re-

tain and incorporate the detailed spatial information from pre-

trained CNN remains a promising research direction. Overall,

two prominent approaches arise.

• Dilation. This line of work is represented by DeepLab [4]

and DilatedNet [39]. These two networks remove pool

layers, and modify subsequent conv kernels with dilated

(atrous) conv. By doing so, resolution of feature maps

doesn’t reduce significantly, and hence the detailed spatial

information is preserved.

• Skip. The seminal work FCN [23] adopts this archi-

tecture design. Specifically, skip layers are used to fuse

predictions from early feature maps of pre-trained CNN.

Thus, lower-level features are explicitly incorporated in

semantic segmentation.

We experimentally compare and discuss the two approaches

on ADE20K [42]. Results are summarized in Table I. Consis-

tent with current findings in [4][39], our experiments show

that “dilation” network shows superior parsing performance

than its “skip” counterpart. However, the inference speed of

“dilation” networks is significantly slower, as they need to

process denser feature maps.

To compare these two approaches, we modify the pre-

trained CNN in the corresponding way as suggested by these

methods. Specifically for VGG-16, we remove pool4 and

pool5, and the dilation factors for conv kernels after these

layers are set to 2 and 4 respectively. Alternatively, we add

two skip branches emanating from pool3 and pool4. All

of the other modules in the segmentation networks are fixed

identically, and we have compared these modifications for two

segmentation networks: FCN and DeepLab. The results on

ADE20K dataset are summarized in Table I.
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Fig. 2: Skip layers of segmentation networks. The right figure

depicts the detailed computational blocks of two parameteriza-

tions of skip layers. Mathematically, H = H
′+S(F,Θ), where

F and H denotes input feature map (with the dimensionality

of height × width × #channels) and its class-likelihood map

respectively, S(·, ·) is the computational function of skip layer

and Θ is their learnable parameters. H
′ represents class-

likelihood maps generated from other branches.

As shown in Table I, the two modifications both perfor-

m well for these networks, which demonstrates that both

approaches can retain some useful information to improve

parsing performance. However, it’s important to mention that

“dilation” network is significantly slower than “skip” net-

work. Considering that the resolution of feature maps doesn’t

decrease after pool3 layer, it requires significantly more

computations. In accordance, memory consumption is also

more severe in “dilation” network.

This result motivates us explore designing efficient “skip”

network architecture to enhance its capability in retaining

detailed spatial information.

We found that the inferior results of “skip” networks are

partly caused by the less-well trained skip layers. Referring to

Fig. 2, the gradients that are back-propagated to pre-trained

CNN are ∆F = ∂L

∂H

∂H

∂F
, where L refers to the class-weighted

loss [30]. Consider the usual parameterization of skip layer

(1×1 conv kernel - parameterized by W ), ∆F = WT ∂L

∂H
, the

error signals ∂L

∂H
vary in a large range and strong error signals

are not functionally modulated before they are propagated to

the early layers of the pre-trained CNN. Thus, gradient norm

||∆F|| of large error signals can be very large, which fluctuates

the network training. In practice, a simple magnitude smaller

learning rate is usually used for skip layers [29] to prevent the

network training from divergence. However, this suppresses

some small error signals ∂L

∂H
in the training, which results in

a less-well trained skip layers in segmentation networks.

To address this issue, we use a 2-layer convolutional

network with batch normalization (BN) [15] to parameterize

skip layers (i.e. Conv+BN+ReLU+Conv ). Specifically, batch

normalization is used to stabilize the back-propagated error

signals ||∆F||. Now the gradients that back propagated to pre-

trained CNN are ∆F = ∂L

∂H

∂H

∂F
= WT ∂L

∂H

∂Y

∂F
, where Y refers

to the output of the newly added layers Conv+BN+ReLU and

W is the parameter of the last 1 × 1 classifier Conv layer.
∂Y

∂F
plays a modulative role to the error signals ∂L

∂H
and we

can view it as an adjustable learning rate, which is adaptive

Networks Type IOU Speed

FCN sparse skip 32.6% 10.0
FCN dense skip 33.6% 9.10

DeepLab-v2 sparse skip 34.7% 10.8
DeepLab-v2 dense skip 35.4% 10.1

TABLE II: Parsing performance comparison between “sparse

skip” and “dense skip” network architectures on ADE20K

dataset [42]. Here our new parameterized skip layers are

applied to both sparse and dense skips.

to the error signal. Thus, the skip layers can be better trained

without posing optimization issues.

The role of our newly added layers is tested in the two

well-known segmentation networks (FCN [29] and DeepLab-

v2 [4] 2). Their results are shown in Table I. Performance

of the same “skip” networks are significantly boosted (> 1%
IOU) after our new parameterized skip layers are used. As

our parameterization of skip layers bring negligible extra

computations, the inference of “our skip” networks remains

efficient. Importantly, “our skip” networks achieve comparable

parsing performance with its “dilation” counterpart.

B. Dense skip: a more effective approach to retain spatial

information

In order to retain rich set of low-level information from

pre-trained CNN, we propose “dense skip” architecture. In

this sense, the corresponding network is expected to perform

better on low-level parsing. Besides, it is able to incorporate

very rich-scale context to make semantic predictions, which

is essential to address the large scale variation of objects in

scene segmentation. Here, the “dense skip” network adds skip

layers for each intermediate feature map after pool3 so that it

engages the same scale information as the “dilation” network.

Accordingly, we adapt two segmentation networks (FCN [29]

and DeepLab-v2 [4]) to “dense skip” architecture. Note that

original FCN is a “sparse skip” network. We compare their

performance in Table II. As expected, the “dense skip” archi-

tecture outperforms the conventional “sparse skip” counterpart

by a noticeable margin, and its inference speed remains

competitively fast. In comparison with “dilation” network (c.f.

Table I), the proposed “dense skip” architecture offers a more

effective and more efficient framework to preserve detailed

spatial information.

If the efficiency is not an issue, it’s technically feasible to

integrate “dilation” with “dense skip” architecture to a unified

network so that lower-level information can be retained from

different and possibly complementary manners. We leave this

architecture exploration for future work.

2The architecture of DeepLab-v2 [4] is illustrated in Fig. 5. In order to adapt
its “dilation” architecture to “skip”, we revise the dilation factors (stride rate)
in the four branches of ASPP to {1, 3, 4, 6} respectively. Their corresponding
dilation factors in “dilation” network are {4, 12, 16, 24}, which are close to
their original settings {6, 12, 18, 24} in [4].
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Fig. 3: Convolutional context network (CCN) is a convolutional network with dense skip layers. Contextual field (orange

coverage in F
′) of feature maps are progressively expanded. Note that features in F

′ incorporate all elements in F.

C. Context Aggregation for high-level features

We have discussed how to adapt pre-trained CNN to retain

the detailed spatial information. Meanwhile, robust high-level

visual recognition is essential to achieve good parsing perfor-

mance. Feature maps generated by pre-trained CNN generally

encode high-level semantic information, which are globally

discriminative for object/scene recognition [33][14]. However,

they are not equally discriminative at every spatial location,

especially for zoom-in objects and in “stuff” regions. Take

the first example in Fig. 1 as illustration, the “train” pixels

are visually inconsistent, and they can hardly be recognized

unless context from distant “railway regions are incorporated

into semantic parsing. Thus, incorporating context into feature

maps is of great significance to achieve the desired robust high-

level parsing.

Suppose a pre-trained CNN outputs a feature tensor F. Take

F as input, context aggregation module (CA) is to output F′,

in which each feature is well contextualized. Mathematically,

F
′ = CA(F,Θ), where Θ denotes the learnable parameters for

function CA. In general, features in F are interacted based on

the parametric model (CA) and then contexts are encoded in

the improved feature map F
′. Our view for a good contextu-

alization mechanism is that features in F
′ should engage all

elements in F. More specifically, suppose an input feature map

F has the spatial dimensionality of n×n, the contextual view

spanned by CA module should also be approximately n × n.

In this paper, we propose to use basic convolutional kernels to

achieve this goal. Different from atrous convolution [4][39],

there will be no “holes” during the convolution operations.

Thus, it can incorporate every feature within the contextual

window into corresponding features in F
′. In contrast, dilated

(atrous) convolution can only incorporate a fraction of features

within contextual windows. This issue is also pointed out by

[36] as “gridding issue”. As pre-trained CNN (with “skip”

modification) outputs very coarse feature maps (16 × 16 for

512×512 images), we can easily construct a non-deep convo-

lutional network to expand the expected range of contextual

views for features in F
′.

Convolutional Context Network (CCN). We present its

architecture in Fig. 3. As shown, several conv blocks are

chained to progressively expand the contextual view of feature

maps. Dense skip layers are also used in CCN to aggregate

multi-scale contexts.

Relation with ASPP in DeepLab [4]. ASPP aggregates multi-

scale contexts by combing multiple CA branches, each of

which uses dilated conv kernels with different stride rates

to incorporate different scale contexts. Functionally, dense

skip layers in CCN offer a similar way to aggregate multi-

scale context. However, receptive field of feature maps F
′ in

CCN are progressively expanded so that features in F
′ engage

information from all the elements within the receptive field in

F.

In contrast, even though feature maps F
′ in some ASPP

branches can expand a large contextual field (due to large

stride rate), features in F
′ still incorporates information from

very few elements in F.

Relation with DAG-RNN [30]. DAG-RNN propagates local

features to different regions of the image. Thus, features

in F
′ are able to incorporate information from all elements

in F. By analyzing the unrolled structure of DAG-RNN,

we discover that there are skip branches that connect every

intermediate feature map with output layers. Thus, each in-

termediate features receive direct supervision signals, which

explains why such a deep unrolled network can be effectively

trained. The proposed dense skip layers in CCN offer a

similar functionality to ease the difficulty of the network

optimization. However, considering that the unrolled DAG-

RNN is extremely deep (more than hundred layers), long-range

context may vanish[27] during propagation, which limits its

capability of contextual modeling. This issue is less likely to

happen in the relatively shallower CCN.

Relation with CRF [17]. CRF is usually applied to class

likelihood maps to contextualize local beliefs. In detail, the

pairwise energy term is largely based on low-level image cues

(e.g., color, gradient, position, etc.), thus it enforces low-level

consistency such as sharpening boundary, appearance-based

smoothing, etc. Similar to ASPP [4] and DAG-RNN [30], our

CCN is to contextualize high-level features so that high-level

consistency can be achieved. In this sense, CRF can be placed

on top of our segmentation network to further boost its parsing

performance.

We carefully examined and compared these CA modules in
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Networks CA module IOU

Baseline FCN-8s None 29.5%

Baseline FCN-8s + CRF CRF 31.1%
FCN-8s[29] fc6&fc7 32.6%
DAG-RNN [30] DAG-RNN 33.5%
DeepLab-v2 [4] ASPP 34.7%
Ours CCN 36.4%

TABLE III: Segmentation networks are adapted to “our skip”

architecture. They differentiate each other in terms of context

aggregation. Results are evaluated on ADE20K dataset.

a controlled experiment. For efficiency reasons, we adapt the

segmentation networks based on “sparse skip” architecture.

Their parsing performance on ADE20K are summarized in

Table III. Here, CCN is a 8-layer convolutional network

(3×3 kernels with 1024 channels) with dense shortcut branch-

es. As expected, segmentation networks with CA modules

outperforms baseline FCN, which demonstrates that context

aggregation is essential to enhance feature representation.

Note that even though FCN-8s [23] doesn’t engage extra CA

module, its pre-trained fc layers can be regarded as achieving

this functionality based on its architecture difference with

baseline FCN-8s. In comparison with FCN-8s, all other CA

networks (CCN, ASPP and DAG-RNN) engage magnitude

smaller parameters, but their corresponding “skip” networks

achieve superior parsing performance. This result indicates

that parameter sizes are not the main factor in building an

effective CA module. Meanwhile, CCN outperforms CRF,

DAG-RNN and ASPP by a significant margin, which clearly

justifies our contributions as well as demonstrates its architec-

ture superiority of feature context aggregation.

Comparison with context network in DilatedNet [39].

Architecturally, CCN has dense skip layers to aggregate multi-

scale contexts, whereas context network in [39] is a plain

CNN. Functionally, context network in [39] is placed on top of

classification layer (c.f. Fig. 5). Thus, it models the contextual

dependencies over class-likelihoods to refine local beliefs.

In contrast, CCN is fed with high-level feature maps, and

it aggregates and distills context to local features such that

their representation capability is improved. It is an essential

component in segmentation networks to enhance high-level

parsing consistency. By comparing their qualitative results

in Fig. 10, we clearly see that CCN noticeably outperforms

context network in terms of enforcing high-level consistency.

D. EFCN

Our segmentation network is fully convolutional, and it has

dense skip layers on both pre-trained CNN and CCN. Thus, we

name it enhanced FCN (EFCN) based on its enhanced struc-

ture over FCN. First, “dense skip” architecture is used to retain

and incorporate detailed spatial information from pre-trained

CNN, which enhances the low-level visual understanding (e.g.,

boundary localization, small-size object detection, etc.). All

skip layers in the “dense skip” network are parameterized with

the architecture introduced in Section III-A. Moreover, CCN

is introduced to aggregate context for high-level feature maps,

Pre-trained CNN

   (Sparse Skip)

DAG-RNN

Classifier

DeconvNet

Pre-trained CNN

       (Dilation)

ASPP

Classifier

DeconvNet

Pre-trained CNN

       (Dilation)

Context Network

Classifier

DeconvNet

Pre-trained CNN

   (Dense Skip)

Context Encoding

Classifier

DeconvNet

Pre-trained CNN

  (Sparse Skip)

Classifier

DeconvNet

FCN DAG-RNN EFCN DeepLab V2 DilatedNet

Local

Representation

Context

Aggregation

Classification

Feature map

Upsampling

Fig. 5: Network architecture comparison. These networks

differentiate each other from two aspects: (1) the way to adapt

pre-trained CNN to retain spatial information; (2) the approach

to aggregate context for high-level feature maps.

Networks GPA ACA IOU Speed (hz)

FCN(Orig) [42] 71.3% 40.3% 29.4% 10.0

FCN [29] 73.6% 44.8% 32.6% 10.0
DAG-RNN [30] 73.9% 49.0% 33.5% 9.80
DilatedNet [39] 74.1% 47.9% 33.6% 3.50
DeepLab-v2 [4] 75.1% 48.4% 35.1% 7.30

EFCN (sparse skip) 75.8% 50.4% 36.4% 9.80
EFCN (dense skip) 76.2% 51.7% 37.7% 9.00

TABLE IV: Parsing performance of different networks (c.f.

Fig 5) on ADE20K dataset.

which brings benefits to high-level visual parsing. Examples

in Fig. 1 qualitatively illustrate such benefits to the resulting

parsing maps. The network architecture of EFCN-xs is shown

in Fig. 4.

It’s important to mention that our contributions in this

paper are orthogonal to many recent techniques that advance

segmentation performance. For example, Zhao et al. [40] ex-

plore to leverage global scene information to improve parsing

performance. Wu et al. [37] exploit to improve the network

architecture of pre-trained CNN. Wang et al. [36] propose

to replace bilinear up sampling with convolution to preserve

detailed information.

In this paper, we follow the definition of [30] [31] to

illustrate the architecture of segmentation networks. Then,

we compare the architecture of EFCN with state-of-the-art

segmentation networks in Fig. 5. These networks differentiate

each other from two aspects: (1) the way to adapt pre-trained

CNN ( “sparse skip”, “dense skip” or “dilation”) to retain

detailed spatial information; (2) the approach to aggregate

context for high-level feature maps. In Table IV, we list

their parsing performance on ADE20K dataset [42]. EFCN

outperforms all other networks by a significant margin, which

justifies the merits of our contributions.

IV. IMPLEMENTATION DETAILS

Network setup. Following the functional modules of segmen-

tation networks defined in [30] [31] (c.f. Fig. 5), we present

the detailed network architecture of our EFCN.

• Local Representation. We use truncated VGG-16 [33]

(pre-trained on ImageNet [28]) as our local representation

module. In detail, layers after pool5 are discarded.
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Image pool3
64x64x256

pool4
32x32x512

pool5
16x16x512

EFCN-8s
8x upsampled

EFCN-16s
16x upsampled

EFCN-32s
32x upsampled

Conv4
Conv5

   512x512xC

2 x context

skip4

4 x context

context
16x16xN

2x upsampled

2x upsampled

2 x skip4

skip3

......   512x512x3

{ {

Prediction

Local Represention

Pre-trained CNN

Context Aggregation

CCN

Feature map Upsampling

DeconvNet

  Dense 

Skip

  Dense 

Skip

Fig. 4: Network architecture of EFCN-xs. Similar to the demonstration of FCN-xs, feature maps are shown as grids that reveal

relative spatial coarseness. First, “dense skip” architecture is used in EFCN to retain and incorporate low-level information from

pre-trained CNN, which enhances low-level visual understanding (e.g., boundary localization). Moreover, CCN is introduced

to aggregate context for high-level feature maps, which brings benefits to high-level visual parsing. EFCN-4s and EFCN-2s can

be trivially inferred from the above architecture demonstration. C is the cardinality of classes in the dataset and N denotes the

hidden layer dimension in CCN. In order to save space, some feature maps are not displayed. Note that the detailed architecture

of context network CCN can be retrieved in Fig. 3.

Given an input image with size 512× 512, it will output

feature tensor F with dimensionality of 16 × 16 × 512.

Besides, we adapt pre-trained CNN based on the pro-

posed “dense skip” architecture to retain detailed low-

level information.

• Context Aggregation. Our CCN is an 8-layer 3×3 (or 6-

layer 5×5) convolutional network with dense skip layers

(c.f. Fig. 3), and the hidden dimension is set to 1024 (or

512). Thus, feature in F
′ is able to incorporate context

from entire image.

• Up sampling. We use convolution transpose (deconvolu-

tion) kernels [23] to perform up sampling operation.

Class-weighted loss. To distribute more attention for infre-

quent classes, we modulate the pixel-wise loss according to its

rareness magnitude as in [30]. This practice is economic and

it is essential to significantly boost the parsing performance

of rare classes. As demonstrated in Table I, a significant 2%

IOU improvement is observed on ADE20K dataset when the

class-weighted loss is used to train FCN. We follow the 85%

-15% rule to determine the rare categories. Readers can refer

to [30] for detailed description.

Training details. Networks are trained with SGD with mo-

mentum (batch size 10). The learning rate is initialized to

be 10−3, and it is decayed by factor of 10 after 15 and

20 epochs (25 epochs in total). The momentum is fixed

to 0.9. New parameters engaged in CCN and skip layers

are randomly initialized (Gaussian distribution with variance

10−2). Meanwhile, higher learning rate (10×) is used for

newly-initialized parameters, i.e. CCN and dense skip layers.

Images are resized to have maximum length of 512 pixels, and

they are zero padded to 512 × 512 pixels to allow for batch

processing. We randomly flip the images horizontally (on the

fly) to augment the training images. The statistics (mean and

variance) in batch normalization (BN) layer is updated after

the network is converged. It is important to note that all

the segmentation networks (in the controlled experiments) are

trained with exactly the same settings.

Evaluation. Three performance metrics are used to evaluate

our EFCN: Global Pixel Accuracy (GPA), Average Class

Accuracy (ACA) and IOU. Readers can refer to [23] for

mathematical definitions.

V. ARCHITECTURE EVALUATION ON ADE20K

ADE20K [42] is a recently established large-scale dataset for

ImageNet scene parsing challenge. The dataset contains 20210

training, 2000 validation and 3352 test images. Each pixel

is annotated with one of 150 semantic categories including

object classes as well as stuff classes (e.g., tree, sky and wall).

In order to modulate the rareness weighted loss [30], those

classes whose frequency is less than 1% are considered as

rare. We report the results on validation images.

A. Which skip layers should be included?

It’s important to note that the skip layers from CCN (c.f.

Fig. 3) are essential to aggregate multi-scale context as well
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Networks GPA ACA IOU

EFCN-32s 73.7% 48.4% 33.2%
EFCN-16s 75.4% 51.5% 36.3%
EFCN-8s 76.0% 52.0% 37.0%
EFCN-4s 75.8% 51.3% 36.0%

TABLE V: Performance comparison of different EFCN archi-

tectures on ADE20K dataset. For efficiency reason, the hidden

dimension of CCN is reduced to 512, thus a slight performance

discrepancy is observed when it is compared with that in Table

IV.

as to ease network optimization difficulties (c.f. Section 3).

The removal of them dramatically deteriorates (> 1% IOU)

its parsing performance. Thus, dense skip layers from CCN

should be kept in EFCN. Here, we only discuss which skip

layers should be included from pre-trained CNN. To this end,

we progressively add skip layers from pre-trained CNN and

monitor the performance of their corresponding networks. For

efficiency reasons, we consider adding a block of skip layers

per evaluation.3 In a similar notation to FCN-xs [29], we

notate these networks as EFCN-xs. Their results are shown

in Table V, where we can see that EFCN-8s performs the

best among all “dense skip” architectures. Though EFCN-

4s entails more skip layers, it achieves inferior segmentation

results. We conjecture that the added block of skip layers

in EFCN-4s (comparing to EFCN-8s) incorporates possibly

noisy information that largely contributes to the degraded

performance.

B. The proposed EFCN based on the pre-trained ResNets

We have shown that EFCN significantly outperforms FCN

and other state-of-the-art VGG-16 based segmentation net-

works in Table IV, which verifies our contributions to the

architecture design. In this section, we examine whether such

architecture is universally beneficial to different pre-trained

CNNs, especially to the recent developed powerful ResNets

[14]. The recent success of residue learning [14], results in

very deep pre-trained CNN. Also, the recent pre-trained deep

networks (e.g., ResNet-101) have been expanded to very large

receptive fields. Thus, it’s interesting and also important to

know whether the proposed architecture design (EFCN) is

still able to bring performance benefits, if not as significant

as that in VGG-16. To this end, we adapt the pre-trained

ResNets (ResNet-50 [14] and ResNet-101 [14]) to FCN-8s

and EFCN-8s correspondingly. Their parsing performance on

ADE20K are listed in Table VI, where we can see that EFCN

consistently and significantly outperforms its FCN counterpart.

Although EFCN slightly lags behind PSPNet [40] that adopts

different strategy (dilation), it brings a significant performance

gain (∼ 4% IOU) from FCN that uses the same strategy of

skip, which again validates the merits of the contributions in

this paper. Furthermore, the proposed EFCN is faster than

3Feature maps are considered to be in the same block as long as they have
the same spatial resolution. Take VGG-16 [33] as an example, feature maps
pool4, conv5_1, conv5_2 and conv5_3 have the same resolution, so
skip layers originating from them are deemed as in the same block.

Networks ResNet-50

FCN-8s 74.4% 47.4% 33.9%
EFCN-8s 77.0% 53.2% 38.1%

Networks ResNet-101

FCN-8s 76.0% 50.1% 35.80%
EFCN-8s 77.7% 55.4% 39.74%
RefineNet[18] - - 40.20%
PSPNet[40] 80.6% - 41.96%

TABLE VI: Performances (GPA, ACA, IOU) of different

network architectures (with different pre-trained CNNs) on

ADE20K dataset.
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Fig. 6: Training curves of EFCN on ADE20K dataset.

PSPNet and requires much less memory than PSPNet. This

result is inspiring and interesting considering that FCN-8s

adapted from deep ResNet is already strong. Knowing that the

pre-trained ResNets are trained from low-resolution images,

the introduced context network is essential and effective to

adapt the feature maps so that they are optimized for the

segmentation purpose of high-resolution images. Meanwhile,

the fusion of rich-scale contextual predictions achieved by

dense skip connections also contribute significantly to the

performance boost. This encouraging result suggests that our

contributions of this paper are orthogonal to the general

research that improves pre-trained CNN architecture.

C. Ablation analysis

In this section, we firstly discuss how skip layers affect

the training process of segmentation networks. In Figure 6,

we compare the learning curve of training/validation loss for

different segmentation network variants. As demonstrated in

the left figure, batch normalization (BN) in skip layers plays a

key factor in accelerating and improving training procedure. In

the right figure, we clearly observe that segmentation network

with “dense skip” architecture converges faster, and impor-

tantly it can reach a better local minimal. Next, we conduct

step-by-step ablation studies to monitor the effectiveness of the
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Skip with BN Dense Skip CCN IOU

% % % 31.4%

! % % 32.6%

! ! % 33.6%

! % ! 36.4%

! ! ! 37.0%

TABLE VII: Quantitative ablation analysis of the proposed

segmentation network – EFCN-8s. Experiments are based on

the ADE20K dataset.

Methods GPA ACA IOU

FCN-8s [29] 67.0% 50.7% 37.8%
DeepLab-v1 [4] n/a n/a 37.6%
CRF-RNN [41] n/a n/a 39.3%
ParseNet [21] n/a n/a 40.4%
UoA-Context + CRF [19] 71.5% 53.9% 43.3%
DAG-RNN + CRF [30] 73.6% 55.8% 43.7%

EFCN-8s 74.5% 57.7% 45.0%

TABLE VIII: Pascal Context validation accuracies. For fair

comparison, we only include methods that use VGG-16 as

base network.

proposed contributions. The detailed quantitative experimental

results are listed in Table VII, where we can observe that

each proposed contribution collectively improves the baseline

segmentation network – Fully Convolutional Network (FCN)

[23].

In order to interpret how those contributions improve the

visual quality of label prediction maps, we demonstrate the

corresponding qualitative experiment results in Figure 7. To

be more specific, the proposed “dense skip” architecture helps

retain detailed spatial information, which is beneficial for more

accurate boundary delineation in comparison to its “sparse

skip” counterpart (baseline). For example, the boundary of

the ‘chair’ and ‘person’ in the 5th and 6th example has been

significantly refined for “dense skip” network in contrast to

its baseline (“sparse skip” architecture). In the meantime,

CCN aggregates high-level contexts for feature maps, which is

essential to achieve smooth and robust semantic interpretations

for visually inconsistent image regions. For example, the

semantic predictions for ‘floor’ and ‘table’ in the 1st and 2nd

image has been significantly improved after CCN is included

in the segmentation network architecture.

VI. RESULTS ON SEGMENTATION BENCHMARKS

We evaluate the proposed EFCN on standard scene segmen-

tation datasets. The same experimental setups (as in controlled

experiments, c.f. Section IV) are used to train our segmentation

network over different datasets.

ADE20K results are listed in Table IV,VI.

Pascal Context results are shown in Table VIII and qualitative

segmentation result comparisons are presented in Fig. 8. Pascal

Context [25] has 10103 images, out of which 4998 images

are used for training. The images are from Pascal VOC

2010 datasets, and they are re-labeled as pixel-wise segmen-

tation maps which include 540 semantic classes (including

Image FCN-8s EFCN-8s Ground Truth

unlabeled
person

bottle
ground
buildingaeroplane

road
pottedplant tree

grass
truck

ceiling

sofa

cloth

door floor
wall

shelves
sign window

bus

Fig. 8: Qualitative segmentation result comparison on Pascal

Context. In each row, we show input images, unary prediction

maps from FCN-8s, EFCN-8s (VGG-16) and ground truth.

Methods GPA ACA IOU

FCN [23] 68.18% 38.41% 27.39%
DeconvNet [26] 66.13% 33.28% 22.57%
SegNet [1] 72.63% 44.76% 31.84%
DeepLab [4] 71.90% 42.21% 32.08%

EFCN-8s 76.90% 53.46% 40.74%

TABLE IX: SUN-RGBD (37 classes) testing accuracies. We

only use RGB modality in our experiments. All methods use

VGG-16 as base network, and all other reported results are

copied from [1].

the original 20 classes). Similar to Mottaghi et al. [25], we

only consider the most frequent 59 classes in the dataset

for evaluation. Based on the rareness identification rule in

[30], those classes whose frequencies are lower than 1% are

identified as rare.

SUN-RGBD Results are reported in Table IX. SUN-RGBD

[34] contains images from NYU depth V2 [32], Berkeley

B3DO [16], SUN3D [38] as well as the newly captured

images. It has 10335 images in total, out of which 5285 images

are used for training. The rareness frequency threshold is fixed

to 2.5% based on the 85%-15% rule[30]. We follow previous

literatures [1] to consider 37 classes for evaluation. Note that

we only use RGB modality as input.

Pascal VOC 2012 results are presented in Table X and

qualitative segmentation result comparisons with FCN [29] are

shown in Fig. 9. Pascal VOC 2012 originally contains 2913

train and validation images, 1456 testing images. Images have

approximately 375×500 pixels, each of which belongs to one

of the pre-defined object or background categories. We follow

[23] to augment the training set from [12]. Thus, we end up

with having 12031 training images. The rareness frequency
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Image Baseline Baseline+DenseSkip Baseline+CCN EFCN-8s Ground Truth

Fig. 7: Qualitative ablation analysis of the proposed segmentation network – EFCN. Images are from ADE20K dataset. The

figure is best viewed in color with 300% zooming-in.

threshold of is set to 1.5%. We have tested four models:

(1) EFCN-8s without any pre-training or post-processing. (2)

Post-processing EFCN-8s by CRF [17], which brings 0.7%

improvement on IOU. (3) EFCN-8s pre-trained on Microsoft

COCO dataset [20], improving 2.4% on IOU. (4) EFCN-

8s pre-trained on Microsoft COCO dataset and then post-

processing by CRF. We submit our parsing maps of testing

images to the evaluation servers to report our results.

A. Result Summary

EFCN demonstrates significantly better quantitative parsing

performance than FCN on all segmentation benchmarks. As

the evaluation datasets cover wide range of scenarios that in-

clude object segmentation [8], outdoor scene parsing [42][25]

as well as indoor scene labeling [42], we can conclude that

EFCN is a versatilely better segmentation network architecture

than FCN. By comparing their qualitative parsing results in

Fig. 1, Fig. 8, Fig. 9 and Fig. 10, we observe that EFCN

outperforms FCN in terms of both the high-level and low-

level semantic parsing, which aligns with our motivations.

The significantly enhanced quantitative performance and the

noticeable improved visual quality of parsing maps justifies

the contributions of our proposed EFCN in this paper.

EFCN vs State-of-the-arts. EFCN also outperforms other

recently developed parsing networks including DilatedNet

[39], DAG-RNN [30], DeepLab [4], etc. By comparing their

parsing maps in Fig. 10, it is not difficult to find that EFCN

achieves the best parsing performance both in low-level and
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Image FCN[29] DAG-RNN[30] DilatedNet[39] DeepLab-v2[4] EFCN-8s Ground Truth

Fig. 10: (Best viewed in color with 300% zooming-in) Qualitative comparison of parsing maps on ADEK20K dataset. DAG-

RNN [30] is good at enforcing high-level consistency (first three examples). Due to the adopted “dilation” architecture,

DeepLab-v2 [4] and DilatedNet [39] perform well at localizing boundaries (last three examples). EFCN performs well in both

the low-level and the high-level parsing.

in high-level parsing.

In the setting of VGG-16, the unary predictions of EFCN-8s

outperforms state-of-the-arts by a large margin on ADE20K,

Pascal Context and SUN RGB-D datasets. On Pascal VOC

2012, EFCN-8s also achieves very competitive segmentation

performance among all top methods.

VII. CONCLUSION

In this paper, we explore ways to develop effective as well as

efficient segmentation networks that can perform well on both

the low-level and the high-level semantic parsing. To this end,

we first discuss and compare two popular adaptation approach-

es to retain detailed spatial information from pre-trained CNN

-“dilation” and “skip”. By modifying the parameterization of

skip layers, “our skip” network outperforms the conventional

“skip” network by a noticeable margin. Furthermore, we

propose “dense skip” architecture to efficiently retain rich set

of low-level information. For high-level semantic parsing, we

propose a convolutional context network (CCN) to aggregate

context for high-level feature maps so that their representation

capability can be improved. The resulting network architecture

(EFCN) performs competitively well on standard scene seg-

mentation datasets. Without bells and whistles, the proposed

EFCN achieves state-of-the-arts performance on ADE20K,

Pascal Context, SUN RGB-D and VOC 2012 datasets.
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