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Virtual-reality technologies can be exploited 

in numerous domains, such as medicine (for 

example, for surgical simulation and reha-

bilitation), industry (training and virtual prototyp-

ing), design and architecture (digital mock-ups and 

virtual visits), or entertainment (videogames and 

theme parks). The most common ways to interact 

with virtual environments (VEs) measure the user’s 

motor activity—that is, motions and actions when 

manipulating different kinds of input devices. Cur-

rent VR research trends involve soliciting even more 

physical engagement, such as with bimanual inter-

action, whole-body systems, or walking interfaces. 

This trend is illustrated by the commercial success 

of Microsoft Kinect and Nintendo Wii.

However, VR applications are calling for more 

multimodal interaction paradigms, and VR systems 

could bene� t from several other important types 

of user input. One particularly promising type is 

the user’s mental activity, which can be measured 

through brain-computer interfaces (BCIs).1 Here, 

we look at this technology, using examples from 

our research. In particular, we examine how we’ve 

combined visual interfaces, haptic interfaces, and 

passive BCIs to improve interaction with VEs.

Brain-Computer Interfaces for 
Controlling Virtual Environments
BCIs use brain signals to send commands to an 

automated system such as a robot, prosthesis, or 

computer cursor.2 BCIs constitute a rapidly grow-

ing research area, and several impressive prototypes 

are already available. Today, severely disabled people 

can control a wheelchair or communicate using 

“mental spellers.” In addition, several startup com-

panies are designing and proposing low-cost elec-

troencephalograph (EEG) headsets, which could 

pave the way to massive applications of BCIs in 

both medicine and multimedia.

BCI hardware generally falls into two categories: 

invasive systems implanted into cortical tissue or 

noninvasive systems on the user’s scalp. But most 

BCI systems use scalp EEGs to measure variations 

in brain activity. Then, BCI systems usually involve 

two phases for cerebral signal processing: feature 

extraction and classi� cation (pattern recogni-

tion). Feature extraction selects relevant informa-

tion from the EEG data � ow, which is affected by 

noise and artifacts. Then, through classi� cation, 

the system categorizes the data according to sev-

eral learned EEG patterns and translates it into 

commands. (Our group has written an extensive 

survey of classi� cation algorithms.3)

The neuroscience community has already iden-

ti� ed different kinds of electrical brain activity 

as suitable for mind-based interaction with VEs. 

This includes mental states such as motor plan-

ning or mental motor imagery,4 attention toward 

an incoming sensory stimulus,5 or self-regulation 

of brain wave rhythms and mental relaxation.6

BCI systems can use other EEG markers related 

to brain reactions to external events, such as for 

the target selection response (the P300 signal) or 

error-related negativity (when users realize that 

the system has made an error).7

In the past decade, several studies have focused 

on using BCIs to directly control VR systems.2,8

(For examples of representative systems that our 

group designed, see the sidebar.) Until now, BCIs 

have been used mostly for navigating VEs—for ex-

ample, changing the viewpoint in a virtual bar9

and touring a virtual museum.4 BCIs have also 

been used for manipulating objects in VEs—for ex-

ample, turning on and off everyday devices such 
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as a television or lamp1 and controlling a virtual 

spaceship’s motion.5 Moreover, using VR technolo-

gies and immersive setups (such as the Star Wars 

simulation described in the sidebar) can consid-

erably increase participants’ motivation and thus 

the BCI system’s performance.9

However, in current VR applications, the BCI of-

ten can extract only a few mental states and thus 

few mental commands. So, direct, explicit mind-

based interaction with VEs remains relatively re-

stricted and frustrating. This accounts for the 

emergence of passive-BCI systems.

Passive BCIs and Implicit Interaction
We all know how to interact explicitly or volun-

tarily with computers; we do this every day when 

clicking with a mouse, for instance. But there’s a 

less explicit way to interact with computers, simi-

lar to human nonverbal communication. Passive 

BCIs employ such implicit interaction.10

Researchers have proposed different terms for 

interaction that isn’t voluntarily or explicitly con-

trolled, such as noncommand user interfaces or im-

plicit human-computer interaction.7 The terms all 

refer to the same idea: interaction based not on 

direct, explicit, or voluntary user actions but on 

the user’s state in a particular context.

Implicit information can be acquired with dif-

ferent techniques, notably with physiological sen-

sors such as for galvanic skin response. EEG signal 

measurement can also be used for this. So, passive 

BCIs provide implicit information re�ecting the 

user’s mental state to a computerized system for 

implicit interaction. This approach connects natu-

rally with the related scienti�c �elds of affective 

computing and augmented cognition.11

VR has rarely used passive-BCI systems.7 Some 

VEs have employed passive BCIs to control how 

the system responds to commands. For example, 

in the Bacteria Hunt game, increased alpha brain 

wave activity (which correlates to relaxed wakeful-

ness) caused the game’s controllability to increase 

or decrease, depending on the experimental situa-

tion.12 In other systems, the avatar’s characteristics 

have adapted on the basis of implicit information. 

For example, in AlphaWoW, which was based on 

World of Warcraft, the user’s avatar transformed 

from an elf to a wolf according to the measured 

alpha activity.13 Finally, some applications have 

used passive BCIs to check whether the user has 

perceived speci�c information.10

So, passive BCIs are a promising way to apply 

BCI technology in a much larger set of applica-

tions. Next, we describe two projects illustrating 

such an approach.

Mental-Workload-Based  
Adaptation of Haptic Feedback
We’ve designed a VR setup that adapts haptic feed-

back according to the user’s brain waves in real 

time.14 An EEG-based passive-BCI system com-

putes an online index related to the user’s mental 

workload. If the index indicates a high workload, 

the system activates haptic assistance. (If the 

workload is low, guidance is deactivated.) This 

guidance should reduce the task’s dif�culty and 

decrease the mental workload.

Our tests, conducted with eight participants, 

had two goals:

 ■ Test the system’s operability.

 ■ Evaluate how the system influences task per-

formance.

Figure 1a illustrates the experimental appara-

tus. Using a six-degree-of-freedom Virtuose haptic 

device, the participants manipulated a 2D cursor 

through a 2D virtual maze. Using the device’s force 

feedback, the system physically constrained the ma-

nipulation so that it remained on the 2D vertical 

plane. An EEG ampli�er acquired signals from 16 

electrodes covering a large area of the scalp.

(a) (b) (c)
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Figure 1. A passive-BCI system that adapts haptic feedback.14 (a) In real time, the system adapts force feedback to the user’s 

mental activity, as measured with an electroencephalograph (EEG) headset. (b) During a path-following task in a 2D maze, the system 

activated haptic assistance when the user’s brain activity indicated a high mental workload. The assistance caused the cursor to slide 

rapidly on the maze wall, thus avoiding collisions with the wall. (c) The right part of the maze, with numerous short turns, exhibited 

more activations, as the yellow and red dots indicate.
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While moving the cursor through the maze, the 

participants had to avoid collisions with the maze 

walls. (This task evokes the dexterous manipu-

lations involved in some industrial-maintenance 

simulations or surgical simulators, for instance.) 

The maze had two parts (see Figure 1b). The �rst 

part had numerous turns and was dif�cult; the 

second part presented fewer possible collisions and 

was thus less dif�cult. The system performed col-

lision detection and computed contact forces in 

real time, using Bullet, an open source physical 

engine. For haptic assistance, the system added a 

repulsive force inversely proportional to the cur-

sor’s distance from the nearest wall. This assis-

tance aimed to help the user by sliding the cursor 

along the walls and avoiding collisions.

We computed the mental-workload index us-

ing OpenViBE software (http://openvibe.inria.fr) 

and signal-processing techniques we had designed 

and tested.6 To train the signal-processing pipe-

line, we used a dataset comprising two minutes of 

EEG activity: one minute of performing a simple 

control task and one minute of moving the cursor 

through a complex spiral maze while avoiding col-

lisions. So, in this context, we expected the mental-

workload index to correlate with the manipulation 

task’s complexity. We smoothed the online values 

that the classi�er provided (–1 for a light mental 

workload and 1 for a high mental workload) and 

straightforwardly used this �nal index to activate 

or inhibit haptic assistance.

We evaluated three conditions:

 ■ no haptic assistance,

 ■ workload-based haptic assistance, and

 ■ continual haptic assistance.

Figure 2a displays the number of collisions for 

each condition. These results suggest that the sys-

tem helped users achieve the task. Workload-based 

haptic assistance indeed increased performance 

by signi�cantly reducing the number of collisions. 

Actually, we observed no signi�cant performance 

differences between workload-based and continual 

assistance. So, we suspect that a well-tuned passive 

BCI could perform almost as well as continual as-

F igure A shows three recent uses of brain-computer 

interfaces (BCIs) to control virtual environments (VEs) 

at Inria Rennes.

In a visit to a virtual museum (see Figure A1), users 

employed motor imagery of the left hand (left turns), 

right hand (right turns), and feet (forward motion).1 In an 

alternative mode, to accelerate the virtual movement, the 

system used high-level orders to more rapidly select a pre-

de�ned destination point, employing a successive-decision 

process based on a binary tree.

In the MindShooter videogame (see Figure A2), players 

controlled a virtual spaceship.2 They selected one of three 

commands (go right, go left, or shoot) by looking carefully 

at the spaceship’s corresponding area (the right wing, left 

wing, or cannon), which �ashed at a speci�c frequency 

(5, 6, or 7.5 Hz). The BCI detected this frequency in the 

cerebral electrical activity measured on the scalp above the 

visual cortex. This enabled the BCI to identify the observed 

area and thus the desired command.

In a simpli�ed soccer videogame called BrainArena (see 

Figure A3), two players scored goals to the left or right 

by imagining left or right hand movements.3 The play-

ers could collaborate or compete. Some players preferred 

this multiuser situation to a single-user version, and some 

performed signi�cantly better in it.

Figure B shows mind-based interaction in an immer-

sive VE inspired by a scene in Star Wars: The Empire Strikes 

Back. Our Immersia room, a 10-meter wide CAVE (Cave 

Some Brain-Computer Interfaces and Virtual Environments at Inria Rennes

(1) (2) (3)

Figure A. Using brain-computer interfaces to control virtual environments (VEs). (1) In a visit to a virtual museum, users employed motor 

imagery of the left hand (left turns), right hand (right turns), and feet (forward motion). (2) In the MindShooter videogame, players selected 

one of three commands (go right, go left, or shoot) by looking at the spaceship’s corresponding �ickering area (the right wing, left wing, or 

cannon). (3) In the BrainArena soccer videogame, two players scored goals to the left or right by imagining left or right hand movements.
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sistance, but with guidance activated only when the 

user actually needs it.

Workload-based haptic assistance also signi�-

cantly decreased the mental-workload index (see 

Figure 2b). The workload was also signi�cantly 

higher in part 1 of the maze (see Figure 1b). This sug-

gests that our system measures a mental-workload 

index that correlates well with the task’s dif�culty. 

Our participants’ answers to a subjective question-

naire appear to con�rm this belief. They reported 

a high correlation (above 70 percent) between the 

computed index and their perceived mental work-

load. Our passive-BCI system thus seems to provide 

a convincing measurement of mental workload.

This exploratory study suggests that our proof-

of-concept system is operational and exploitable. 

Automatic Virtual Environment), provides full 3D stereo-

scopic vision, head and body motion tracking, and 3D 

spatialized sound. Users could walk and freely explore a full-

scale model of a virtual swamp from the planet Dagobah, 

populated with several animated characters. Users could 

directly point (with their hand) at the objects they wanted 

to interact with. Then, to “lift” virtual objects, such as a 

helmet or a spaceship partially immersed in muddy water, 

users simply concentrated or relaxed, depending on the 

playing mode. Users found the system motivating and 

entertaining; it was fully operational even with low-cost 

wireless electroencephalograph headsets.
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Figure B. Entertaining mind-based interaction in an immersive VE inspired by a scene in Star Wars: The Empire Strikes Back. To “lift” virtual objects, 

such as a helmet or a virtual spaceship partially immersed in muddy water, users simply concentrated or relaxed, depending on the playing mode.
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Figure 2. Experimental results obtained with our proof-of-concept setup. (a) Workload-based haptic assistance 

signi�cantly reduced the number of collisions. (b) It also signi�cantly decreased the mean mental-workload index.
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The haptic assistance was activated in the most 

dif�cult part of the path-following task. Moreover, 

this approach increased task performance by more 

than 53 percent, while activating assistance only 

59 percent of the time. These results suggest that 

such passive-BCI systems could be used to deter-

mine when users need assistance and to activate 

that assistance accordingly. Next, we describe how 

we applied this approach to a medical simulator.

Toward Medical Simulators  
Exploiting Passive BCIs
Our simulator recreates a tumor biopsy in the 

liver. The user manipulates a virtual needle and 

must perforate the liver to reach the tumor. The 

tumor’s position in the liver is randomized.

Figure 3 displays our prototype. An EEG head-

set acquires signals from 16 electrodes, similarly 

to the con�guration we described in the previous 

section. For needle manipulation, the system em-

ploys a Phantom Omni haptic device. The simula-

tor presents the 3D scene on a standard laptop 

screen. A mass-spring model represents the de-

formable liver, a thin cylinder represents the rigid 

needle, and a rigid sphere represents the tumor.

The simulator replicates two kinds of haptic in-

teraction: the liver’s resistance to the needle’s pen-

etration and stick-slip interaction when the user 

inserts the needle. When the needle touches the 

liver, the simulator computes the contact, using 

penalty-based methods. The simulator then redis-

tributes the contact forces on the liver nodes, us-

ing a kernel function. If the force on the needle 

exceeds a given threshold, the needle penetrates 

the liver, which activates the second interaction 

mode. To replicate stick-slip interaction, the simu-

lator �rst measures the needle’s insertion veloc-

ity. If the velocity exceeds a certain threshold, the 

simulator applies a viscous force. If the velocity is 

under this threshold, the simulator applies a resis-

tance force. Finally, when the user reaches the tu-

mor, the simulator also computes a reaction force.

The system provides visual and haptic assistance 

to help users better perceive the 3D scene and �nd 

the best insertion point and to guide them toward 

the tumor (see Figure 3c). First, the simulator pres-

ents an in�nite laser ray pointing in the needle’s 

direction so that users can better perceive the nee-

dle’s orientation. Then, it adds a blue target at the 

level of the best location for inserting the needle. 

The scene’s background switches from black to 

blue to indicate that visual assistance is active.

The haptic assistance consists of a virtual force 

attracting the needle to the best insertion point. 

This force is proportional to the needle’s distance 

from that point.

The passive BCI aims to identify two mental 

activities corresponding to high and low mental 

workloads. We used the machine-learning process 

we described before to differentiate between the 

two mental states.6 We trained the system with 

two initial tasks: a simple 3D manipulation and 

a dif�cult one. For the simple task, users touched 

very large 3D spheres with the haptic device. For 

the dif�cult task, they touched very small spheres 

in the same environment. The classi�er provided 

online values (–1 for a low mental workload, in-

dicating low manipulation dif�culty, and +1 for a 

high mental workload, indicating high manipula-

tion dif�culty). The system smoothed these values 

and generated the median of the last 20 values 

every two seconds. The system directly used this 

index to toggle visual and haptic assistance.

We preliminarily tested the simulator with 12 

participants. We found it to be operational, and 

it worked with standard I/O devices, but it still 

requires further development and evaluation.

Room for Improvement
Our results pave the way to novel, exciting combi-

nations of BCI and VR technologies. However, the 

results also indicate our approach’s current limita-

(a) (b) (c)

Figure 3. A medical simulator in which the user inserts a needle into the liver to reach a tumor. (a) The setup, with an EEG headset, 

a display, and a haptic device. (b) The 3D scene when visual and haptic assistance isn’t activated. (c) The scene when the simulator 

detects a high mental workload and activates assistance. The numbers indicate visual cues: 1 is the main view, 2 is a lateral view, 3 is 

the deformable liver, 4 is the tumor, 5 is a laser ray (pointing in the needle’s direction), and 6 is the best insertion point.
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tions and paths for short-term improvements and 

long-term research. First, the mental-workload 

index is an ambivalent term that could apply to 

different cognitive processes and contexts. This 

highlights the need for a proper characterization 

of the corresponding neurophysiological substrates 

that could be used for passive BCIs.

Second, our BCI’s binary output (a high or low 

mental workload) doesn’t account for the range of 

mental states involved in our interaction scenarios. 

So, it needs more elaborate signal-processing pipe-

lines to both achieve a multiclass BCI (that is, a BCI 

that can identify many different mental states) and 

account for muscular artifacts that might impede 

the BCI’s identi�cation of brain waves.

Third, the types of virtual assistance we’ve 

proposed are rather simple, and we haven’t fully 

evaluated their in�uence—for instance, in terms of 

training or the learning process. This points to the 

need for more compelling adaptive user interfaces 

whose bene�ts are fully and clearly assessed.

One day, such next-generation VR simulators 

will be able to detect multiple and varied 

cognitive processes and exploit them in real time 

in adaptive user interfaces. This will place the 

user’s mind at the heart of the interaction loop. 

Consequently, we expect that BCI technology will 

improve the usability of a variety of interfaces in 

multiple applications, such as industrial training 

systems, medical simulators, videogames, and re-

habilitation and reeducation systems. 
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