
Lee & Xia/Software Development Agility

RESEARCH ARTICLE

TOWARD AGILE: AN INTEGRATED ANALYSIS OF
QUANTITATIVE AND QUALITATIVE FIELD DATA
ON SOFTWARE DEVELOPMENT AGILITY1

By: Gwanhoo Lee
Department of Information Technology
Kogod School of Business
American University
4400 Massachusetts Avenue NW
Washington, DC 20016-8044
U.S.A.
glee@american.edu

Weidong Xia
Department of Decision Sciences and

Information Systems
College of Business Administration
Florida International University
11200 SW 8 Street
Miami, FL 33199
Weidong.Xia@fiu.edu

Abstract

As business and technology environments change at an unpre-
cedented rate, software development agility to respond to
changing user requirements has become increasingly critical
for software development performance. Agile software devel-
opment approaches, which emphasize sense-and-respond,
self-organization, cross-functional teams, and continuous
adaptation, have been adopted by an increasing number of
organizations to improve their software development agility.
However, the agile development literature is largely anec-

1Detmar Straub was the accepting senior editor for this paper. Bill Kettinger
served as the associate editor.

dotal and prescriptive, lacking empirical evidence and theo-
retical foundation to support the principles and practices of
agile development. Little research has empirically examined
the software development agility construct in terms of its
dimensions, determinants, and effects on software develop-
ment performance. As a result, there is a lack of under-
standing about how organizations can effectively implement
an agile development approach.

Using an integrated research approach that combines quan-
titative and qualitative data analyses, this research opens the
black box of agile development by empirically examining the
relationships among two dimensions of software development
agility (software team response extensiveness and software
team response efficiency), two antecedents that can be con-
trolled (team autonomy and team diversity), and three aspects
of software development performance (on-time completion,
on-budget completion, and software functionality). Our PLS
results of survey responses of 399 software project managers
suggest that the relationships among these variables are more
complex than what has been perceived by the literature. The
results suggest a tradeoff relationship between response
extensiveness and response efficiency. These two agility
dimensions impact software development performance dif-
ferently: response efficiency positively affects all of on-time
completion, on-budget completion, and software functionality,
whereas response extensiveness positively affects only soft-
ware functionality. The results also suggest that team auton-
omy has a positive effect on response efficiency and a
negative effect on response extensiveness, and that team
diversity has a positive effect on response extensiveness. We
conducted 10 post hoc case studies to qualitatively cross-
validate our PLS results and provide rich, additional insights
regarding the complex, dynamic interplays between auton-

MIS Quarterly Vol. 34 No. 1, pp. 87-114/March 2010 87

Lee & Xia/Software Development Agility

omy, diversity, agility, and performance. The qualitative
analysis also provides explanations for both supported and
unsupported hypotheses. We discuss these qualitative
analysis results and conclude with the theoretical and prac-
tical implications of our research findings for agile develop-
ment approaches.

Keywords: Software development agility, agile software
development, team autonomy, team diversity, software
development performance, requirement change, partial least
square, case study

Introduction

The unprecedented rate of change in business and technology
has made it increasingly difficult for software teams to
determine user requirements and respond to their changes
(Schmidt et al. 2001). A U.S. Department of Defense study
shows that 45 percent of software features fail to meet user
needs and requirements (Larman 2004). Agile software
development approaches such as XP (eXtreme Programming),
Scrum, DSDM (Dynamic Systems Development Method),
and FDD (Feature-Driven Development) have been proposed
as solutions to improve a software team’s ability to embrace
and respond to changing requirements (Beck and Andres
2005; Coad et al. 1999; Schwaber and Beedle 2002; Stapleton
1997). Agile development approaches differ from the tradi-
tional, plan-driven, structured approaches as the former put
more emphasis on lean processes and dynamic adaptation
than on detailed front-end plans and heavy documentation
(Nerur and Balijepally 2007).

At the heart of agile development approaches is the notion of
software development agility, which is defined in this
research as a software team’s ability to efficiently and
effectively respond to user requirement changes. However,
agility is difficult to achieve in practice (Cockburn 2001). It
has been reported that only 11 percent of IS organizations
were able to keep up with business demands and that 76
percent were not able to effectively cope with changing busi-
ness needs (Koch 2006). This lack of agility often results in
substantial financial loss (Austin and Devin 2003).

Despite the growing popularity and importance of agile
approaches, little research has empirically examined their key
concepts and underlying theoretical relationships (Baskerville
2006; Boehm and Turner 2004; Larman 2004). The core
values, principles, and practices of agile development have
been derived mainly from past experiences and its effec-
tiveness has been supported largely by anecdotal evidence and
rhetorical arguments. Furthermore, the concept of software

development agility has not been well understood. As a
result, many organizations adopt agile development ap-
proaches without clearly understanding how agility is defined
and measured and what factors they can control to influence
it. Highsmith (2000) argues that “techniques without a
theoretical base are reduced to a series of steps executed by
rote” (p. 14). Unfortunately, if, how, why, and when agile
development works or doesn’t work remains largely a black
box. This research aims to fill this literature gap by
addressing critical questions pertaining to agile development
approaches. As software development agility is a central
concept and a core value of agile development (Agile
Alliance 2001; Larman 2004), we investigate its dimensions,
determinants, and effects.

We intend to make the following contributions. First, while
prior agile development literature has not explicitly distin-
guished different dimensions of software development agility,
we propose that it is not a monolithic, single dimensional
construct; rather, it is a multidimensional construct comprised
of different and even conflicting capabilities. We identify and
assess two key agility dimensions, namely software team
response extensiveness and software team response effi-
ciency, which tap into different important aspects of agility.
Indeed, agile development approaches invariably promote
extensive responses to requirement changes in a rapid and
efficient manner (Erickson et al. 2005; Henderson-Sellers and
Serour 2005; Lyytinen and Rose 2006). Software team
response extensiveness is defined as the proportion of various
types of changing user requirements that a software team
responds to and incorporates into the software system. For
example, if a software team incorporates 80 out of 100
different requirement changes, the team’s response exten-
siveness would be 80 percent. Greater response extensiveness
indicates greater software development agility. On the other
hand, software team response efficiency is defined as the
minimal time, cost, personnel, and resources that the team
requires to respond to and incorporate a particular require-
ment change. Software development is considered agile when
the team requires relatively little time, cost, personnel, and
resources to respond to a requirement change. An important
question that this research addresses is: How are these two
dimensions of software development agility related to each
other?

Second, we examine how team autonomy and team diversity,
two team-level variables organizations can control in staffing
and managing projects, affect software development agility.
In this research, team autonomy refers to the extent to which
the software team is empowered with the authority and con-
trol in making decisions to carry out the project. Team diver-
sity refers to the extent to which team members are different

88 MIS Quarterly Vol. 34 No. 1/March 2010

Lee & Xia/Software Development Agility

in terms of their functional backgrounds, skills, expertise, and
work experience. Agile development views team autonomy
and team diversity as important principles and practices that
foster software development agility (Larman 2004). For
example, agile development advocates self-organizing, self-
directed, and self-disciplined teams (Highsmith 2004; Larman
2004). Furthermore, agile development posits that a software
team should have a variety of skills and perspectives,
necessary for sensing problems and pitfalls, thinking of
multiple ways to solve problems, and implementing solutions
(Beck and Andres 2005). To our knowledge, no research has
empirically validated how team autonomy and team diversity
influence software development agility.

Third, this research examines how the two dimensions of
software development agility affect software development
performance in terms of on-time completion, on-budget
completion, and software functionality. The positive effect of
software development agility on performance has been
supported in the literature mainly by anecdotal evidence and
rhetorical arguments. Thus, rigorous empirical investigation
is required to answer the question of if and how software
development agility affects development performance.

To address these emergent, complex issues associated with
software development agility, we use an integrated multi-
method approach that combines quantitative and qualitative
methods. This integrated approach intends to formulate
research questions and develop measurement instruments
grounded in field data, provide both statistical evidence and
rich explanations, triangulate results, and discover novel
insights that stimulate further research (Kaplan and Duchon
1988; Lee 1991; Mingers 2001). Our research starts with
preliminary qualitative field studies and focus groups that
help formulate research problems and questions, identify key
constructs, and develop measures for new constructs. We
then conduct a PLS analysis of the data from a large-scale
quantitative survey to validate measurement and test hypoth-
eses. Finally, we conduct multiple mini-case studies to cross-
validate the PLS results, provide rich, additional insights, and
offer explanations for both supported and unsupported
hypotheses.

Theoretical Background

Agile Software Development Approaches

Agile software development approaches have evolved since
the mid-1990s as new alternative solutions to the inability of
traditional “heavyweight” methods to address such enduring
problems as time/cost overruns and the lack of responsiveness

to changing requirements (Beck and Andres 2005; Boehm and
Turner 2004; Cockburn 2001; Highsmith 2004; Larman
2004). Agile development views the software development
process to be dynamic, evolving, and organic, rather than
static, predefined, and mechanistic (Beck and Andres 2005;
Highsmith 2000). Commonly used agile development
methods include XP (eXtreme Programming), Scrum, DSDM
(Dynamic Systems Development Method), and FDD (Feature-
Drive Development). In 2001, the 4 core values and 12
principles of agile development were formally introduced and
endorsed in the publication of the Agile Manifesto by some of
the prominent members of the agile development community.
Since then, agile development has attracted much interest
from the software industry (Dybå and Dingsøyr 2008).

According to the Agile Manifesto, agile development values
individuals and interactions over processes and tools, working
software over comprehensive documentation, customer col-
laboration over contract negotiation, and responding to
change over following a plan (Agile Alliance 2001). It
employs “light and barely sufficient” methods to minimize
time-consuming and costly software processes such as
detailed front-end planning and heavy documentation (Boehm
and Turner 2004; Fitzgerald et al. 2006). Agile development
attempts to effectively manage volatile and changing user
requirements through a variety of practices and techniques
(Beck and Andres 2005). It promotes frequent and con-
tinuous delivery of working software, embracing changing
requirements, close collaboration between developers and
users, self-organizing and empowered teams, face-to-face
communication, technical excellence, simplicity, and con-
tinuous adaptation (Agile Alliance 2001). Embracing and
responding to changing user requirements is at the heart of
agile development.

Although many benefits of agile development have been
speculated and claimed, and increasingly more organizations
are adopting the approach, there have been few empirical field
studies that have rigorously examined if, how, and why agile
development is effective (Fruhling and De Vreede 2006; Moe
et al. 2008). As a result, agile development lacks theoretical
underpinnings and scientific evidence that support its claimed
benefits and key principles (Erickson et al. 2005). To fill this
gap, researchers have called for structured, rigorous empirical
studies on agile development with a common research agenda
(Dybå and Dingsøyr 2008).

Software Development Agility,
Autonomy, and Diversity

We review the prior agile development literature relevant to
our main research constructs: software development agility,

MIS Quarterly Vol. 34 No. 1/March 2010 89

Lee & Xia/Software Development Agility

team autonomy, and team diversity. Table 1 summarizes the
definitions and descriptions pertaining to the constructs and
Table 2 summarizes the key principles and practices under-
lying the Agile Manifesto and four commonly used agile
methods that emphasize software development agility, team
autonomy, and team diversity (Beck and Andres 2005;
Cockburn 2001; Highsmith 2004; Larman 2004).

As shown in Table 1, prior literature provides various defini-
tions and descriptions of software development agility. While
the literature is vague about the underlying dimensions and
measures of software development agility, there is a common
theme underlying the various definitions and descriptions in
that agility is generally defined in terms of embracing and
responding to change (Conboy and Fitzgerald 2004; Erickson
et al. 2005; Henderson-Sellers and Serour 2005; Highsmith
2004; Larman 2004; Qumer and Henderson-Sellers 2008).
Similarly, we define software development agility in this
research as the software team’s capability to efficiently and
effectively respond to and incorporate user requirement
changes during the project life cycle.

Furthermore, it appears that prior literature tends to view
software development agility as consisting of two important
elements that correspond to our conceptualization of the two
agility dimensions: response extensiveness and response
efficiency. Response extensiveness relates to the extent,
range, scope, or variety of software team responses. In con-
trast, response efficiency relates to the time, cost, resources,
or effort associated with software team responses. As sum-
marized in Table 1, agile development promotes both
response extensiveness in terms of embracing various changes
(Henderson-Sellers and Serour 2005; Qumer and Henderson-
Sellers 2008) and response efficiency in terms of doing so
with high speed and low cost (Conboy and Fitzgerald 2004;
Erickson et al. 2005; Larman 2004; Qumer and Henderson-
Sellers 2008). As shown in Table 2, software development
agility is at the heart of agile development principles and
practices. Agile development approaches promote agility
through short, incremental, iterative, time-boxed development
cycles, self-organizing teams, active participation of stake-
holders, and continuous delivery of working software.

Team autonomy and team diversity have been invariably
viewed by prior literature as important principles for im-
proving software development agility, as shown in Tables 1
and 2. Agile development is fundamentally people-centric
and recognizes the value of team members’ competencies in
bringing agility to development processes (Nerur and Balije-
pally 2007). It has been argued that getting the right people
with appropriate skills and empowering them in decision-
making are critical for agile development success (Chow and
Cao 2008; Cockburn 2007; Highsmith 2004).

Team autonomy refers to the degree of discretion and inde-
pendence granted to the team in scheduling the work, deter-
mining the procedures and methods to be used, selecting and
deploying resources, hiring and firing team members,
assigning tasks to team members, and carrying out assigned
tasks (Breaugh 1985). It decentralizes decision-making
power to those who will actually carry out the work (Tati-
konda and Rosenthal 2000). As shown in Tables 1 and 2,
agile development emphasizes the importance of autonomous,
self-organizing, self-directed, self-disciplined software teams
for achieving software development agility (Highsmith 2004;
Nerur and Balijepally 2007; Sharp and Robinson 2004).
Autonomous teams have considerable leeway in how they
deliver results (Highsmith 2004). Autonomy brings decision-
making authority to the hands of the people who face and
handle problems every day, thus, it increases the speed and
effectiveness of problem solving (Larman 2004; Tata and
Prasad 2004). While team autonomy is one of the key
principles in agile development, little empirical research has
tested its effect on software development agility.

Team diversity is defined as the heterogeneity within the team
in terms of individual attributes, such as age, gender, ethnic
background, education, functional background, tenure, and
technical abilities (Williams and O’Reilly 1998). As shown
in Tables 1 and 2, agile development proposes that diverse
software teams are more effective than homogeneous teams
in sensing and responding to various environmental changes
(Cockburn 2007; MacCormack et al. 2001). Drawing upon
Ashby’s law of requisite variety (Ashby 1956), the agile
literature suggests that a software team’s internal variety
should match the variety and complexity of the environment
and that the diversity of skills amplify the internal variety that
enables the team to respond to the changing environment
(Highsmith 2004; Nerur and Balijepally 2007). Although
conflict is the inevitable companion of diversity, agile devel-
opment suggests that software teams need to bring together a
variety of skills and perspectives to see problems and pitfalls,
to think of multiple ways to solve problems, and to implement
the solutions (Coad et al. 1999). However, little empirical
research has tested if and how team diversity affects software
development agility.

Research Model and Hypotheses

Our research model is shown in Figure 1. The central con-
structs of the research model are software team response
extensiveness and software team response efficiency that tap
into two different, important dimensions of software develop-
ment agility. Hypotheses 1 through 4 posit that software team
autonomy and software team diversity have differential ef-

90 MIS Quarterly Vol. 34 No. 1/March 2010

Lee & Xia/Software Development Agility

Table 1. Agile Development Literature on Agility, Autonomy and Diversity

Construct Literature Relevant Definitions/Concepts/Ideas

Software
development

agility

Conboy & Fitzgerald
(2004)

Agility is defined as the continual readiness of an entity to rapidly or inherently, pro-
actively or reactively, embrace change, through high-quality, simplistic, economical
components and relationships with its environment

Highsmith (2004) Agility is the ability to both create and respond to change in order to profit in a
turbulent business environment; it is the ability to balance flexibility and stability

Larman (2004) Agility is rapid and flexible response to change

Erickson et al. (2005) Agility is associated with such related concepts as nimbleness, suppleness,
quickness, dexterity, liveliness, or alertness; it means to strip away the heaviness in
traditional software development methodologies to promote quick response to
changing environments and changes in user requirements

Henderson-Seller &
Serour (2005)

Agility refers to readiness for action or change; it has two dimensions: (1) the
ability to adapt to various changes and (2) the ability to fine-tune and reengineer
software development processes when needed

Lyytinen & Rose (2006) Agility is defined as the ability to sense and respond swiftly to technical changes
and new business opportunities; it is enacted by exploration-based learning and
exploitation-based learning

Cockburn (2007) Agility is being light, barely sufficient, and maneuverable

Qumer & Henderson-
Sellers (2008)

Agility is a persistent behavior or ability of an entity that exhibits flexibility to accom-
modate expected or unexpected changes rapidly, follows the shortest time span,
and uses economical, simple, and quality instruments in a dynamic environment;
agility can be evaluated by flexibility, speed, leanness, learning, and
responsiveness

Team
autonomy

Cockburn & Highsmith
(2001)

Agile teams are characterized by self-organization

Highsmith (2002) Software teams should enable team decision-making

Highsmith (2004) The agile development supports self-organization, self-discipline, and self-
management

Larman (2004) In Scrum, the team is empowered with the authority and resources to find their own
way and solve their own problems

Sharp & Robinson
(2004)

Self-managing, self-organizing teams are essential for agile development culture,
especially for XP

Beck & Andres (2005) One of the XP principles is team responsibility and authority

Nerur & Balijepally
(2007)

Self-organizing teams are key for responsiveness and flexibility

Chow & Cao (2008) Self-organizing teamwork is found to increase system quality

Kelley (2008) Empowerment is key for agile development

Team
diversity

MacCormack et al.
(2001)

Teams with greater amounts of broad experience are positively associated with
project performance

Highsmith (2004) Getting the right people with appropriate skills is critical

Beck & Andres (2005) One of the XP principles is team diversity, which is enacted by the notion of “whole
team”

Cockburn (2007) Team diversity is desirable; heterogeneous teams outperform homogeneous teams

Nerur & Balijepally
(2007)

Team diversity is key for agile development

MIS Quarterly Vol. 34 No. 1/March 2010 91

Lee & Xia/Software Development Agility

Table 2. Key Principles and Practices of Agile Approaches/Methods

Agile Approach/
Method

Principles/Practices Emphasizing
Software Development Agility

Principles/Practices Emphasizing
Team Autonomy and Diversity

Agile
Alliance

Manifesto
(Agile Alliance

2001)

• Welcome changing requirements, even late
in development

• Agile processes promote sustainable
development

• Deliver working software frequently
• Continuous attention to technical excellence

enhances agility

• The best architectures, requirements, and designs
emerge from self-organizing teams

• Build projects around motivated individuals; give
them the environment and support they need, and
trust them to get the job done

• Teams reflect on how to become more effective
and adjust their behavior

• Business people and developers must work
together daily

Scrum
(Schwaber and
Beedle 2002)

• Software team determines features of each
sprint from an evolving product backlog

• Create an increment of potentially shippable
software during each sprint

• Teams determine how much of the features in the
product backlog they want to commit to during the
next sprint

• Self-organizing, cross-functional teams across
different phases/sprints

XP
(Beck and

Andres 2005)

• The highest priority is continuously satisfy
changing customer needs

• Rapid user review and feedback

• Align team authority/control with responsibility to
get things done

• Pair programming: two developers complement
each other’s skills and work

DSDM
(Stapleton 1997)

• Development is iterative, incremental, and
driven by user feedback

• Delivering a perfect system is less important
than delivering a system that addresses the
current business needs

• Teams must be empowered to make project deci-
sions without waiting for higher-level approval

• Continuous interactions and cooperation among all
project stakeholders

FDD
(Coad et al.

1999)

• Customer/feature-centered iterative cycles
• Regular build and inspection to ensure up-to-

date systems

• Small, dynamically formed, autonomous teams are
effective

• Multiple cross-functional minds are always applied
to each design decision

Figure 1. The Research Model

Software Team
Characteristics

Software Team
Autonomy

Software Team
Diversity

Software Development
Performance

On-Time Completion

On-Budget Completion

Software Functionality

Software Development
Agility

Software Team
Response Efficiency

Software Team
Response Extensiveness

H1a(+)
H1b(-)

H7c(+)
H7b(+)

H7a(+)

H6a(-)

H6b(-)

H6c(+)
H2(+)

H3(+)

H4(-)

H5(-)

92 MIS Quarterly Vol. 34 No. 1/March 2010

Lee & Xia/Software Development Agility

fects on software team response extensiveness and response
efficiency. Hypothesis 5 posits a tradeoff relationship be-
tween software team response extensiveness and response
efficiency. Finally, hypotheses 6 and 7 posit that software
team response extensiveness and response efficiency have
differential effects on three dimensions of software develop-
ment performance: on-time completion, on-budget comple-
tion, and software functionality.

Effects of Team Autonomy on Software
Development Agility

We propose two competing hypotheses for the effect of team
autonomy on software team response extensiveness. On the
one hand, autonomy facilitates creativity in solving problems
and enhances team learning in uncertain environments (Imai
et al. 1985). Self-organization and local control allow teams
to be open to innovative ideas (Lyytinen and Rose 2006).
Decentralized decision making enables autonomous teams to
be effective in sensing and responding to environmental
changes (McGrath 2001). To be adaptive and agile, a soft-
ware team must be willing and able to take risks, and experi-
ment through trial-and-error iterations. A higher degree of
team autonomy is likely to lead to greater risk taking and
experimentation (Tushman and O’Reilly 1996). An auton-
omous team is likely to freely experiment and search for
solutions to a broad range of user requirement changes.
Therefore, we propose

Hypothesis 1a. Software team autonomy positively
affects the extensiveness of the team’s response to
user requirement change.

On the other hand, team autonomy may reduce the exten-
siveness of software team response. Software development
typically requires software teams to make tradeoff decisions
among the interdependent and conflicting goals of time, cost,
and scope. If a team has a high level of autonomy, it has
more latitude to say “no” to users’ change requests, in order
to meet time and cost goals. As a result, the team can be more
selective in responding to changing requirements. In contrast,
if a team has little autonomy, it may end up being an order
taker and responding to every change request. In our pre-
liminary field interviews, we found that highly autonomous
teams were often selective in dealing with requirement change
requests. Therefore, we propose the following competing
hypothesis:

Hypothesis 1b. Software team autonomy negatively
affects the extensiveness of the team’s response to
user requirement change.

Increased autonomy enables a software team to make and
execute decisions at a higher speed with lower cost, because
the team does not need to go through the bureaucratic
organizational hierarchy, which is time-consuming and costly
(Clark and Fujimoto 1991). An empowered, self-organized,
autonomous team can sense and respond to requirement
changes efficiently through direct and close interactions with
users without waiting for managerial approval. As a result,
increased autonomy allows the software team to reduce the
time, cost, and resources required to sense requirement
change needs and to make necessary changes to the system.
Therefore, we propose

Hypothesis 2. Software team autonomy positively
affects the efficiency of the team’s response to user
requirement change.

Effects of Team Diversity on Software
Development Agility

Diversity can be a double-edged sword, improving group
performance in certain tasks but, often, disrupting group
processes (Milliken and Martins 1996; Pelled et al. 1999).
Responding to a changing requirement is essentially a
problem-solving process because a requirement change
reflects a complex business and/or technical problem. To be
agile, a software team should be able to develop effective
solutions to various complex problems. According to the
cognitive resource perspective, qualities such as a variety of
expertise, experiences, backgrounds, and perspectives brought
by diverse members increase the team’s cognitive resources
and ability to engage in complex problems (Aladwani 2002;
Watson et al. 1993). Team members with diverse compe-
tencies and perspectives stimulate learning and innovation,
and generate more alternative solutions for complex problems
(Campion et al. 1993; Watson et al. 1993).

Furthermore, team members with diverse expertise and
experiences can access diverse social networks and profes-
sional communities in their domains of expertise (Ancona and
Caldwell 1992). The access to large external networks and
communities can facilitate acquisition and development of
new knowledge and skills that are necessary to respond to
requirement changes. Diverse functional backgrounds help
the software team understand the contexts of various change
needs. Therefore, we expect a diverse team to be more
capable of handling a wide range of requirement changes.

Hypothesis 3. Software team diversity positively
affects the extensiveness of the team’s response to
user requirement change.

MIS Quarterly Vol. 34 No. 1/March 2010 93

Lee & Xia/Software Development Agility

However, team diversity may negatively affect the efficiency
of team response process. Social identity theory and self-
categorization theory (Turner et al. 1987) suggest that, due to
intergroup categorizations and different identities among
workgroup members, diversity decreases team cohesion and
integration (Webber and Donahue 2001), causes communi-
cation failures (Miller et al. 1998), and increases task-related
conflict (Pelled et al. 1999). Diversity makes it difficult for
team members to develop a shared mental model due to
knowledge gaps within the team (Klimoski and Mohammed
1994; Mathieu et al. 2000). As a result, a diverse software
team is likely to incur more time, cost, and efforts in com-
municating and coordinating tasks and making decisions to
sense and understand change requests, to develop response
strategies, and to implement appropriate responses. There-
fore, we propose

Hypothesis 4. Software team diversity negatively
affects the efficiency of the team’s response to user
requirement change.

Relationship Between Response Extensiveness
and Response Efficiency

We propose that team response extensiveness negatively
affects team response efficiency. Considering the impacts of
requirement changes on time/cost/scope goals that are
inherently conflicting, software teams tend to first choose how
much they would respond to changes. This choice in turn
affects response efficiency. One of the common practices
underlying many agile development approaches is time
boxing by which the software team balances its conflicting
needs for embracing as many user requirement changes as
possible and meeting time and cost goals at the same time
(Larman 2004). For example, with Scrum, software teams
first decide on the scope of the requirement changes in the
user backlog that they need to address in the next sprint, and
then implement them as efficiently as possible to meet project
goals (Schwaber and Beedle 2002). Similarly, XP’s weekly
and quarterly development cycles enforce the same pattern;
the customers first choose the scope of work for the next
development cycle and then the software team implements it
as efficiently as possible to meet the project goals (Beck and
Andres 2005). Therefore, the agile approaches suggest that
the choice of response extensiveness tends to precede
response efficiency.

Furthermore, we argue that the more extensively the team
responds to changes, the less efficient the team is in imple-
menting each change. When a software team attempts to
address a wide variety of requirement changes, the team is

likely to respond not only to familiar or anticipated changes
but also to unfamiliar or unanticipated changes. As a result,
the team often needs to develop or acquire new knowledge
and capabilities through search, experimentation, innovation,
and variation. This process consumes a substantial amount of
time, cost, and resources and reduces the team’s attention to
speed or cost, thus decreasing response efficiency (Lyytinen
and Rose 2006). In one of our preliminary field interviews,
we found that a software team tried to incorporate all user
change requests, some of which related to issues with which
the team was not familiar. As a result, the team was over-
whelmed with the variety and amount of change requests and
could not address any of the changes efficiently.

In contrast, narrow, selective, and controlled team responses
to requirement changes would lead to higher response
efficiency. When a software team selectively responds to
certain types of user requirement changes, the team can refine,
optimize, and streamline its response process through
repeated implementations. As a result, the team is likely to
reduce coordination and implementation costs for handling
requirement changes, thus increasing response efficiency.
Therefore, we propose

Hypothesis 5. Software team response extensiveness
negatively affects software team response efficiency.

Effects of Software Development Agility on
Software Project Performance

Both the traditional software development literature and the
agile literature suggest that on-time completion, on-budget
completion, and software functionality are important dimen-
sions of software development performance (Highsmith 2004;
Kerzner 2005; Mitchell 2006; Nidumolu 1995). On-time
completion and on-budget completion refer to the extent to
which a software project meets its baseline goals for duration
and cost. Software functionality refers to the extent to which
the delivered software system meets its functional goals, user
needs, and technical requirements (Weitzel and Graen 1989).
There are inherent tradeoffs among time, cost, and func-
tionality because pursuing one often comes at the expense of
the others (Nidumolu 1995).

We posit that extensive responses cause time and cost over-
runs. To extensively respond to many different requirement
changes, software teams may need to acquire new resources
and capabilities or reconfigure existing resources, processes,
and capabilities, requiring substantial organizational learning
and knowledge transfer. This requires a substantial amount
of additional time, cost, and resources. On the other hand, we

94 MIS Quarterly Vol. 34 No. 1/March 2010

Lee & Xia/Software Development Agility

posit that extensive software team responses positively affect
software functionality. For example, a software team’s
responsiveness to user requests has been found to improve the
correctness of system configuration (Gefen and Ridings
2002). Organizations often experience important business
changes during software development that, in turn, require
changes in user requirements. The functionality of the soft-
ware system would not satisfy up-to-date user needs if the
team fails to embrace important changes. Therefore, we
propose

Hypothesis 6a. Software team response extensive-
ness negatively influences on-time completion of
software development.

Hypothesis 6b. Software team response extensive-
ness negatively influences on-budget completion of
software development.

Hypothesis 6c. Software team response extensive-
ness positively influences software functionality.2

Managing requirement changes accounts for an increasing
portion of software development duration and cost in today’s
turbulent business environment. If the efficiency of team
response is high, the amount of additional time and costs
necessary for handling requirement changes is minimal. That,
in turn, would help reduce time and cost overruns and meet
the initial time and budget goals. Furthermore, we propose
that efficient team responses improve the functionality of the
delivered software system. As the software team repeatedly
implements responses to similar types of requirement
changes, not only does the team increase efficiency of their
response process but also streamlines, optimizes, and perfects
their work. In contrast, inefficient team responses are more
likely to cause problems and errors in the work process. All
else being equal, efficient team responses are expected to
result in high quality software functionality that effectively
satisfies user requirements. Therefore, we propose

Hypothesis 7a. Software team response efficiency
positively influences on-time completion of software
development.3

Hypothesis 7b. Software team response efficiency
positively influences on-budget completion of soft-
ware development.4

Hypothesis 7c. Software team response efficiency
positively influences software functionality.

Research Methods

Research Process and Study Sample

The detailed description of our research process is provided
in Appendix A. In summary, we used an integrated multi-
method approach that includes both quantitative and quali-
tative data analyses, consisting of five phases: (1) preliminary
field interviews, (2) survey data collection, (3) measurement
validation, (4) hypothesis testing, and (5) post hoc case
studies. Quantitative data were collected and analyzed in
Phases 2, 3 and 4, whereas qualitative data were collected and
analyzed in Phases 1 and 5. The integration of quantitative
and qualitative approaches helps address limitations of each
approach by providing both statistical objectivity and a deeper
understanding of contexts (Kaplan and Duchon 1988; Lee
1991; Trauth and Jessup 2000).

Preliminary field interviews, focus groups, sorting procedure,
and pilot tests were used in Phase 1 to formulate research
problems and questions, identify key constructs, and generate
and refine measurement items. The survey respondents in
Phase 2 were members of the Information Systems Specific
Interest Group of the Project Management Institute (PMI-
ISSIG). The target respondents were 1,740 North American
members who were project managers and had recently
managed a software development project. After measures
were validated in Phase 3, the PLS analysis of 399 survey
responses in Phase 4 provided statistical evidence for the
hypothesized relationships among the constructs. In Phase 5,
post hoc case studies were conducted to validate the PLS
results, provide richer explanations and insights for the
results, and reveal the complex dynamics of tensions among
the constructs. We selected the cases that demonstrated
diverse project profiles in terms of system type, project size,
development methods, and project performance as well as
different patterns of team autonomy, diversity, response
extensiveness, and response efficiency. We identified and
solicited 25 target projects from the survey sample and 10
projects agreed to participate in our post hoc case studies.

2Software team response extensiveness and software functionality are
conceptually distinct constructs in that the former only concerns the extent
of team responses to requirement changes that arise during the project
whereas the latter concerns meeting the entire requirements including both
the original and changed requirements.

3Software team response efficiency and on-time completion are conceptually
distinct constructs in that the former only concerns the efficiency of team
responses to requirement changes that arise during the project whereas the
latter concerns on-time completion of the entire project.

4Similarly, software team response efficiency and on-budget completion are
conceptually distinct constructs.

MIS Quarterly Vol. 34 No. 1/March 2010 95

Lee & Xia/Software Development Agility

Measures

The final items for measuring the constructs are shown in
Appendix B. We developed new measures for the two agility
dimensions as they are newly proposed with no existing
measures in the literature. Software team response exten-
siveness was measured by how much a software team incor-
porates changing requirements in system scope, input data,
output data, business rules/processes, data structure, and user
interfaces. Software team response efficiency was measured
by the relative level of time, cost, personnel, and resources
needed by the software team to respond to and incorporate a
given requirement change. Software team response efficiency
is considered higher when a team needed less effort to
incorporate a given requirement change and vice versa. In the
original scale of the measures, a higher number indicates
more effort and thus lower response efficiency. For intuitive
interpretation of results, we reversed the scale in data analysis
so that a higher number indicates higher response efficiency.

Software team autonomy was measured by four items that
were adapted from prior literature (Breaugh 1985; Janz et al.
1997; Zmud 1982). These items tapped into the extent to
which the software team had discretion, freedom, and inde-
pendence in making project-related decisions, such as
choosing tools/technologies, setting goals, handling user
requirement changes, and assigning personnel to the team.
Software team diversity was measured by four items adapted
from prior literature (Campion et al. 1993). These items
tapped into diversity and heterogeneity of team members’
expertise areas, skills, prior work experiences, and functional
backgrounds.

Software development performance was measured by three
dimensions: on-time completion, on-budget completion, and
software functionality. Based on the objective data of project
start date, planned completion date, and actual completion
date, we computed time overrun rate using the ratio of time
overrun (i.e., actual completion date minus planned com-
pletion date) to planned duration (i.e., planned completion
date minus project start date). Greater time overrun rate
indicated lower on-time completion performance. Similarly,
we obtained planned project cost and actual project cost and
computed cost overrun rate using the ratio of cost overrun
(i.e., actual project cost minus planned project cost) to
planned project cost. Greater cost overrun rate indicated
lower on-budget completion performance. In addition to
these objective measures, we measured perceived on-time
completion and perceived on-budget completion for cross-
validation (Deephouse et al. 1996; Nidumolu 1995). Software
functionality was measured by four items adapted from prior

literature (Nidumolu 1995; Weitzel and Graen 1989). These
items measured the extent to which the final software system
achieved functional goals, met user requirements, satisfied
user needs, and met technical requirements.

Results

Characteristics of the Survey Sample

We received survey responses from the managers of 565
different projects. After eliminating 60 invalid responses, we
retained 505 usable responses for data analysis, resulting in an
effective response rate of 29.0 percent. As shown in Table 3,
the sample represented a wide range of industry sectors and
included small, medium, and large organizations with $2.5
billion annual sales and 14,786 employees on average. The
sample was also representative of small, medium, and large
software development projects. On average, the sample pro-
jects had a budget of $2 million, 34 team members, and dura-
tion of 12 months. All respondents were project managers of
software development projects with their affiliations and
functional backgrounds including internal IT managers,
internal business managers, and external IT consultants.

To examine the possibility of nonresponse bias, we split the
sample into two half-sized subgroups based on the time when
each response was received (Bailey 1987; Sivo et al. 2006).
We then compared the early response group with the late
response group on demographic and project variables such as
project duration, team size, project type, industry, organi-
zational size, and PMP (Project Management Professional)
certification. No significant differences between the two
groups on these variables were found, indicating that non-
response bias was not likely to be an issue.

To assess whether or not potential common method bias was
a significant issue (Malhotra et al. 2006), we performed two
different statistical analyses. First, we tested the consistency
between objective measures and perception-based Likert-scale
measures of two variables: on-time completion and on-budget
project completion. We found high correlations between the
objective measures and the perception-based measures (r =
.715 for on-time completion, r = .762 for on-budget comple-
tion). Second, we conducted a Harman’s one-factor test
(Podsakoff and Organ 1986) on all of the latent constructs.
Results showed that multiple factors are present and the most
covariance explained by one factor is only 25.2 percent,
indicating that common method biases are not likely to be a
serious concern (Podsakoff and Organ 1986).

96 MIS Quarterly Vol. 34 No. 1/March 2010

Lee & Xia/Software Development Agility

Table 3. Characteristics of the Survey Sample

Organizations Software Projects

Industry category Number of project members

Consulting 5.8% Less than 10 24.7%

Finance/Insurance 20.1% 10 – 50 55.7%

Government 8.7% Over 50 19.6%

Healthcare 5.8%

Manufacturing 13.9% Project budget

Retail 5.1% Less than $100,000 17.8%

Software 10.1% $100,000 – $1 million 40.9%

Telecom/Network 5.4% Over $1 million 41.3%

Transportation 4.0%

Utility 7.6% Project duration

Other 13.5% Less than 6 months 24.5%

6 – 12 months 40.5%

Sales Over 12 months 35.0%

Less than $100 million 26.2%

$100 million – $1 billion 31.1% Respondents

Over $1 billion 42.7% Affiliation/Background

Internal IT manager 63.4%

Number of Employees Internal business manager 9.2%

Less than 1,000 26.8% External IT consultant 27.4%

1,000 – 10,000 40.6%

Over 10,000 32.6%

Measurement Validation

We modeled the indicators of team autonomy, team diversity,
on-time completion, on-budget completion, and software
functionality as reflective measures. However, we modeled
the indicators of response extensiveness and response
efficiency as formative measures since these indicators are not
expected to have covariation within the same latent construct
and they are causes of, rather than caused by, their latent
construct (Petter et al. 2007). Reflective indicators and
formative indicators require different approaches and criteria
for validating reliability, convergent validity, and discriminant
validity (Gefen et al. 2000; Petter et al. 2007). Our validation
results suggest that all reflective measures demonstrated
satisfactory reliability and construct validity and all formative
measures demonstrated satisfactory construct validity and no
significant multicollinearity. Therefore, all of the measures
were valid and reliable. Detailed procedures and results of
measurement validation are presented in Appendix C.

Test of the Structural Model

The final sample size for the analysis of the proposed struc-
tural model was 399 after excluding 106 responses with
missing objective data for project duration and budget. We
conducted t-tests to compare these 399 projects with the 106
projects excluded on variables such as firm annual sales, firm
employee size, project team size, project type, and project
manager’s project management experience. No significant
differences between the two groups on these variables were
found.

Our PLS results are shown in Figure 2. Team autonomy has
a significant negative effect (–.272, p < .01) on response
extensiveness and a significant positive effect (.247, p < .01)
on response efficiency, supporting H1b and H2. Team diver-
sity has a significant positive effect (.261, p < .01) on
response extensiveness, supporting H3. However, team diver-
sity does not show a significant effect on response efficiency,

MIS Quarterly Vol. 34 No. 1/March 2010 97

Lee & Xia/Software Development Agility

Note: *p < .05; **p < .01

Figure 2. PLS Results

not supporting H4. Response extensiveness has a significant
negative effect (–.397, p < .01) on response efficiency, thus
supporting H5. Response extensiveness has a significant
positive affect (.396, p < .01) on software functionality, sup-
porting H6c. However, it has no significant effects on either
on-time completion or on-budget completion, not supporting
H6a or H6b. Response efficiency demonstrates significant
positive effects on on-time completion (.362, p < .01), on-
budget completion (.325, p < .01), and software functionality
(.298, p < .01), supporting H7a, H7b, and H7c.

Response extensiveness and response efficiency collectively
explain 13.4 percent of the variance in on-time completion,
11.0 percent in on-budget completion, and 13.7 percent in
software functionality. In summary, the results provide
support for Hypotheses 1b, 2, 3, 5, 6c, 7a, 7b, and 7c but no
support for Hypotheses 1a, 4, 6a, or 6b. In addition, we tested
a modified second-order PLS model to examine the effects of
response extensiveness and response efficiency on overall
software development performance by combining all three
performance measures. We found that both response exten-
siveness and response efficiency have a significant positive
effect on the overall development performance. Detailed
results are reported in Appendix D.

Although the PLS results support the majority of our
hypotheses and reveal interesting findings, more in-depth
investigation of individual cases is deemed necessary to
explore plausible explanations for unsupported hypotheses,
cross-validate supported hypotheses, and provide rich insights

for the complex, dynamic relationships among the constructs
above and beyond their path coefficients. We discuss below
the 10 case studies that we conducted.

Results of Post Hoc Case Studies

As shown in Table 4, these cases represent diverse software
development profiles in terms of types of system develop-
ment, industry sectors, and project size. The cases showed
various combinations of different degrees of autonomy,
diversity, response extensiveness, response efficiency, and
project performance. Most cases used a combination of agile
development approaches and traditional waterfall approaches,
whereas Case A used an agile development approach alone,
Case F used a vendor proprietary evolutionary/iterative
approach, and Case H used the waterfall approach.5 We
interviewed the project manager for each project and, when
possible, the project manager identified one or two team
members for further interviews. In total, we conducted 17
interviews for the 10 cases. Table 5 shows a summary of key
findings.

5To ensure variability in software development agility among the cases, we
selected projects with varying levels of agile methods, ranging from a pure
agile approach, to hybrid approaches, to a waterfall approach.

Software Team
Response

Extensiveness

Software Team
Response
Efficiency

Software
Team

Autonomy

Software
Team

Diversity

Software
Functionality

On-Budget
Completion

On-Time
Completion

R2 = 0.268

R2 = 0.142

R2 = 0.134

R2 = 0.110

R2 = 0.137

-0.272**

0.247**

0.261**

0.017

-0.397**

-0.009

-0.014

0.396**

0.362**

0.325**

0.298**

98 MIS Quarterly Vol. 34 No. 1/March 2010

Lee & Xia/Software Development Agility

Table 4. Case Description

Case Project Objective

Duration
Cost

Team size
Development
Methodology

Autonomy/Diversity/
Response Extent/

Response Efficiency
(High/Medium/Low) Project Performance Interview

A

Off-the-shelf software imple-
mentation for core business
processes and business intelli-
gence in a dairy foods company

17 months
$30M
65 people

Agile H/H/M/H 1 month overrun; $1.2M cost
overrun; 95% of system
functionality goals met

project
manager

B

In-house development of manu-
facturing and financial applica-
tions in a manufacturing
company

24 months
$16M
100 people

Agile +
Waterfall

M/M/L/M Cancelled after 18 months
with $9M cost-overrun and 5
month time-overrun

project
manager

C
Off-the-shelf software
implementation in a retail
company

12 months
$20M
45 people

Agile +
Waterfall

M/H/H/M 3 months overrun; $1.5M
cost overrun; 75% system
functionality goals met

project
manager

D

Major application revision and
maintenance in an airline
company

12 months
$1.3M
50 people

Agile +
Waterfall

M/M/M/H 4 month time ahead of
schedule; $100K cost
overrun; 100% system
functionality goals met

project
manager

E

In-house application
development in a transportation
company

8 months
$1.5M
100 people

Agile +
Waterfall

H/M/M/H 3 month time overrun;
$150K cost overrun; 95%
system functionality goals
met

project
manager

F

ERP implementation
(finance/accounting module) for
a federal agency

12 months
$30M
160 people

Evolutionary
(vendor

proprietary)

M/H/L/M 6 month time overrun; $1M
cost overrun; system
functionality was marginally
satisfactory

project
manager &
one member

G

In-house development of a
faculty load management and
reporting system for a commu-
nity college

18 months
$400K
3 people

Agile +
Waterfall

H/H/H/M On-time completion; $100K
cost overrun; system
functionality was very
satisfactory

project
manager &
two
members

H

ERP implementation for a
military organization

36 months
$226M
403 people

Waterfall L/H/M/L Significant time and cost
overruns; system
functionality was largely
satisfactory

project
manager &
one member

I

In-house development of a data
processing system for a
government agency

48 months
$1M
16 people

Agile +
Waterfall

M/L/L/M 10 month time overrun;
$1.4M cost overrun; system
functionality was
unsatisfactory

project
manager &
two
members

J

Implementation of an off-the-
shelf fund raising system for a
radio station

7 months
$450K
4 people

Agile +
Waterfall

L/M/M/M On-time completion; $10K
cost overrun; system
functionality was largely
satisfactory

project
manager &
one member

MIS Quarterly Vol. 34 No. 1/March 2010 99

Lee & Xia/Software Development Agility

Table 5. Key Findings from Case Studies

Issues Findings Remark

Relationships
between
software

development
agility and

performance
(H6a/b/c &
H7a/b/c)

When responding to a requirement change, software teams evaluate its impact on business and
time/cost/scope and its technical difficulty. Their response decision is influenced by these
tradeoffs. (Cases G, I)

Insights for
H6a/b/c

Time and/or cost constraint is sometimes a main factor for determining the extent of team
response to changing requirements. (Cases B, H)

Insights for H6a/b

High business-impact changes tend to be addressed regardless of constraints. (Case A)

Insights for H6cToo much response interrupts project continuity and may result in poor software systems under
time/cost pressures. (Cases F, D)

Extensive responses to changes in early stages can save time and cost in later stages. (Case G) Explains
unsupported
H6a/b

Pursuit of response efficiency may cause quality/functionality problems. (Case A) Insights for H7c

Standardized processes, methodologies, and tools help manage changes, time, and cost. (Case
F) Insights for

H6a/b, H7a/bTeams re-baseline time line and budget to accommodate large changes and relieve time and cost
constraints. (Case H)

Relationships
between
response

extensiveness
and response

efficiency
(H5)

More responses generally result in lower response efficiency. (Cases C, I)

Validates and
explains H5

Extensive changes affecting the project baseline require approval by upper management, which
slows down the response process. (Case C)

Too much response results in work overload for the team, which undermines efficiency. (Case E)

Responding to too many requirement changes causes lack of focus. (Case D)

Clear specification of requirements helps strike the balance. (Case F)

Insights for H5

Additional requirements are addressed in the next phase or in a separate project. (Cases D, E)

Needed changes are spread out across deliverables. (Case E)

Effective management of time and cost helps achieve greater agility in both response
extensiveness and response efficiency. (Case I)

Effect of
autonomy on

agility
(H1a/b & H2)

Autonomy generally increases response efficiency. (Case G) Validates H2

Autonomy allows software teams to limit their responses to changes in order to meet overall
project goals. (Case A)

Validates H1b;
explains
unsupported H1a

Autonomy may not be effective for government projects. (Case H) Insights for H1,
H2Autonomy may not be effective if team members are not competent. (Case A)

Effect of diversity
on agility
(H3 & H4)

Diversity helps solve complex problems effectively. (Cases E, F)
Validates H3

Diversity helps better translate and understand complex requirement changes. (Case C)

Diversity slows down team response due to conflicts and costly communication. (Case D) Explains
unsupported H4Diversity can help solve problems quickly. (Case C)

Individuals’ expertise, knowledge, skills, and mind-set are important for agility. (Case J) Insights for H3,
H4

Relationships Between Software Development
Agility and Project Performance

The case study results suggest that software teams dynami-
cally evaluate and manage the complex tensions and tradeoffs
between software development agility and software develop-
ment performance. When responding to a requirement

change, software teams holistically assess its business impact,
its impact on time/cost/scope goals, and its technical diffi-
culty. Based on these assessments, they determine the extent
to which they respond to user requirement changes.

It was important to keep balance between how much
we respond to user change requests and meeting

100 MIS Quarterly Vol. 34 No. 1/March 2010

Lee & Xia/Software Development Agility

time and cost goals. We probably addressed 80
percent of user requirement requests to make the
client happy and satisfied. Yet, at the same time, we
tried to minimize less important changes. (Case G)

The stakeholder determined the needed require-
ments and the nice-to-haves. The software team
advises based on technical evaluation what is
feasible for each requirement. Change requests are
determined during an engineering review board
meeting where the project team evaluates the cost
and scope of the requirement added to the project.
(Case I)

Depending on the specific project context, time is sometimes
the main driver for determining how much the team responds
to changing requirements, whereas cost can be the main
consideration in other cases.

Due to the fact that it was past schedule, I put a very
tight and stringent change request policy in place.
(Case B)

When the project had a tremendous amount of
requirement changes, the project team could not
address that many changes simply because they
were running out of money. (Case H)

However, we found that high impact, business-disruptive
requirement changes tend to be addressed almost always,
regardless of time and cost constraints.

We really responded to those things that were truly
business disruptive. So we would get the people that
needed to be there that knew best about different
aspects of that particular problem, both functionally
and technically, come up with a design and then
build it, regression test it, make sure we understood
what the implications were from a usage perspec-
tive, and then implement that fix. (Case A)

Although the case results generally confirm the positive effect
of response extensiveness on software functionality, when
severe time/cost pressures are present, extensive responses
may result in poor software functionality due to the lack of
task continuity and integration.

Too much response may interrupt the flow and
continuity of the project execution. Too much
response also has a tendency to create rush changes
to meet implementation schedules, which can lead to
poorly defined and developed solutions. (Case F)

The tension is you’re going to be spread too thin and
you’re not going to get them tested well enough and
integrated well enough, and then you’re not going to
have a good product at the end. (Case D)

Notably, some cases suggest that extensive responses should
not necessarily negatively affect on-time and on-budget
completion as we hypothesized. If software teams respond to
many important requirement changes in early stages, they can
actually save time and cost in later stages. This finding may
explain why we did not discover a negative effect of response
extensiveness on on-time and on-budget completion with our
PLS analysis.

We tried to respond to changes as much as possible
early on, and this turned out to save us much time
and cost down the road. We did not have to deal
with many changes toward the end of the project.
(Case G)

Furthermore, our case results suggest what appears to be con-
tradictory to the PLS results: pursuit of response efficiency
may cause software functionality problems because efficiency
may come at the cost of quality if software teams are not
sufficiently competent.

We were pretty efficient about it, but not always
effective, because we would make mistakes. People
would put the change in and everything would be
good but then they forgot that they didn’t have the
security set up right. So I think the team was pretty
efficient but it wasn’t quite as effective just because
of human error and complexity. (Case A)

While it is a challenge for software teams to be agile while
meeting other project goals, we found that standardized
processes/methodologies/tools help manage this tension.
When possible, teams sometimes re-baseline their project
goals and relieve time and cost pressures in order to
accommodate large changes.

I found that following a standard methodology is
critical to managing scope and changes. An estab-
lished change control process with tools that track
changes are essential for managing CRs (change
requests), cost, and schedule. (Case F)

Instead of responding to large changes under the
current constraints of time, cost, and scope goals,
we sometimes revise the project baseline and set
new goals to incorporate large-scale changes. By
so doing, we are free from unrealistic constraints

MIS Quarterly Vol. 34 No. 1/March 2010 101

Lee & Xia/Software Development Agility

that did not account for the emergent changes and
can be more flexible in responding to the changes.
(Case H)

Two cases are worth noting: Case B was a big failure,
whereas Case D was a remarkable success, among other
cases. The difference in their performance can be partly
explained by their different levels of response extensiveness
and response efficiency as shown in Table 4. Furthermore,
our results reveal that the Case B team used a very strict
policy in responding to changing user requirements since they
were experiencing severe time and cost overruns halfway
through the project and because they lacked important skills.
The lack of response to important requirement changes
rendered the project unsustainable.

The knowledge of certain aspects of this new appli-
cation was something we didn’t have in our skill set,
which made it difficult to turn things around. (Case
B)

In contrast, the team in Case D was highly efficient in
responding to changes and focused on addressing high-
priority changes. Although they did not incorporate every
single change request, the final system successfully met most
of the important user requirements.

Relationships Between Response Extensiveness
and Response Efficiency

With respect to the tension between response extensiveness
and response efficiency, our case results generally confirm the
tradeoff between the two.

There is a diminishing rule of return on that. The
more change requests you get, you absolutely will
suffer on the efficiency and quality of looking at that
change. (Case C)

The project team yielded fewer implementations but
greater quality and efficiency for each response, as
opposed to more responses but less efficiency and
quality. (Case I)

Our case results suggest several plausible explanations for this
tradeoff relationship. Responses to extensive requirement
changes are more likely to require upper management
approval due to their significant impact on business and
project goals. Furthermore, too much response results in
work overload and lack of focus, thus decreasing response
efficiency.

I knew that, based on my forecast, making this
change would send me so close to budget or over
budget that it would switch a dashboard color on the
project, and I would actually need management
approval for that. (Case C)

There were times where we had a lot of change
going on in the project and the team got over-
whelmed and we had to push back. (Case E)

If I responded to too many change requests, I not
only got stretched too thin and lost focus but also
had to shoot at moving targets, and sometimes I felt
we didn’t even have targets. (Case D)

We found that project managers tend to believe that they can
strike the right balance if user requirements are clearly spe-
cified and communicated. Furthermore, by spreading out
necessary changes across different phases, deliverables, or
projects, software teams may achieve high response efficiency
while responding to changes extensively. Effective manage-
ment of time and cost also helps achieve both dimensions of
agility simultaneously.

The balance between response extensiveness and
efficiency comes from the ability of the team to
clearly define and document specifications related to
user requirements. (Case F)

We spread out the deliverables and broke it up into
three different deliverables, and that was another
way to balance the number of changes we had on
this project. We could focus on certain changes for
the December deliverable, then focus on the changes
for the January deliverable, then focus on the final
changes. (Case E)

It is possible to reach both response extensiveness
and response efficiency if the project cost and time
is managed effectively throughout. To do so, the
project team needs to leverage the expertise of the
staff to make solid project decisions. (Case I)

Effect of Team Autonomy on Software
Development Agility

Our case results confirm that team autonomy generally has a
positive effect, mainly on response efficiency because of
empowered decision making by team members.

Each team member was able to respond to small
system changes individually although the whole team

102 MIS Quarterly Vol. 34 No. 1/March 2010

Lee & Xia/Software Development Agility

discussed change requests that are important. We
were very efficient in responding to change partly
due to our authority to make decisions. (Case G)

We found that autonomous software teams occasionally
limited their responses to changing requirements in order to
meet project goals because they were empowered to choose
if and how to respond to changes, whereas less autonomous
teams had no choice but to take orders from users and
implement them. This finding partly explains why team
autonomy was found to have a negative effect, rather than a
positive effect, on response extensiveness.

If you can’t put a boundary around that, that’s
where you go way out of whack on budget and
schedule. The business always wants to add addi-
tional things, which were never in the scope of what
the project was supposed to accomplish. We said
“No” to a lot of change requests because we were
empowered to make decisions on our own. (Case A)

Effect of Team Diversity on Software
Development Agility

Our case results confirm that team diversity improves
response extensiveness because it helps solve various
problems effectively. Diverse expertise also makes it easier
to translate and understand a variety of requirement changes.

The more diverse team will be better able to respond
to changes because people will bring different levels
of experience, different background, different skill
sets. A team that doesn’t have that diversity can get
tunnel vision on a solution and not be as open to
other options. (Case E)

The subject matter experts were actually required to
attend and speak to a change so that it could be
translated, if you will, for those that don’t under-
stand it, which is absolutely critical. (Case C)

We found that diversity can decrease response efficiency due
to conflicts and costly communication. On the other hand,
however, diversity can increase response efficiency through
accelerated problem-solving enabled by readily available
expertise and skills. These findings may explain why we
found no significant effect of team diversity on response
efficiency.

The diversity made it more difficult to communicate
and manage change, because the change required

interaction amongst a diversity of workgroups, and
that made it harder for people to be on the same
page and agree to these changes. (Case D)

The make-up of the team, by getting a lot of subject
matter experts, resulted in the ability to get answers
quickly and to have sort of an automatic trust that
the person knows the right answer and you don’t
have to look for somebody else to validate that.
(Case C)

Discussion

Implications for Research and Practice

Our research approach, combining both quantitative and
qualitative data analyses, allowed us to not only statistically
test the hypotheses, but also complement the quantitative PLS
results with richer explanations and insights obtained from the
case studies. The benefits from the case studies are three-
fold: (1) the case study results validate and explain the sup-
ported hypotheses; (2) the results provide explanations for the
unsupported hypotheses; (3) the results reveal rich, additional
insights on the complex relationships among the constructs
above and beyond the quantitative results.

The findings and insights of this research have significant
implications to research and practice in agile development
approaches. As our results suggest a negative effect of
response extensiveness on response efficiency, examining
only the aggregate agility may produce misleading results.
Researchers should distinguish between response exten-
siveness and response efficiency when developing and testing
theories in agile development. This negative effect occurs in
part because extensive responses are likely to cause work
overload and lack of software team focus and require time-
consuming involvement of upper management. However, a
possible reverse direction of the relationship—that is,
response efficiency affecting response extensiveness—should
not be completely ruled out as the relationship is yet to be
fully understood. A software team’s efficiency in responding
to changes may determine the extent of changes to which the
team responds. With this reasoning, however, response
efficiency is expected to positively affect response exten-
siveness, which is not consistent with our results. Future
research should further investigate if the reverse causality can
happen under certain conditions. Practitioners need to be
aware of the multifaceted nature of software development
agility and understand the tension between its two different
dimensions in order to build appropriate types of agility.

MIS Quarterly Vol. 34 No. 1/March 2010 103

Lee & Xia/Software Development Agility

Software teams can maintain an appropriate balance between
the two agility dimensions by implementing such agile
development practices as short, incremental iterations and
time boxing methods.

The agile literature tends to take a simplistic view on the
tension between software development agility and develop-
ment performance; it views agility to be universally desirable
and does not recognize differential effects of agility on
different aspects of development performance. Our PLS
results show that response extensiveness has a positive effect
only on software functionality, whereas response efficiency
has a positive effect on on-time/on-budget completion as well
as software functionality. Therefore, software teams should
take cautions when implementing such agile principles as
“Welcome changing requirements even late in development”:
when time and cost are top priorities, teams can be better off
by selectively responding to changing requirements and thus
increasing response efficiency. Agile practices such as
“decision in one hour” in Scrum can be useful for improving
response efficiency.

Our case results provide a plausible explanation for the non-
significant effect of response extensiveness on on-time and
on-budget completion. While extensive responses generally
require substantial time, cost, and resources, extensive
responses in early development stages can save software
development time and cost for later development stages.
Therefore, extensive responses might have both positive and
negative effects on on-time and on-budget completion,
resulting in a nonsignificant net effect. Our case results also
suggest that, contrary to our PLS results, it is possible for
response efficiency to negatively affect software functionality
as efficiency might compromise system quality if the team is
not competent. Similarly, extensive responses can negatively
affect software functionality under severe time/cost
constraints.

Agile development approaches advocate self-organizing,
autonomous teams with cross-functional, diverse members.
However, no theoretical foundation or empirical evidence has
been provided in support of the principle. This research
provides empirical evidence that team autonomy and team
diversity are important team variables that organizations can
control to build their software development agility. More
importantly, team autonomy and team diversity do not
universally increase software development agility. The
results suggest that increased autonomy without increased
diversity may result in decreased response extensiveness, and
that only autonomy, not diversity, increases response
efficiency. The results suggest that a software team needs to
manage team autonomy and diversity based on which

dimension of agility the team needs to address. Software
teams should be aware of a potential negative effect of self-
organization on their ability to respond to a wide range of
changes. When implementing “the whole team” and “pair
programming” with XP, the team and the pairs should have
a high degree of diversity for greater response extensiveness.

Our case results suggest that autonomous software teams may
strictly limit their responses to changing requirements in order
to meet other project goals such as time and cost. However,
researchers should not entirely rule out the possibility that
autonomy may actually increase response extensiveness since
autonomous teams, in theory, are free to choose their actions
in either direction. Future research should further investigate
this relationship. In addition, our case results suggest two
opposite effects of team diversity on response efficiency.
While diversity may cause conflicts and costly communi-
cation, it may accelerate a software team’s response process,
thanks to readily available expertise and skills. These
findings partly explain the nonsignificant effect of diversity
on response efficiency as its positive and negative effects may
be cancelled out.

Limitations

Although we employed a rigorous, multiphase approach to the
development of new measures for response extensiveness and
response efficiency, the new measures have some limitations.
While response extensiveness is measured by the count of
incorporated changes vis-à-vis total changes, it would have
been more accurately measured using the amount of addi-
tional scope, above and beyond the original scope, in terms of
such metrics as function points. Furthermore, response
extensiveness measures the extent to which a software team
actually implemented and incorporated various changes into
the system while not fully capturing other forms of team
responses. A software team may just as well respond to
requirement changes by rejecting or postponing them to meet
other important project goals. A more comprehensive mea-
sure is desirable to fully capture different forms of software
team responses.

Our measure for response efficiency did not take into account
the fact that different requirement changes from different
development phases might have different levels of business
impact and response difficulties. Therefore, combining all
phases in the measure may not precisely capture how efficient
a team’s responses were. To measure it more accurately,
appropriate weights based on relative impact and difficulty
need to be assigned to different types of changes. Another

104 MIS Quarterly Vol. 34 No. 1/March 2010

Lee & Xia/Software Development Agility

issue associated with the response efficiency measure is that
survey respondents may have had a lack of clear guidance in
interpreting the measurement question and assessing relative
time, cost, and resources required in responding to a given
requirement change. Although we have found no statistical
evidence that suggests any measurement problems due to
potential misinterpretation, future research is needed to
further validate the measure.

Conclusions

Due to the ever-increasing uncertainty in business and
technology environments, the agility to effectively deal with
changing requirements has become an imperative, not an
option, for software development. Given the complex rela-
tionships among response extensiveness, response efficiency,
team autonomy, team diversity, and software development
performance, software teams face difficult challenges in
identifying and achieving the right balance between the two
agility dimensions. While the prior agile development litera-
ture offers little guidance for such challenges, this research
offers some useful insights that are theoretically based and
empirically tested. Software teams should first prioritize the
performance goals of time, cost, and functionality, which will
determine how much each dimension of agility is needed.
That, in turn, will determine how much autonomy and
diversity their software teams should require.

Since this research is one of the initial efforts to empirically
examine the principles and practices of agile development
approaches, we believe that many important questions and
issues are yet to be answered in this important area. We hope
our study serves as a stepping-stone for developing and
testing theories that guide the agile development principles
and practices so that organizations can effectively build and
sustain software development agility that will ultimately
improve their software development performance.

Acknowledgments

This study was supported by research grants provided by the Uni-
versity of Minnesota, the Juran Center for Leadership in Quality,
and the UPS (United Parcel Service) Foundation. The Information
Systems Specific Interest Group of the Project Management Institute
sponsored the collection of the survey data. We thank Carl Adams,
Izak Benbasat, Erran Carmel, Gordon Davis, William DeLone,
J. Alberto Espinosa, Jungpil Hahn, Anita LaSalle, Bob Zmud,
and research workshop participants at the American University,
Lehigh University, Syracuse University, Tulane University, the
University of British Columbia, and the University of Minnesota
for helpful comments on earlier versions of the paper.

References

Agile Alliance. 2001. “Manifesto for Agile Software Develop-
ment” (www.agilemanifesto.org).

Aladwani, A. M. 2002. “An Integrated Performance Model of
Information Systems Projects,” Journal of Management Infor-
mation Systems (19:1), pp. 185-210.

Ancona, D., and Caldwell, D. 1992. “Demography and Design:
Predictors of New Product Team Performance,” Organization
Science (3:3), pp. 321-341.

Ashby, W. R. 1956. An Introduction to Cybernetics, London:
Chapman and Hall.

Austin, R., and Devin, L. 2003. Artful Making: What Managers
Need to Know About How Artists Work, Boston: Financial Times
Prentice Hall.

Bailey, K. D. 1987l Methods of Social Research, New York: Free
Press.

Baskerville, R. L. 2006. “Artful Planning,” European Journal of
Information Systems (15:2), pp. 113-115.

Beck, K., and Andres, C. 2005. Extreme Programming Explained:
Embrace Change, Boston: Addison-Wesley.

Boehm, B. W., and Turner, R. 2004. Balancing Agility and Disci-
pline: A Guide for the Perplexed, Boston: Addison-Wesley.

Breaugh, J. A. 1985. “The Measurement of Work Autonomy,”
Human Relations (38:6), pp. 551-570.

Campion, M. A., Medsker, G. J., and Higgs, A. C. 1993. “Relations
Between Work Group Characteristics and Effectiveness: Impli-
cations for Designing Effective Work Groups,” Personnel
Psychology (46:4), pp. 823-850.

Chin, W. W. 1998. “The Partial Least Square Approach to
Structural Equation Modeling,” in Modern Methods for Business
Research, G. A. Marcoulides (ed.), Mahwah, NJ: Lawrence
Erlbaum Associates, Inc.

Chow, T., and Cao, D.-B. 2008. “A Survey Study of Critical
Success Factors in Agile Software Projects,” The Journal of
Systems and Software (81:6), pp. 961-971.

Clark, K. B., and Fujimoto, T. 1991. Product Development
Performance, Boston: Harvard Business School Press.

Coad, P., De Luca, J., and Lefebre, E. 1999. Java Modeling in
Color, Englewood Cliffs, NJ: Prentice Hall.

Cockburn, A. 2001. Agile Software Development, Boston:
Addison-Wesley.

Cockburn, A. 2007. Agile Software Development: The Coopera-
tive Game, Boston: Addison-Wesley.

Cockburn, A., and Highsmith, J. 2001. “Agile Software Devel-
opment: The People Factor,” IEEE Computer (34:11), pp.
131-133.

Conboy, K., and Fitzgerald, B. 2004. “Toward a Conceptual
Framework of Agile Methods,” in Proceedings of the 2004 ACM
Workshop on Interdisciplinary Software Engineering Research,
Newport Beach, CA, November 5, 2004, pp. 37-44.

Deephouse, C., Mukhopadhyay, T., Goldenson, D. R., and Keller,
M. I. 1996. “Software Processes and Project Performance,”
Journal of Management Information Systems (12:3), pp. 187-205.

Diamantopoulos, A., and Siguaw, J. A. 2006. “Formative Versus
Reflective Indicators in Organizational Measure Development:

MIS Quarterly Vol. 34 No. 1/March 2010 105

Lee & Xia/Software Development Agility

A Comparison and Empirical Illustration,” British Journal of
Management (17:4), pp. 263-282.

Diamantopoulos, A., and Winklhofer, H. M. 2001. “Index Con-
struction with Formative Indicators: An Alternative to Scale
Development,” Journal of Marketing Research (38:2), pp.
269-277.

Dybå, T., and Dingsøyr, T. 2008. “Empirical Studies of Agile
Software Development: A Systematic Review,” Information and
Software Technology (50:9-10), pp. 833-859.

Erickson, J., Lyytinen, K., and Siau, K. 2005. “Agile Modeling,
Agile Software Development, and Extreme Programming: The
State of Research,” Journal of Database Management (16:4), pp.
88-100.

Fitzgerald, B., Hartnett, G., and Conboy, K. 2006. “Customising
Agile Methods to Software Practices at Intel Shannon,”
European Journal of Information Systems (15:2), pp. 200-213.

Fruhling, A., and De Vreede, G.-J. 2006. “Field Experiences with
eXtreme Programming: Developing an Emergency Response
System,” Journal of Management Information Systems (22:4), pp.
39-68.

Gefen, D., and Ridings, C. M. 2002. “Implementation Team
Responsiveness and User Evaluation of Customer Relationship
Management: A Quasi-Experimental Design Study of Social
Exchange Theory,” Journal of Management Information Systems
(19:1), pp. 47-69.

Gefen, D., Straub, D. W., and Boudreau, M.-C. 2000. “Structural
Equation Modeling and Regression: Guidelines for Research
Practice,” Communications of the AIS (4:7), pp. 1-77.

Henderson-Sellers, B., and Serour, M. K. 2005. “Creating a
Dual-Agility Method: The Value of Method Engineering,”
Journal of Database Management (16:4), pp. 1-23.

Highsmith, J. 2000. Adaptive Software Development: A Col-
laborative Approach to Managing Complex Systems, New York:
Dorset House Publishing.

Highsmith, J. 2002. “Agile Project Management: Principles and
Tools,” Cutter Consortium Executive Report, March 9 (available
online at http://www.cutterconsortium.com/research/2004/
edge040309.html).

Highsmith, J. 2004. Agile Project Management, Boston:
Addison-Wesley.

Imai, K., Ikujiro, N., and Takeuchi, H. 1985. “Managing the New
Product Development Process: How Japanese Companies Learn
and Unlearn,” in The Uneasy Alliance, R. H. Hayes, K. B. Clark,
and C. Lorenz (eds.), Boston: Harvard Business School Press,
pp. 337-375.

Janz, B. D., Wetherbe, J. C., Davis, G. B., and Noe, R. A. 1997.
“Reengineering the Systems Development Process: The Link
between Autonomous Teams and Business Process Outcomes,”
Journal of Management Information Systems (14:1), pp. 41-68.

Kaplan, B., and Duchon, D. 1988. “Combining Qualitative and
Quantitative Methods in Information Systems Research: A Case
Study” MIS Quarterly (12:4), pp. 571-586.

Kelly, A. 2008. Changing Software Development: Learning to
Become Agile, Chichester, England: John Wiley & Sons.

Kerzner, H. 2005. Project Management: A Systems Approach to
Planning, Scheduling, and Controlling, Hoboken, NJ: Wiley.

Klimoski, R. J., and Mohammed, S. 1994. “Team Mental Model:
Construct or Metaphor,” Journal of Management (20:2), pp.
403-437.

Koch, C. 2006. “The Truth about SOA,” CIO, June 15 (available
online at http://www.cio.com/article/21975/The_Truth_
About_SOA).

Larman, C. 2004. Agile & Iterative Development: A Manager’s
Guide, Boston: Addison-Wesley.

Lee, A. S. 1991. “Integrating Positivist and Interpretive Ap-
proaches to Organizational Research,” Organization Science
(2:4), pp. 342-365.

Loch, K. D., Straub, D. W., and Kamel, S. 2003. “Diffusing the
Internet in the Arab World: The Role of Social Norms and
Technological Culturation,” IEEE Transactions on Engineering
Management (50:1), pp. 45-63.

Lyytinen, K., and Rose, G. M. 2006. “Information System Devel-
opment Agility as Organizational Learning,” European Journal
of Information Systems (15:2), pp. 183-199.

MacCormack, A., Verganti, R., and Iansiti, M. 2001. “Developing
Products on ‘Internet Time’: The Anatomy of a Flexible Devel-
opment Process,” Management Science (47:1), pp. 133-150.

Malhotra, N. K., Kim, S. S., and Patil, A. 2006. “Common Method
Variance in IS Research: A Comparison of Alternative
Approaches and a Reanalysis of Past Research,” Management
Science (52:12), pp. 1865-1883.

Mathieu, J., Goodwin, G. F., Heffner, T. S., Salas, E., and Cannon-
Bowers, J. A. 2000. “The Influence of Shared Mental Models on
Team Process and Performance,” Journal of Applied Psychology
(85:2), pp. 273-283.

McGrath, R. G. 2001. “Exploratory Learning, Innovative Capacity,
and Managerial Oversight,” Academy of Management Journal
(44:1), pp. 118-131.

Miller, C. C., Burkle, L. M., and Glick, W. H. 1998. “Cognitive
Diversity Among Upper-Echelon Executives: Implications for
Strategic Decision Processes,” Strategic Management Journal
(19:1), pp. 39-58.

Milliken, F. J., and Martins, L. L. 1996. “Searching for Common
Threads: Understanding the Multiple Effects of Diversity in
Organizational Groups,” Academy of Management Review (21:2),
pp. 402-433.

Mingers, J. 2001. “Combining IS Research Methods: Towards a
Pluralist Methodology,” Information Systems Research (12:3),
pp. 240-259.

Mitchell, V. L. 2006. “Knowledge Integration and Information
Technology Project Performance,” MIS Quarterly (30:4), pp.
919-939.

Moe, N. B., Dingsøyr, T., and Dybå, T. 2008. “Understanding
Self-Organizing Teams in Agile Software Development,”
Proceedings of the 19th Australian Conferences on Software
Engineering, Perth, Australia, pp. 76-85.

Moore, G. C., and Benbasat, I. 1991. “Development of an Instru-
ment to Measure the Perceptions of Adopting an Information
Technology Innovation,” Information Systems Research (2:3),
pp. 192-222.

Nerur, S., and Balijepally, V. 2007. “Theoretical Reflections on
Agile Development Methodologies,” Communications of the
ACM (50:3), pp. 79-83.

106 MIS Quarterly Vol. 34 No. 1/March 2010

Lee & Xia/Software Development Agility

Nidumolu, S. R. 1995. “The Effect of Coordination and Uncertainty
on Software Project Performance: Residual Performance Risk as
an Intervening Variable,” Information Systems Research (6:3),
pp. 191-219.

Pelled, L. H., Eisenhardt, K. M., and Xin, K. R. 1999. “Exploring
the Black Box: An Analysis of Work Group Diversity, Conflict,
and Performance,” Administrative Science Quarterly (44:1), pp.
1-28.

Petter, S., Straub, D., and Rai, A. 2007. “Specifying Formative
Constructs in Information Systems Research,” MIS Quarterly
(31:4), pp. 623-656.

Podsakoff, P. M., and Organ, D. W. 1986. “Self-Reports in Organi-
zational Research: Problems and Prospects,” Journal of
Management (12:4), pp. 531-544.

Qumer, A., and Henderson-Sellers, B. 2008. “An Evaluation of the
Degree of Agility in Six Agile Methods and its Applicability for
Method Engineering,” Information and Software Technology
(50:4), pp. 280-295.

Schmidt, R., Lyytinen, K., Keil, M., and Cule, P. 2001. “Identi-
fying Software Project Risks: An International Delphi Study,”
Journal of Management Information Systems (17:4), pp. 5-36.

Schwaber, K., and Beedle, M. 2002. Agile Software Development
with Scrum, Upper Saddle River, NJ: Prentice-Hall.

Sharp, H., and Robinson, H. 2004. “An Ethnographic Study of XP
Practice,” Empirical Software Engineering (9:4), pp. 353-375.

Sivo, S. A., Saunders, C., Chang, Q., and Jiang, J. J. 2006. “How
Low Should You Go? Low Response Rates and the Validity of
Inference in IS Questionnaire Research,” Journal of the AIS
(7:6), pp. 351-414.

Stapleton, J. 1997. DSDM: Dynamic Systems Development
Method, Harlow, England: Addison Wesley.

Tata, J., and Prasad, S. 2004. “Team Self-Management, Organi-
zational Structure, and Judgments of Team Effectiveness,”
Journal of Managerial Issues (16:2), pp. 248-265.

Tatikonda, M. V., and Rosenthal, S. R. 2000. “Successful Execu-
tion of Product Development Projects: Balancing Firmness and
Flexibility in the Innovation Process,” Journal of Operations
Management (18:4), pp. 401-425.

Trauth, E. M., and Jessup, L. M. 2000. “Understanding Computer-
Mediated Discussions: Positivist and Interpretive Analyses of
Group Support System Use,” MIS Quarterly (24:1), pp. 43-79.

Turner, J. C., Hogg, M. A., Oakes, P. J., Reicher, S. D., and
Wetherell, M. S. 1987. Rediscovering the Social Group: A Self-
Organization Theory, New York: Blackwell.

Tushman, M. L., and O’Reilly, C. A. 1996. “Ambidextrous Organi-
zations: Managing Evolutionary and Revolutionary Change,”
California Management Review (38:4), pp. 8-30.

Van de Ven, A. H., and Delbecq, A. L. 1974. “The Effectiveness
of Nominal, Delphi, and Interacting Group Decision Making
Processes,” Academy of Management Journal (17:4), pp.
605-621.

Watson, E. W., Kumar, K., and Michaelsen, L. K. 1993. “Cultural
Diversity’s Impact on Interaction Process and Performance:
Comparing Homogeneous and Diverse Take Groups,” Academy
of Management Journal (36:3), pp. 590-602.

Webber, S. S., and Donahue, L. M. 2001. “Impact of Highly and
Less Job-Related Diversity on Work Group Cohesion and

Performance: A Meta-Analysis,” Journal of Management (27:2),
pp. 141-162.

Weitzel, J. R., and Graen, G. B. 1989. “Systems Development
Project Effectiveness: Problem-Solving Competence as a
Moderator Variable,” Decision Sciences (20:3), pp. 507-531.

Werts, C. E., Linn, R. L., and Joreskog, K. G. 1974. “Intraclass
Reliability Estimates: Testing Structural Assumptions,” Educa-
tional and Psychological Measurement (34:1), pp. 25-33.

Williams, K. Y., and O’Reilly, C. A. 1998. “Demography and
Diversity in Organizations: A Review of 40 Years of Research,”
in Research in Organizational Behavior, B. M. Staw and L. L.
Cummings (eds.), Greenwich, CT: JAI Press, pp. 77-140.

Yi, M. Y., and Davis, F. D. 2003. “Developing and Validating an
Observational Learning Model of Computer Software Training
and Skill Acquisition,” Information Systems Research (14:2), pp.
146-169.

Zmud, R. W. 1982. “Diffusion of Modern Software Practices:
Influence of Centralization and Formalization,” Management
Science (28:12), pp. 1421-1431.

About the Authors

Gwanhoo Lee is an associate professor and UPS Faculty Scholar in
the Kogod School of Business at the American University,
Washington, DC. He is the director of the Center for IT and the
Global Economy at the American University. His research areas
include software development agility and complexity, distributed
software teams, IT-enabled collaboration and innovation, technology
adoption, and CIO leadership. He has been working closely with IT
executives from large U.S. organizations on those research areas
through collaborative forums and programs. His research has been
published in Journal of Management Information Systems, European
Journal of Information Systems, Communications of the ACM,
Information & Management, Information Technology and People,
IEEE Pervasive Computing, Journal of Information Technology
Management, and Academy of Management Best Paper Pro-
ceedings, as well as in the proceedings of the International Con-
ference on Information Systems, the Hawaii International Con-
ference on System Sciences, and the Americas Conference on
Information Systems. He earned his doctorate in management
information systems from the University of Minnesota.

Weidong Xia is a faculty member in the College of Business
Administration at Florida International University. His research
focuses on IT strategy and governance, software development com-
plexity and flexibility, and innovation adoption. He was on the
faculty of the Carlson School of Management at the University of
Minnesota. He has worked with a number of large companies as the
cofounder and codirector of the CIO Research Consortium. His
research has been published in MIS Quarterly, Decision Sciences,
Journal of Management Information Systems, Communications of
the ACM, European Journal of Information Systems, Journal of
Information Technology Management, Journal of Statistics and
Management Systems, International Journal of Career Development,
and Journal of End-User Computing. He received his doctorate in
information systems from the University of Pittsburgh.

MIS Quarterly Vol. 34 No. 1/March 2010 107

Lee & Xia/Software Development Agility

Appendix A

The Research Process

Table A1 provides detailed information about our five-phase research process, including subject characteristics, outcomes, and techniques/
methods/processes. In Phase 1, we formulated research questions and identified key constructs of the research through preliminary field
interviews with 36 IS managers and executives who were affiliated with an academic research center at a large U.S. public university. The
questions asked during 90-minute semi-structured interviews included

(1) How would you define agility in the context of business software development?
(2) What are the important dimensions of software development agility?
(3) How does software development agility affect software development performance?
(4) What factors are important for building software development agility?

Then, we conducted a focus group brainstorming session with another 45 IS managers who enrolled in the part-time MBA programs at the same
university. A brief summary of the preliminary interview results was presented to the group to provide the initial conceptualization of software
development agility. Using the nominal group technique (Van de Ven and Delbecq 1974), the participants created a list of measures of software
development agility. As a result, we obtained 24 initial measures for software team response extensiveness and software team response
efficiency, respectively.

The initial measurement items were refined through a sorting procedure and two pilot tests of the survey instrument. We followed the sorting
procedure used by Moore and Benbasat (1991) to qualitatively assess the construct validity of measurement items. Each measurement item
was placed into an appropriate category by four judges who were doctoral candidates with extensive IS project experience. The item placement
hit ratio was 91 percent, which was calculated by dividing the number of items correctly placed by the total number of items. Several items
were dropped because they were too ambiguous or unclear.

The items were further refined by two pilot tests of the survey instrument. The first pilot test was conducted through one-hour interviews with
another four IS managers and three IS doctoral students affiliated with the university. The participants evaluated the importance and relevance
of each measurement item of software development agility. The items that had higher mean scores in both importance and relevance were
retained. As a result, we retained six items for response extensiveness and another six items for response efficiency. The second pilot test
involved another 15 IS managers. The participants validated a prototype of our on-line survey questionnaire in terms of readability, format,
and wording. Based on the feedback, the format of the questionnaire was improved and the wordings of the measurement items were fine-tuned.
There was no overlapping of study participants across the different sessions in Phase 1 and none of them participated in the main field survey
in Phase 2.

In Phase 2, we used a Web-based online instrument to collect quantitative survey data from project managers of software development projects.
A PMI-ISSIG-sponsored e-mail letter with a hyperlink to our online survey was sent to the target group. The participants were entered into
a drawing to receive 10 awards of a PMI-ISSIG official shirt and 40 awards of a $25 gift certificate. A reminder was sent 2 weeks after the
initial PMI-ISSIG-sponsored e-mail was sent out, followed by a second email reminder 2 weeks later.

After the data was obtained, we validated convergent validity, discriminant validity, and reliability of the measures in Phase 3, using different
approaches for reflective measures and formative measures, following the guidelines recommended by Petter et al. (2007). Appendix C shows
the details of measurement validation. In addition, we assessed nonresponse bias and common method variance to ensure that the PLS results
were not biased.

In Phase 4, we used partial least square (PLS) to test the research model. PLS is more appropriate than LISREL for exploratory research (Chin
1998; Petter et al. 2007). Response extensiveness and response efficiency are formative latent variables. Furthermore, as these two constructs
are newly proposed in this research, the hypotheses are exploratory in nature. After testing the proposed research model, we also tested a
modified PLS model where overall software development performance is modeled as a second-order construct that combines on-time
completion, on-budget completion, and software functionality.

In Phase 5, we conducted post hoc case studies on 10 software development projects selected from the survey sample in order to provide
complementary, additional, richer insights and findings on the complex relationships between software development agility, autonomy, diver-

108 MIS Quarterly Vol. 34 No. 1/March 2010

Lee & Xia/Software Development Agility

Table A1. Multiphase, Multimethod, Research Process

Phase Research Process and Results

Phase 1
Preliminary

field studies for
problem formulation,

construct
identification, and

measurement
development

• Preliminary field interviews
– 90 minute semi-structured interviews with 36 IS managers and executives
– The interviewees were affiliated with a research center at a large U.S. public university and

represented a variety of industries including manufacturing, financial services, healthcare,
consulting service, restaurant, insurance, agriculture, transportation, package delivery service,
and medical equipment

– The interviewees had over 10 years of IS work experience on average
– Constructs were identified and defined; research questions were formulated

• Focus group session
– A one-hour brainstorming session with 45 IS managers
– The participants were part-time MBA students at a large U.S. public university
– The participants had minimum 3 years of work experience
– Using the nominal group technique (Van de Ven and Delbecq 1974), participants created a list

of measures of software development agility and ranked them
– 24 initial items for response extensiveness and response efficiency were generated

• A sorting procedure
– The procedure used by Moore and Benbasat (1991) was conducted
– Four judges were doctoral candidates in information systems with an average 8 years of prior

work experience
– A placement hit ratio of 91%

• Pilot tests of the survey instrument
– The first pilot test involved four IS managers and three doctoral students and evaluated

importance and relevance of measures
– The second pilot test involved 15 IS managers and validated the on-line survey questionnaire
– All participants had at least 4 years of work experience in the IS field
– Six items for response extensiveness and response efficiency were retained
– The on-line survey questionnaire was finalized

Phase 2
Survey data

collection

• An online survey was administered
– Target respondents were 1,740 PMI-ISSIG members
– 505 valid responses with an effective response ratio of 29%

Phase 3
Measurement

validation

• Different methods were used for validating reflective vs. formative measures
• Validation of convergent/discriminant validity and reliability
• Assessment of nonresponse bias and common method variance

Phase 4
Hypotheses testing

• PLS was used to analyze the final sample of 399 projects
• Estimation of structural path coefficients and R2

• Additional data analysis was conducted
• A model with a second order construct for software development performance

Phase 5
Post hoc

case studies
for rich, additional

insights

• Field interviews with 17 project managers and team members from 10 cases
• 90 minute semi-structured interviews
• Interview results were compared within and across cases
• Validation of and plausible explanations for the PLS results
• Rich, additional insights and findings
• Identification of other important factors for further research

sity, and performance. We conducted 17 semi-structured interviews for 10 cases with project managers and team members (see Table 4 for
details). All interviews were one-on-one meetings and were about 90 minutes long. The questions asked during the interview included

• How does the software team determine the importance/priority of changes? How does the software team decide on how a particular
change request should be handled?

• How would you describe the relationship and tension between response extensiveness and response efficiency? How does the
software team strike a balance between them?

MIS Quarterly Vol. 34 No. 1/March 2010 109

Lee & Xia/Software Development Agility

• How did various agile development practices affect software development agility?
• How would you describe the tension between (1) needs for meeting time, cost, and scope, and (2) needs for implementing user

requirement changes? How does the software team go about managing this tension?
• How does team autonomy and diversity affect software development agility?
• What are the other organizational/technological factors that affect software development agility?

Each interview was recorded and transcribed for analysis. We identified important comments from each interview and compared them within
and across cases. We found that comments from multiple interviewees within cases were largely consistent. However, when there were notable
differences, we asked the interviewees to clarify and resolve the differences. We obtained key insights through several iterations of comparing
and contrasting interview comments.

Appendix B

Measurement Scales and Items

Software team response extensiveness (formative) (1 = 0%; 2 = 20%, 3 = 40%, 4 = 60%, 5 = 80%, 6 = 100%)
To what extent did the software team actually incorporate requirement changes in each of the following categories? (For example, if the project
actually incorporated four out of ten different changes in a specific category, your answer would be 40 %.)
1. System scope (EXT1)
2. System input data (EXT2)
3. System output data (EXT3)
4. Business rules/processes (EXT4)
5. Data structure (EXT5)
6. User interface (EXT6)

Software team response efficiency1 (formative) (1 = very little; 7 = very much)
How much additional effort was required by the software team to incorporate the following changes? (Effort includes time, cost, personnel,
and resources.)
1. System scope (EFF1)
2. System input data (EFF2)
2. System output data (EFF3)
4. Business rules/processes (EFF4)
5. Data structure (EFF5)
6. User interface (EFF6)

Software team autonomy (reflective) (1 = strongly disagree; 7 = strongly agree)
1. The project team was allowed to freely choose tools and technologies (AUTO1)
2. The project team had control over what they were supposed to accomplish (AUTO2)
3. The project team was granted autonomy on how to handle user requirement changes (AUTO3)
4. The project team was free to assign personnel to the project (AUTO4)

Software team diversity (reflective) (1 = strongly disagree; 7 = strongly agree)
1. The members of the project team were from different areas of expertise (DIV1)
2. The members of the project team had skills that complemented each other (DIV2)
3. The members of the project team had a variety of different experiences (DIV3)
4. The members of the project team varied in functional backgrounds (DIV4)

Software functionality (reflective) (1 = strongly disagree; 7 = strongly agree)
1. The software delivered by the project achieved its functional goals (FUNC1)
2. The software delivered by the project met end-user requirements (FUNC2)
3. The capabilities of the software fit end-user needs (FUNC3)
4. The software met technical requirements (FUNC4)

110 MIS Quarterly Vol. 34 No. 1/March 2010

Lee & Xia/Software Development Agility

On-time completion (OnTime) (reflective)
1. Objective measure: project start date: (mm/dd/yyyy), planned completion date: (mm/dd/yyyy), actual completion date (mm/dd/yyyy)
2. Perception-based measure2 (1 = strongly disagree; 7 = strongly agree)

The project was completed late according to the original schedule

On-budget completion (OnBudget) (reflective)
1. Objective measure: planned project cost: (in dollar), actual project cost: (in dollar)
2. Perception-based measure2 (1 = strongly disagree; 7 = strongly agree)

The project was completed over budget according to the original budget

Notes: 1. These scale items were reversed for data analysis. With the reversed scales, higher scores indicated higher response efficiency.
2. These items were reversed for data analysis. With the reversed scales, higher scores indicated higher project performance.

Appendix C

Measurement Validation

The reliability indexes of latent constructs with reflective indicators were evaluated by composite reliability. Composite reliability of 0.70 or
higher is considered acceptable (Werts et al. 1974). For adequate convergent and discriminant validity, the square root of the average variance
extracted (AVE) should be at least 0.707 and exceed the correlations between the focal construct and other constructs (Gefen et al. 2000).
Furthermore, standardized item loadings should be greater than 0.70 and items should load more highly on their intended construct than on
other constructs (Gefen et al. 2000).

The measurement validation results for the reflective constructs are shown in Tables C1 and C2. The results suggest that composite reliability
indexes for the three perceptually measured reflective constructs (team autonomy, team diversity, and software functionality) are much higher
than 0.70. The square root of the variance extracted (AVE) for all constructs is higher than 0.707, all standardized item loadings except for
AUTO4 are greater than 0.70, and all items load more highly on their intended construct than on other constructs. Since on-time completion
and on-budget completion were each measured by a single item derived from objective performance data, their AVE is 1.0 and their reliability
cannot be calculated. Although the factor loading of AUTO4 to autonomy is slightly lower (0.690) than the criterion of .70, this item loads
much more highly on autonomy than on other constructs. Moreover, the composite reliability of the latent construct team autonomy decreases
if AUTO4 is removed. Therefore, it deems reasonable to retain AUTO4 for data analysis.

Table C1. Reliability and Convergent and Discriminant Validity for Reflective Constructs

Latent
Construct

Composite
Reliability Autonomy Diversity Functionality On Time On Budget

Autonomy 0.839 0.753

Diversity 0.883 0.003 0.809

Functionality 0.966 0.037 0.197 0.937

On Time n/a 0.269 0.074 0.044 1.000

On Budget n/a 0.310 0.022 0.029 0.633 1.000

Notes: Composite reliability (ρc) = (Σ λi)
2 / [(Σ λi)

2 + Σ var(εi)], where λi is the component loading to an indicator and var (εi) = 1 - λi
2; diagonal

elements in bold case are the square root of average variance extracted (AVE) by latent constructs from their indicators; off-diagonal elements
are correlations among latent constructs.

MIS Quarterly Vol. 34 No. 1/March 2010 111

Lee & Xia/Software Development Agility

Table C2. PLS Component-Based Analysis: Cross-Loadings for Reflective Constructs

Scale Items Autonomy Diversity Functionality On Time On Budget

AUTO1 0.728 -0.054 -0.033 0.161 0.204

AUTO2 0.793 0.040 0.084 0.304 0.289

AUTO3 0.802 0.005 0.052 0.192 0.271

AUTO4 0.690 0.028 0.005 0.144 0.167

DIV1 -0.083 0.758 0.037 0.017 -0.009

DIV2 0.117 0.743 0.297 0.188 0.084

DIV3 -0.005 0.864 0.177 0.059 0.006

DIV4 0.007 0.882 0.158 0.007 0.006

FUNC1 0.037 0.168 0.945 0.053 0.024

FUNC2 0.040 0.190 0.956 0.061 0.032

FUNC3 0.054 0.195 0.943 0.024 0.019

FUNC4 0.007 0.201 0.925 0.030 0.032

On Time 0.267 0.078 0.045 1.000 0.633

On Budget 0.310 0.024 0.028 0.633 1.000

Notes: To calculate cross-loadings, a factor score for each construct was calculated based on the weighted sum, provided by PLS results. Factor
scores were correlated with individual items to calculate cross loadings. Boldface numbers are loadings (correlations) of indicators to their own
construct.

We followed the guidelines proposed by Petter et al. (2007) to validate the measurement of software team response extensiveness and software
team response efficiency. We used a modified MTMM (multitrait–multimethod matrix) analysis proposed by Loch et al. (2003) for validating
convergent and discriminant validity. We created a weighted score for each construct using the formative weights provided by PLS results.
We then created a correlation matrix consisting of the indicators and formative latent constructs. If the majority of inter-item correlations and
item-to-construct correlations for a given latent construct are significant, the measures achieve convergent validity. If the items tend to correlate
more with one another within the same construct than with items of other constructs, the measures achieve discriminant validity. The presence
of violation, however, does not necessarily suggest that the formative construct does not have construct validity, because formative indicators
do not necessarily have high correlations among them (Petter et al. 2007). If there are violations in the modified MTMM matrix, efforts should
be made to understand why these violations occurred. The results shown in Table C3 suggest that all inter-item correlations and item-to-
construct correlations for the measures used to assess response extensiveness and response efficiency are significant. They also suggest that
all items correlate with one another within the same construct much higher than with items of the other construct, with no exception. Therefore,
we concluded that the two formative constructs, response extensiveness and response efficiency, exhibited adequate convergent and
discriminant validity.

Assessing reliability is more difficult with formative measures than with reflective measures and it is not always possible to accomplish it
(Diamantopoulos and Winklhofer 2001; Petter et al. 2007). In a sense, very high reliability can be undesirable for formative constructs because
excessive multicollinearity among formative indicators can destabilize the model (Petter et al. 2007). To ensure that multicollinearity is not
a significant issue, we assessed the VIF (variance inflator factor) statistic. If the VIF statistic is greater than 3.3, the conflicting item should
be removed as long as the overall content validity of the construct measures is not compromised (Diamantopoulos and Siguaw, 2006). The
VIF estimates for the measures of response extensiveness and response efficiency are shown in Table C4. The results suggest that all indicators
except for EXT3 have VIF statistics lower than 3.3. The VIF statistic for EXT3 (software team response extensiveness to output data change)
is slightly higher (3.83) than the criterion. However, removing this indicator appears to compromise the content validity because its counterpart
item EXT2 (software team response extensiveness to input data change) and EFF3 (software team response efficiency to output data change)
are integral parts of the data analysis. Thus, removing EXT3 would result in unbalanced content coverage for the response extensiveness and
response efficiency constructs. The threshold value for VIF (3.3) in this research is much more conservative compared to traditional criteria
such as 5 or 10. Based on the above considerations, we retained the item EXT3 for data analysis.

112 MIS Quarterly Vol. 34 No. 1/March 2010

Lee & Xia/Software Development Agility

Table C3. Inter-Item and Item-to-Construct Correlation Matrix for Formative Indicators

EXT1 EXT2 EXT3 EXT4 EXT5 EXT6 EXT EFF1 EFF2 EFF3 EFF4 EFF5 EFF6 EFF

EXT1 1.000

EXT2 0.624 1.000

EXT3 0.656 0.786 1.000

EXT4 0.660 0.696 0.747 1.000

EXT5 0.592 0.660 0.632 0.661 1.000

EXT6 0.612 0.617 0.669 0.619 0.580 1.000

EXT 0.896 0.779 0.839 0.905 0.762 0.710 1.000

EFF1 -0.362 -0.254 -0.271 -0.309 -0.268 -0.239 -0.365 1.000

EFF2 -0.254 -0.317 -0.270 -0.322 -0.282 -0.196 -0.325 0.517 1.000

EFF3 -0.278 -0.309 -0.347 -0.370 -0.278 -0.245 -0.366 0.535 0.681 1.000

EFF4 -0.294 -0.300 -0.307 -0.396 -0.298 -0.212 -0.380 0.536 0.585 0.625 1.000

EFF5 -0.248 -0.246 -0.227 -0.275 -0.375 -0.205 -0.306 0.513 0.564 0.519 0.528 1.000

EFF6 -0.275 -0.256 -0.272 -0.232 -0.212 -0.314 -0.289 0.451 0.437 0.539 0.432 0.479 1.000

EFF -0.391 -0.334 -0.351 -0.403 -0.339 -0.294 -0.438 0.900 0.670 0.745 0.807 0.665 0.642 1.000

Note: All correlations are significant at the 0.01 level.

Table C4. VIF Statistics for Formative Indicators

Construct Indicator Ri
2 VIF

Software Team
Responsive

Extensiveness

EXT1 0.543 2.19

EXT2 0.676 3.09

EXT3 0.723 3.61

EXT4 0.651 2.87

EXT5 0.542 2.18

EXT6 0.527 2.11

Software Team
Responsive

Extensiveness

EFF1 0.415 1.71

EFF2 0.548 2.21

EFF3 0.591 2.44

EFF4 0.492 1.97

EFF5 0.441 1.79

EFF6 0.361 1.56

Note: The VIF statistic for a formative indicator Xi is calculated by the following
formula: VIF (Xi) = 1 / (1 – Ri

2), where Ri
2 is the coefficient of determination of

the regression equation Xi = α1X1 + α2X2 + α3 X3+...+ αkXk + e.

Appendix D

Test of a Second-Order PLS Model

In this second-order model, the software project performance construct is modeled as a second-order latent variable consisting of three first-
order latent variables (on-time completion, on-budget completion, software functionality). Due to the lack of PLS capability to directly test
second-order models, we separately tested the first-order constructs and then used the computed first-order factor scores as manifest indicators

MIS Quarterly Vol. 34 No. 1/March 2010 113

Lee & Xia/Software Development Agility

of the second-order construct (Yi and Davis 2003). Since on-time completion and on-budget completion are modeled as single-indicators, only
software functionality needs to be tested separately to obtain its factor score.

As shown in Figure D1, both team response extensiveness (.234, p < .01) and team response efficiency (.472, p < .01) have a significant positive
effect on the second-order software project success construct. Team response extensiveness and team response efficiency collectively explain
17.6 percent of the variance in software project performance. Team autonomy and team diversity collectively explain 14.3 percent of the
variance in response extensiveness, whereas team autonomy, team diversity, and response extensiveness collectively explain 27.2 percent of
the variance in response efficiency. The coefficients for other paths remain stable between the second-order and the first-order models,
suggesting the robustness of the research model.

Note: *p < .05; **p < .01

Figure D1. Results of the Second-Order PLS Model

Software Team
Response

Extensiveness

Software Team
Response
Efficiency

Software
Team

Autonomy

Software
Team

Diversity
Functionality

On-Budget

On-Time

R2 = 0.272

R2 = 0.143

-0.270**

0.253**

0.264**

0.009

-0.395**

0.234**

0.472**

Software
Project

Performance

R2 = 0.176

0.509*

0.427*

0.619**

114 MIS Quarterly Vol. 34 No. 1/March 2010

Copyright of MIS Quarterly is the property of MIS Quarterly & The Society for Information Management and

its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

