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Abstract
This paper investigates the reliability of detecting a learner’s affective states in an attempt to augment an Intelligent 
Tutoring System (AutoTutor) with the ability to incorporate such states into its pedagogical strategies to improve 
learning. We describe two studies that used observational and emote-aloud protocols in order to identify the affective 
states that learners experience while interacting with AutoTutor.  In a third study, training and validation data were 
collected from three sensors in a learning session with AutoTutor, after which the affective states of the learner 
were identified by the learner, a peer, and two trained judges. The third study assessed the reliability of automatic 
detection of boredom, confusion, delight, flow, and frustration (versus the neutral baseline) from sensors that 
monitored the manner in which learners communicate affect through conversational cues, gross body language, and 
facial expressions. Although the primary focus of this article is on the classification of learner affect, we also explore 
how an affect-sensitive AutoTutor can adapt its instructional strategies to promote learning.

1. Introduction
Emotions (affective states) are inextricably bound to the learning process in addition to the well-documented impact 
of cognition, motivation, discourse, action, and the environment.  Attempts to master difficult technical material, 
such as conceptual physics or mathematics, inevitably require learners to confront contradictions, anomalous events, 
obstacles to goals, salient contrasts, and other stimuli or experiences that fail to match expectations. In response to 
these discrepant events, the autonomic nervous system increases its arousal and the learner experiences emotions 
such as confusion, frustration, irritation, anger, rage, or even despair. Cognitive equilibrium is subsequently restored 
when discrepancies are resolved, misconceptions are discarded, and confusion is alleviated.  At that point the learner 
resumes with hope, determination, renewed curiosity, and maybe even enthusiasm. Given this link between affect 
and cognition, an agile learning environment that is sensitive to a learner’s affective states will presumably enrich 
learning, particularly when deep learning is accompanied by confusion, frustration, boredom, interest, excitement, 
and insight. 

In this article we consider the possibility of endowing an existing Intelligent Tutoring System (ITS), AutoTutor, 
with the ability to process the learners’ affective states in addition to their cognitive states. AutoTutor would ideally 
identify the learners’ emotions and adjust its pedagogical strategies during the learning of complex material. 
AutoTutor is a fully automated computer tutor that simulates human tutors and holds conversations with students 
in natural language1. AutoTutor helps students learn Newtonian physics and computer literacy by presenting 
challenging problems (or questions) from a curriculum script and engaging in a mixed-initiative dialog while the 
learner and AutoTutor collaboratively construct an answer. AutoTutor provides feedback to the student on what 
the student types in (positive, neutral, negative feedback), pumps the student for more information (“What else?”), 
prompts the student to fill in missing words, gives hints, fills in missing information with assertions, identifies and 
corrects erroneous ideas, answers the student’s questions, and summarizes topics.  A full answer to a question is 
eventually constructed during this dialog, which normally takes between 30 and 100 student and tutor turns. 

The underlying assumption behind the endeavor to develop the affect-sensitive AutoTutor is that affect is 
inextricably bound to learning.  We are not alone in this view. Over the last few years there have been sustained 
efforts to incorporate assessments of the learner’s affect into the pedagogical strategies of ITSs. Kort, Reilly, and 
Picard2 proposed a comprehensive four-quadrant model that explicitly links learning and affective states.  This model 
was used in the MIT group’s work on their affective learning companion, a fully automated computer program 
that recognizes a learner’s affect by monitoring facial features, posture patterns, and onscreen keyboard/mouse 
behaviors.  Conati3 has developed a probabilistic system that can reliably track multiple emotions of the learner 
during interactions with an educational game. Her system relies on dynamic decision networks to assess the affective 
states of joy, distress, admiration, and reproach. Litman and Silliman’s  work with their ITSPOKE4 conceptual 
physics ITS has used a combination of discourse markers and acoustic-prosodic cues to detect and respond to a 
learner’s affective states.



The achievement of an affect-sensitive tutorial interaction engages the tutor and learner in an affective loop. 
This loop includes the identification of the affective states relevant to learning, real-time detection of those states, 
the selection of appropriate tutor actions that maximize learning while influencing the learner’s affect, and the 
synthesis of emotional expressions by the tutor as it attempts to engage the learner in a more human-like, naturalistic 
manner.  The achievement of an affective loop in an integrated system can be viewed from the perspective of 
either the learner or the tutor.  The learner-centric view consists of analyzing the prominent affective states in the 
learner, assessing their potential impact on learning, identifying how these states are manifested in the learner, 
and developing an automatic affect detection system. The tutor-centric view explores how good human tutors 
or theoretical ideal tutors adapt their instructional agenda to encompass the emotions of the learner. This expert 
knowledge is then transferred to computer tutors such as AutoTutor. Embodied conversational agents that simulate 
human tutors are programmed to synthesize affective elements through the generation of facial expressions, the 
inflection of speech, and the modulation of posture.

The development of the affect-sensitive AutoTutor has been guided by research in a number of fronts that span 
computer science, artificial intelligence, psychology, and the learning sciences.  There are a number of differences 
between our approach and previous work. First, we consider a larger set of affective states (N = 7) than some of 
the earlier systems which have concentrated on intensity, valence, or small subsets of the affective states. This is 
important because a larger set of affective states is required to encompass the gamut of learning.  A person’s reaction 
to the presented material can change depending on their goals, preferences, expectations and knowledge state3. 
The second major difference involves our use of multiple human judges to measure affect. This is a significant 
step because previous empirical research has documented that humans are not particularly good at judging affect.  
This is potentially problematic when accurate models of ground truth are needed for supervised machine learning 
algorithms to classify affect. Our research involves the learner, a peer, and 2 trained judges in identifying the 
affective states of a learner in order to obtain a reasonable degree of convergent validity. The third major difference 
that distinguishes our approach from earlier research involves the use of relatively unique sensors for detecting 
affect. Over the last decade, researchers have achieved significant contributions towards the development of 
automated affect sensing systems (see Pantic, 20035). These include systems that detect affect from bodily measures 
such as physiological signals (e.g., electromyography, heart rate monitors, skin conductance), facial features, and 
acoustic-prosodic features. We similarly track facial features but we also explore  two relatively unexplored channels 
for affect detection. These include dialogue features extracted from the tutorial session and body posture.

The next section presents results from two studies that attempted to identify the affective states that learners 
typically experience while interacting with AutoTutor. We subsequently describe a study in which diagnostic data 
were collected with three sensors during a typical tutorial session. This study also investigated the reliability in 
which human judges recognized learners’ affect states. Classification experiments were conducted that assess the 
reliability by which the affective states of a learner can be automatically recognized by a computer. We conclude by 
discussing the prospects of incorporating the learner’s affect into AutoTutor’s pedagogical strategies.

2. The Relationship between Affect and Learning
Learning inevitably involves failure and a host of associated affective responses. The vast majority of work in 
affective computing has focused on the 6 basic emotions that are ubiquitous in everyday experience. These include 
fear, anger, happiness, sadness, disgust, and surprise6.  However, many have called into question the adequacy of 
basing an entire theory of emotions on these basic emotions2. Learners rarely experience sadness, fear, or disgust, 
for example. Therefore, the studies described below attempted to identify the affective states that learners typically 
experience while interacting with AutoTutor, with the expectation that these findings will generalize to other 
learning environments.

2.1. Observing Learner Emotions during Interactions with AutoTutor
Five trained judges observed different affect states (boredom, confusion, frustration, eureka, flow/engagement, 
versus neutral) that potentially occur during the process of learning introductory computer literacy with AutoTutor7. 
The participants were 34 college students. Trained judges recorded emotions that learners were apparently 
experiencing every 5 minutes during the 30-45 minute interaction with AutoTutor.  

Figure 1a shows descriptive statistics on the proportions of the emotions observed in the tutoring sessions. The 
results revealed that experiences of eureka were much too rare in the experiment; there was only one recorded 
eureka experience in 17 total hours of tutoring among the 34 students.  Frustration was also rarely experienced (only 
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B. EMOTE-ALOUD STUDY

3% of the recorded emotions).  One explanation of the rare occurrence of frustration is that there were no practical 
consequences of poor performance in these experiments.  We would expect frustration to be more prevalent when 
the learning experience is linked to student interest, to tasks the learner is vested in, or to high stakes testing.  The 
percentage scores were higher for the affect states of confusion (7%), boredom (18%), and flow (45%).  

2.2. Emote-Aloud while Students Interact with AutoTutor
In an emote-aloud procedure, college students  (N = 7) verbalized their affective states while interacting with 
AutoTutor8. The affect states investigated were anger, boredom, confusion, contempt, curiosity, disgust, eureka, flow, 
and frustration. These affective states were defined for the learners before the experiment started. 

We found that boredom, confusion, and frustration were reported at higher rates than were anger, contempt, and 
disgust, F(7, 42) = 7.89 (p < .05 in this all subsequent tests).  This result confirms the hypothesis that Ekman’s basic 
emotions play nonsignificant roles in learning, Although eureka was relatively well reported, we concluded that this 
response functionally signified delight from giving a correct answer rather than a deep eureka experience. It also 
appears that frustration was reported at a higher rate when participants verbalized their own emotions, as opposed 
to trained judges determining the emotions of the learner (Figure 1a).  One explanation of this result may lie in the 
social display rules that people adhere to in expressive affect. Social pressures typically result in people disguising 
negative emotions, such as frustration, thus making it difficult for judges to detect this emotion.  In contrast, when 
encouraged to freely reflect and report on their affect, as in the emote-aloud study, such barriers drop and frustration 
is freely expressed. 

Figure 1:  Proportions of affective states observed across 3 studies.

2.3. Measurement of Emotions by Multiple Judges
The training and testing of an emotion classifier needs a gold standard for comparison, i.e., some measure of 
ground truth of the affect of a learner. One approach to establishing a gold standard is to examine the reliability of 
humans in classifying emotions. We investigated three potential human-based measures of ground truth for emotion 
detection: the participants, novice judges, and trained judges9.

We conducted a study in which college students (N = 28) interacted with AutoTutor for 32 minutes on topics 
in computer literacy (e.g., hardware, internet, or operating systems). Three streams of information were recorded 
during the participant’s interaction with AutoTutor. A video of the participant’s face was captured using the IBM  



blue-eyes camera. Posture patterns were captured by the Tekscan Body Pressure Measurement System. A screen-
capturing software program called Camtasia Studio was used to capture the audio and video of the participant’s 
entire tutoring session. Figure 2 illustrates the various sensors utilized in the study.

The judging process was initiated by synchronizing the video streams from the screen and the face and 
displaying this to the judge.  Judges were instructed to make judgments on what affective states were present at 20-
second intervals; at each of these points, the video automatically paused (freeze-framed). Judges were also instructed 
to indicate any affective states that were present in between the 20-second stops.

Four sets of emotion judgments were made for the observed affective states of each participant’s session with 
AutoTutor. For the self judgments, the participants watched their own session with AutoTutor immediately after 
completing the interaction. For the peer judgments, participants returned approximately a week later to watch and 
judge another participant’s session on the same topic in computer literacy. Finally, two trained judges judged all of 
the sessions independently.  These judges had been trained on AutoTutor’s dialogue characteristics and also in the 
detection of facial actions according to Ekman’s Facial Action Coding System (FACS6). 

Figure 1c, (lower left) presents the proportion of judgments that were made for each of the affect categories, 
averaging over the 4 judges.  The most common affective state was neutral (.32), followed by confusion (.24), flow 
(.17), and boredom (.16). The frequency of occurrence of the remaining states of delight, frustration and surprise 
were significantly lower, comprising .06, .04, and .02 of the observations respectively.  This distribution of affective 
states implies that most of the time learners are either in a neutral state or in a subtle affective state (boredom or 
flow). There is also a reasonable amount of confusion. The incidence of confusion can be explained by the fact that  
the participants were typically low domain knowledge students, as indicated by their low pretest scores.

The design of this study allowed us to inspect and compare emotion judgments of the self, peer, and the 2 
trained judges. Cohen’s kappa scores, an index of interjudge reliability, were computed separately for each of the 
28 learners; mean scores are presented in Figure 1c (lower right).  Statistical analyses on the kappa scores revealed 
that there were significant differences among the six pairs, F(5, 135) = 33.34. The self-peer pair had the lowest inter-
judge reliability scores when compared to the other five pairs. The two trained judges had significantly higher kappa 
scores than the other five pairs. These results support the conclusion that training on Ekman’s Facial Action Coding 
System and tutorial dialogue can enhance the reliability and accuracy of judgments of affective states.   

Figure 2: Sensors used in the multiple judge study.



3. Affect Detection from Conversational Cues
One of the advantages of affect detection in integrated learning environments is that a tutoring session supplies 
a rich trace of the interaction history. Several conversational features and discourse markers (collectively called 
dialogue features) can then be extracted and used to infer the learner’s affect. The use of dialogue to detect affect in 
learning environments is a reasonable information source to explore because dialogue information is abundant in 
virtually all conversations and is inexpensive to collect.

3.1. AutoTutor Dialogue Features
A session with AutoTutor consists of a set of subtopics (main questions, e.g. How is the operating system loaded 
onto RAM?) that cover specific areas of the main topics (hardware, internet, and operating systems). Each subtopic 
has an associated set of expectations, potential dialogue moves to elicit expectations, corrections of misconceptions, 
and other slots in a curriculum script that need not be addressed here. The expectations are ideally covered over a 
series of turns in AutoTutor’s conversation as the student attempts to construct an answer to the subtopic question. 
When an acceptable answer, with the appropriate details, is gleaned from the student’s responses, AutoTutor moves 
on to the next subtopic. At the end of each student turn, AutoTutor maintains a log file that captures the student’s 
response, assessments of the conceptual quality of the response, the feedback provided, and the tutor’s next move. 

We mined several features from AutoTutor’s log files in order to explore the links between the dialogue features 
and the affective states of the learners. These features included temporal assessments for each student-tutor turn, 
such as the subtopic number, the turn number within a subtopic, and the student’s reaction time (interval between 
presentation of the question and the submission of the student’s answer). Assessments of response verbosity 
included the number of characters (letters, numbers) and speech act (that is, whether the student’s speech act was 
a contribution towards an answer (coded as a 1) versus a frozen expression, e.g., “I don’t know”,  “Uh huh” (coded 
as -1). The conceptual quality of the student’s response was evaluated by Latent Semantic Analysis (LSA, http://lsa.
colorado.edu/).  LSA is a statistical technique that measures the conceptual similarity of two texts. LSA-based 
measures included a local good score (the conceptual similarity between the student’s current response and the 
set of expectations being covered) and a global good score (the similarity of a set of student responses to a set of 
expectations in a good answer).  Changes in these measures when compared to the previous turn were also included 
as the delta local good score and the delta global good score. AutoTutor’s major dialogue moves were ordered onto 
a scale of conversational directness, ranging from -1 to 1, in terms of the amount of information the tutor explicitly 
provides the student: summary > assertion > prompt > hint > pump. AutoTutor’s short feedback (negative, neutral 
negative, neutral, neutral positive, positive) is manifested in its verbal content, intonation, and a host of other non-
verbal cues. The feedback was aligned on a scale ranging from -1 (negative feedback) to 1 (positive feedback). 

Dialogue features were extracted for each turn and compared to the emotion judgments of the 4 judges. More 
specifically, the emotion judgment that immediately followed a dialogue move (within a 15 second interval) was 
bound to that dialogue move. This allowed us to obtain four sets of labeled dialogue data aggregated across the 28 
participants. The sizes of these data sets were 1024, 1040, 1115, and 1119 for affect labels provided by the self, the 
peer, trained judge 1, and trained judge 2, respectively.

3.2. Relationship between Dialogue and Affect
We investigated the potential of dialogue features to discriminate particular emotions from the baseline of neural. 
Figure 3a shows descriptive statistics for dialogue features associated with an emotion versus neutral state.  One-
way ANOVAs were conducted on each of the dialogue features in order to explore significant relationships among 
the affect states. The results indicate that students experience more emotional episodes later in the session, as 
indicated by higher subtopic numbers, and also when they take longer to respond to questions posed by the tutor 
(higher response time). Emotional episodes occur with negatively coded speech acts, i.e. when students provide 
frozen expressions such as “I don’t know” or “What?”, as opposed to substantive answers to the tutor’s queries. Our 
results also indicate that students experienced more emotions when they received negative feedback.  

3.3. Automatic Detection of Affect from Dialogue
The Waikato Environment for Knowledge Analysis (WEKA) was used to evaluate the performance of various 
standard classification techniques in an attempt to detect affect from dialogue. The classifiers were selected to span 
a broad range of schemes such as Bayesian classification (Naïve Bayes classifier), neural networks (multilayer 
perceptron), functions (simple logistic regression), lazy classifiers (nearest neighbor), decision tree classifiers (C4.5 
decision tress), and meta classification schemes (additive logistic regression).  The classification algorithms were 
compared in their ability to detect boredom, confusion, delight, flow, and frustration from neutral. Surprise was 
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excluded due to a very low number of observations. To establish a uniform baseline, we randomly sampled an 
equal number of observations from each affective state category. This process was repeated for 10 iterations and all 
reported reliability statistics were averaged across these 10 iterations. Classification reliability was evaluated on the 
6 classification algorithms using k-fold cross-validation (k = 10). 

Figure 3: Descriptive statistics and reliability in affect detection from dialogue. 
For visualization purposes all features in 3a have been normalized to a 0-1 range.

Our results indicated that there were significant differences in classification accuracies among each of the 4 data 
sets, F(3,15) = 120.64. The classifiers trained and tested on datasets where affect judgements were provided by the 
peer and the 2 trained judges were significantly higher than those provided by the self (see top of Figure 3b). There 
were significant differences in classification accuracies among the various emotions, F(4,20) = 42.73. Frustration 
was detected with higher accuracy than boredom, confusion, delight, and flow (see bottom of Figure 3b).

The statistical results described above considered the reliabilities of all 6 classifiers in order to estimate the 
overall trend. However, from an engineering perspective, we are also concerned with the classifiers that yielded the 
best performance. Our results indicate that a simple logistic regression achieved the highest accuracies of 64%, 63%, 
74%, and 70% in detecting boredom, confusion, delight, and flow from neutral. For frustration an optimal accuracy 
of 77% was obtained by C4.5 decision trees. These results support the hypothesis that dialogue features can be a 
reasonable source to measure the affective states that a learner is experiencing.

4. Affect Detection from Posture
The Body Posture Measurement System (BPMS), developed by Tekscan™, was used to monitor the gross body 
language of a student during a session with AutoTutor. The BPMS consists of a thin-film pressure pad (or mat) 
that can be mounted on a variety of surfaces. The pad is paper thin with a rectangular grid of sensing elements that 
provide a pressure reading in mmHg. The setup used in the multiple annotator study involved the use of one sensing 
pad placed on the seat of a Steelcase™ Leap Chair and another placed on the back of the chair.  The output of the 
BPMS system consisted of two 38x41 matrices (for the back and seat) with each cell in the matrix corresponding to 
the amount of pressure exerted on the corresponding element in the sensor grid.
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4.1. Posture Features
Several features were computed by analyzing the pressure maps of the 28 participants recorded in the study. We 
computed 5 pressure-related features and 2 features related to the pressure coverage for both the back and the seat, 
yielding 14 features in all. Each of the features was computed by examining the pressure map during an emotional 
episode (called the current frame). The pressure related features include the net pressure, which measures the 
average pressure exerted. The prior change and post change measure the difference between the net pressure in 
the current frame and the frame three seconds earlier and later respectively. The reference change measures the 
difference between the net pressure in the current frame and the frame for the last known affective rating. Finally, 
the net pressure change measures the mean change in the net pressure across a predefined window, typically 4 
seconds, that spans two seconds before and two seconds after an emotion judgment. The two coverage features 
examined the proportion of non-negative sensing units (net coverage) on each pad along with the mean change of 
this feature across a 4-second window (net coverage change).

We created four data sets that temporally integrated the posture feature vectors with affect ratings provided by 
the four human judges.  The sizes of these data sets were 2642, 2702, 3452, and 3377 for affect labels provided by 
the self, the peer, trained judge 1, and trained judge 2, respectively.

4.2. Relationship between Posture and Affect
Figure 4a shows descriptive statistics for each posture feature, segregated by emotion.   One-way ANOVAs were 
conducted on each of the posture features in order to explore relationships with the emotions. Emotion episodes 
were distinguishable from neutral primarily with respect to a heightened increase in activity, manifested by large 
changes in pressure, on the back and the seat. These results confirm the hypothesis that affective states are typically 
accompanied by a degree of physiological arousal. The arousal is detected by the posture monitoring system. It 
should be noted that boredom is accompanied by the aroused state of fidgeting, not inactivity.  These results also 
replicate the spirit of earlier findings by Mota and Picard at MIT, where they monitored activity related posture 
features and discovered that children fidget when they were bored while performing a learning task on a computer. 

Figure 4: Descriptive statistics and reliability in affect detection from posture.



4.3. Automatic Detection of Affect from Posture
We performed affect classification analyses with posture, just as we previously reported for dialogue features.  
Standard classifiers were trained and tested on 4 data sets. each consisting of the 14 posture features and affect labels 
provided by the self, peer, and 2 trained judges. We found significant differences in classification accuracy across 
the 4 data sets, F(3,15) = 25.30. Classification accuracy for novice judges (self and peer) outperformed the trained 
judges (see left of Figure 4b). The classifiers were more successful in detecting flow (versus neutral) than they were 
for detecting boredom, confusion, and frustration, F(4, 20) = 30.00. Boredom and delight were more readily detected 
than confusion (see right of Figure 4b).

The best classifier for detecting each particular emotion versus neutral was the k-nearest neighbor classifier 
(k=1). This classifier achieved accuracies of 70%, 65%, 74%, and 72% in detecting boredom, confusion, flow, 
and frustration versus the neutral baseline. For delight, a logistic regression classifier had the best accuracy of 
70%. These results confirm that posture can be a viable channel in inferring a learner’s affect. Indeed, the overall 
classification accuracy of emotions based on posture was 70%, the same percentage achieved from dialogue.

5. Affect Detection from Facial Features
Ekman and Friesen5 highlighted the expressive aspects of emotions with their Facial Action Coding System. This 
system specifies how “basic” emotions can be identified on the basis of facial behaviors and the muscles that 
produce them. Each movement in the face is called an action unit (or AU). There are approximately 58 action units 
altogether. These prototypical facial patterns have been used to identify the 6 basic emotions: happiness, sadness, 
surprise, disgust, anger, and fear. The development of a system that automatically detects the action units is quite 
a challenging task, however, because the coding system was originally created for static pictures rather than on 
changing expressions over time. 

We are currently exploring some of the technical challenges associated with the automated detection of facial 
expressions. As an initial step, we have had two trained judges code a sample of the observations of emotions on the 
action units. The sample of coded affective states consisted of voluntary judgments in which both of the 2 trained 
judges agreed on the learner’s emotion. Recall that judges were required to provide affect judgements every 20 
seconds. Voluntary judgements include points in between those 20-second time spans where judges offered emotion 
judgements. The samples were selected to approximate an equal distribution of emotions from the 28 participants. 
The database consisted of 212 samples that included the affective states of  boredom, confusion, delight, frustration, 
and neutral. Flow was excluded because it rarely occurred at the voluntary points. The two trained judges coded 
each of the samples separately and achieved a fair kappa score of .72 in detecting a subset of the action units.

A database of action units associated with emotions was created by considering the AU codings of both judges. 
The 6 standard classifiers were used to detect the affective states of boredom, confusion, delight, and frustration 
from neutral on the basis of the human coded AUs. The classification accuracy for delight was the highest (90%), 
boredom the lowest (60%), whereas confusion (76%) and frustration (74%) were in between. The classifiers were 
more successful in detecting emotions that are manifested with highly animated facial activity, such as delight, than 
emotions that are more subtly expressed (boredom). Additionally, the lower classification accuracies associated with 
frustration might be attributed to participants attempting to disguise negative emotions. Overall, the classification 
accuracy for facial expressions was a bit higher (75%) than those for body posture and dialogue (70% each).  

While the facial features seemed to be good predictors of affect, the classification results should be interpreted 
with caution. This is because human judges annotated the facial action units of the learner, and we would expect 
some reduction in accuracy when the AUs are coded by a computer. However, recent results by el Kaliouby and 
Robinson10  indicate that low reliabilities in the automated measurement of AUs may be compensated by more 
robust emotion classifiers such as Dynamic Bayesian Networks.

6. Discussion
This research was motivated by the belief that ITSs can be more than mere cognitive machines. We believe they 
can be endowed with the ability to recognize, assess, and react to a learner’s affective state. We conducted two 
exploratory studies to explore the links between learning and emotions, links that have not yet been systematically 
tested in the ITS community.  Our results supported the hypothesis that deep learning of conceptual material is 
dominated by boredom, confusion, delight, flow, and frustration rather than Ekman’s basic emotions of anger, fear, 
happiness, sadness, disgust, and surprise.  

The study with multiple judges allowed us to collect diagnostic data from the sensors as well as multiple 
perspectives on the learners’ affective states. The design of our study provided an ecologically valid environment 



to monitor the natural emotions of a learner during a tutorial session with AutoTutor. This is a noticeable departure 
from several earlier studies on emotion that typically recruit actors and that intentionally induce emotions in a 
contrived context.  

Although the problem of automating affect recognition is extremely challenging, on par with automating 
speech recognition, we achieved several milestones that suggest that significant information can be achieved in an 
automated way. In particular, we were able to achieve reasonable classification accuracies in detecting the various 
affective states from neutral.  There were two relatively novel sensors (conversational dialogue and posture) and one 
traditional sensor (facial features). It is also important to note that the sensors used were non-invasive in the sense 
that they provided online measurement with minimal task interference; this is an important requirement for learning 
environments. Our classification results indicate that the posture sensor would be the sensor of choice for affective 
states that do not generate overly expressive facial expressions, such as boredom (70%) and flow (74%).   On the 
other hand, the affective states of confusion (76%) and delight (90%), which are accompanied by significant arousal, 
are best detected by monitoring facial features. The negative affective state of frustration is typically disguised and 
therefore difficult to detect with the bodily measures of face and posture.  Frustration is best detected by examining 
the dialogue features in the tutoring context (77%).  Taken together, detection accuracies are over 77% when 
particular emotions are aligned with the optimal sensor channels.  

Critics may object to our claim that the reported classification results have reasonable accuracy.  However, 
we would argue that an upper bound on automated classification accuracy for affect has yet to be established and 
that there are no theoretical or empirical foundations for expecting it to be extremely high. Human classifications 
may be proposed as the ultimate upper bound on system performance.  If so, available results suggest that human 
classification performance is hardly impressive9 and not necessarily an improvement over machine classification.  
For example, el Kaliouby and Robinson10 reported modest performance when a group of 18 people were asked 
to classify six affective states from a set of test videos.  Humans had 54.5% accuracy scores, whereas a computer 
achieved accuracies of 63.5%. However, the affect judges in that study were largely software developers. Perhaps 
higher classification accuracies could be obtained by humans trained in emotional intelligence, as in the case of 
clinical psychologists or FBI agents.

The next step in our research will be to combine the information from the different sensor channels into one 
emotion classifier that can be used in AutoTutor. We envision two possible methods to achieve this goal. The first 
option would be to acknowledge that each sensor is best at classifying a particular set of emotions. If so, the posture 
sensor would be responsible for detecting boredom and flow, facial feature tracking would be used for confusion 
and delight, and frustration would be classified on the basis of the dialogue features. The problem with this approach 
is that it does not leave any room for improvement because we are committed to the maximum accuracy values 
affiliated with each sensor. 

Perhaps a more attractive alternative would be to combine features from different sensors to determine whether 
sensor fusion results in increased classification accuracy. One initial step at sensor fusion is to develop and test 
four additional classification models: dialogue + posture, dialogue + face, posture + face, and dialogue + posture 
+ face. By repeating the analyses reported earlier, one could determine whether some emotions are best classified 
by considering features of each channel separately or by one of the four composite feature sets.  We are currently 
testing the hypothesis that classification performance from multiple channels will exhibit super-additivity, i.e., 
performance superior to an additive combination of individual channels. An alternative hypothesis is that there will 
be redundancy across the channels, i.e., adding additional channels yields negligible incremental gains. 

Once we have isolated the individual channel or combination of channels that maximizes the discriminability 
of each of the 5 affective states from neutral, we would require a super classifier to integrate the outputs of the 
individual affect-neutral classifiers.  We envision a collection of affect-neutral classifiers that would first determine 
whether the incoming dialogue pattern resonated with any one or more of the emotions (versus a neutral state). If 
there is resonance with only one emotion, then that emotion would be declared as being experienced by the learner.  
If there is resonance with 2 or more emotions, then a conflict resolution module would be launched to decide 
between the alternatives.  Perhaps this would be a second level affect classifier. We have indeed been encouraged by 
our preliminary experiments that calibrate the accuracy of such a multi-layered emotion classifier.

Classification of learner emotions is an essential step in building a tutoring system that is sensitive to the 
learner’s emotions.  The other essential component is to build mechanisms that empower AutoTutor to intelligently 
respond to these emotions, as well as to their states of cognition, motivation, social sensitivity, and so on. In essence, 
how can an affect-sensitive AutoTutor respond to the learner in a fashion that optimizes learning and engagement?  
At this point in the science, it is an open question as to what the optimal pedagogical strategies would be. 



We have explored possible strategies that address the presence of boredom, frustration, flow, and confusion in 
the learner. If the learner is bored, a state that has been negatively correlated with learning7, then AutoTutor should 
engage the learner in an activity that increases interest and cognitive arousal.  These might include a simulation, 
options of choice, a challenge, or a seductive embedded game. According to the results presented in this study, 
frustration could be remedied with dialogue strategies that use more direct feedback, assertions, and corrections 
of misconceptions. According to the intuitions of many of our colleagues, an empathetic tutor would be effective 
in alleviating frustration. An efficient handling of the flow experience may be to lay low and optimally manage 
the flow. In this case, AutoTutor should continue its normal interaction and possibly provide new or more difficult 
content as old content is mastered. Confusion presents a key opportunity for the ITS to encourage learning. Since 
confusion has been positively correlated with learning7, it is not in itself a state to avoid during the learning process. 
It might be best to allow the student to stay in a state of confusion for awhile. However, determining the appropriate 
level of confusion is not a straightforward computation and might ideally be adapted to the personality and amount 
of world knowledge of the learner. For example, academic risk theory contrasts (a) the adventuresome learners who 
want to be challenged with difficult tasks, to take risks of failure, and to manage negative emotions when they occur  
with (b) those learners who take fewer risks, avoid complex tasks, effectively minimizing learning situations in which 
they are likely to fail and experience negative emotions. Some of these variables can be easily measured by domain 
knowledge pretesting, academic record, and personality tests prior to the intervention.

The pedagogical strategies discussed above involve AutoTutor simply reacting to the emotions of the learner. 
However, this approach might not suffice if learners cycle through their emotions in a context-sensitive fashion.  
When learner’s experience negative emotions of boredom and frustration, they are more likely to stay in these 
states rather than transition into the more positive states of flow and delight. In contrast, learners in a state of flow 
tend to remain engaged or alternatively transition into confusion, an affective state that is positively correlated 
with learning. Therefore, in order to optimize learning, AutoTutor may need to steer learners into a virtuous cycle 
of flow and confusion, while simultaneously avoiding the viscous cycle of boredom and frustration. This complex 
mechanism suggests that it may be important to move beyond the simple reactive strategy of detecting and 
responding to negative emotions.  AutoTutor may also need to proactively anticipate and attempt to prevent the onset 
of these negative emotions that are detrimental to learning and engagement.

As we explore the relationship between learning and emotion, we anticipate that we will need to revise, redefine, 
and possibly reconceptualize our theoretical perspective and our learning environments.  We are in the process of 
investigating various theoretical frameworks that relate learning and emotions.  We are currently testing the simple 
framework with five affective experiences (boredom, confusion, delight, flow, and frustration), with an eye for 
testing the complex dynamic model proposed by Kort, Reilly, and Picard2  and the psychological theories that link 
emotion and cognition proposed by Mandler, Stein, Piaget, Vygotsky, and others.  However, the proof of the pudding 
is in the eating, i.e. how well do the theories account for the data collected in the multiple annotator study and its 
recent replication.  Any revised, augmented, or future theories of learning and emotion can be tested by modifying 
AutoTutor with an appropriate set of probabilistic production rules.  These rules systematically generate dialog 
moves that are differentially sensitive to affective states of the learner.  The affect-sensitive AutoTutor provides a 
rigorous foundation for testing alternative scientific theories in addition to discovering which mechanisms end up 
producing the best learning gains and learner satisfaction.  
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