
N95-23682

Toward an Automated Signature Recognition Toolkit for Mission

Operations

T. Cleghorn (NASA/JSC)

P. Laird* (NASA/ARC)

L. Perrine (NASA/JSC)

C. Culbert (NASA/JSC)

M. Macha (NASA/JSC)

R. Saul (NASA/RECOM)

D. Hamment(MITRE)

T. Moebes (SAIC)

R. Shelton t (NASA/JSC)

KEY WORDS AND PHRASES

Event detection, pattern recognition, signature

recognition, telemetry, time series.

SIGNATURE RECOGNITION

Signature recognition is the problem of
identifying an event or events from its time
series. The generic problem has numerous
applications to science and engineering. At
NASA's Johnson Space Center, for example,
mission control personnel, using electronic
displays and strip chart recorders, monitor
telemetry data from three-phase electrical buses
on the Space Shuttle and maintain records of
device activation and disactivation. Since few
electrical devices have sensors to indicate their

actual status, changes of state are inferred from
characteristic current and voltage fluctuations.

Controllers recognize these events both by
examining the waveform signatures and by
listening to audio channels between ground and
crew. Recently the authors have developed a
prototype system that identifies major electrical
events from the telemetry and displays them on a
workstation. Eventually the system will be able
to identify accurately the signatures of over fifty
distinct events in real time, while contending

with noise, intermittent loss of signal,

overlapping events, and other complications.
This system is just one of many possible

signature recognition applications in Mission
Control. While much of the technology

underlying these applications is the same, each
application has unique data characteristics, and

*NASA Ames Research Center, Moffett Field, CA.

94035-1000 (USA). Email:

LA IRD (_)PTOLEM Y. ARC.NASA.GOV

1NASA Johnson Space Flight Center, PT4, 2102 NASA

Road 1, tlouston, TX 77058-3696 (USA). Email:

SHELTON_GOTHAMCITY.JSC.NASA.GOV,

DItAMMFN_MITRE.ORG

every control position has its own interface and

performance requirements. There is a need,
therefore, for CASE tools that can reduce the

time to implement a running signature
recognition application from months to weeks or
days. This paper describes our work to date and
our future plans.

DEVELOPING A SIGNATURE
RECOGNITION APPLICATION

A typical signature-recognition application
monitors a data stream and is activated by an

"event," as defined by the satisfaction of certain
conditions. Data is then taken from the data

stream, filtered and converted, and passed to a

pattern-recognition module. The module decides
to what class the event belongs and adjusts the

controller's display. The event may also be

captured for later offline use.
The following six steps are followed in

designing and implementing a signature
recognition application:

1. Identify the users. At Mission Control the
end users (and the domain experts) are
mission controllers.

2. Acquire the data. Training the system to
identify signatures requires that one collect
a set of correctly labeled signatures. Other
information in the form of rules may also be

required. This data is usually in short
supply, either because some events occur
rarely (e.g., engine failures) or because
accurately labeled events are unavailable in
machine-readable form. Ensuring the

accuracy of the training data is, of course,
critical.

3. Design the pattern-recognition method(s).
Along with classical pattern recognition
(PR) methods, more general techniques like
neural networks, genetic algorithms, and

PRECED',NG ,:: ":: _ ":'._ NOT FILM_J

53

decision trees are effective and easy to
understand. User confidence in the PR

method is very important: for our users to
accept the application, they need (and want)
to understand the PR method conceptually,
and are unwilling to base decisions upon an
inscrutable answer from a "black box."

4. Design the user interface. Ideally the user
interface should be an integral part of the
system design from inception. Since a
certain amount of experimentation is
needed to ascertain the best presentation, a
flexible interface tool for rapid prototyping
is invaluable.

5. Engineer the system architecture. Online
data typically flow from the input line,
through various filters and formatting
routines, onto and off of queues, to pattern
recognizers, screen displays, and archival
storage. Ensuring that the system can keep
pace with this flow is essential.

6. Evaluate the results. One must plan to
monitor the accuracy and performance of
the running system over time, because the
environment is constantly changing and the
signatures with it.

THE SIGNATURE RECOGNITION
TOOLKIT CONCEPT

Our goal is to automate the above steps to the
extent possible, and to place much of the
specification, implementation, and maintenance
tasks into the hands of the end users. Current

application development environments like AVS,
Khoros, Matlab, etc., are useful for prototyping
but do not produce a real-time application.
Naturally, however, we borrow many ideas from
these existing toolkits.

The task of enlisting the users is, of course,
inherently human, so automation begins with the

data acquisition step. At Johnson Space Center's
Mission Control, flexible subsystems are in place
that distribute telemetry data to the applications.
In order to apply pattern recognition to this
stream, we must identify repeatable event
instances in the available data that can then be

subjected to pattern analysis. Data
segmentation---extracting finite events from the
stream---can be very subtle owing to noise and
other unforeseen properties. Alternately, one can
monitor the stream continuously, treating every
data sample as an event; but when the sample
rate is high, performance requirements will
severely restrict the possible analysis.

A "Data Warehouse" (DW) tool that runs offline

can capture signatures in a database, display
them for for domain experts to examine and
label, and later format them as input to training
programs. The same tool can record rule-based
knowledge from the experts and, later in the
process, help with system performance
monitoring (see below).
The third step (designing a PR technique) can be
substantially automated, but will often entail
some assistance from an expert. Any good
toolbox contains multi-purpose neural network,
decision tree, and genetic algorithm software, as
well as more specialized techniques. But there
are so many problem-specific issues---e.g., the
amount and kind of generalization, measures of
accuracy and confidence, tradeoffs between
speed and power, noise compensation, feature
extraction, training time versus recognition time,
and allowance for future growth in training data
and the number of classification labels--that we

believe that the support of a PR engineer will be
required.
Step four is greatly simplified by today's
interface building tools. Connecting the interface
widgets to the data stream is straightforward
except for the task of ensuring that dataflow
bottlenecks do not lose input data. This task may
require the assistance of a software engineer.
The time to accomplish this task can be mitigated
if the toolbox modules are fitted with calling
interfaces so that they can be "plugged into" one
another without total recompilation, much like
the components on an electronic breadboard.
Finally, part of ongoing performance monitoring
includes the task of having the users validate the
labels assigned by the system, and using the
results to check that the accuracy of the system
does not degrade. We find that classifiers often
need to be retrained. The DW tool can archive

the online events with the system-assigned
labels, collect the results of user validation,
calculate and report the accuracy, and
automatically retrain the classifiers on the most
current samples.
In summary, a signature-application toolkit will
contain the following software components
integrated into a uniform environment:

• A mechanism for capturing data and
segmenting signature events.

• A DataWarehouse tool that saves labeled

events for training and testing and formats
them in various ways for output to software
components. Later this same tool supports
the process of monitoring the performance

54

and accuracy of the system over time.

• A library of PR modules that can be trained
to classify events to specified accuracy and
confidence levels.

• An Interface Builder so that end users can

design and maintain their view of the events
as they occur.

, A library of dataflow components equipped
with a flexible module-to-module interface,

so that the system can be assembled simply
by describing the modules and their
connections.

Given this, the users will still need a PR engineer
to define events and evaluate the PR options, and
a software engineer to assemble and debug the

system.

STATUS OF THE SIGNATURE
RECOGNITION TOOLKIT

This description comes mostly from our
experiences constructing prototypes in two
domains. Initial work has begun on a third
domain, and plans are to build several more
prototypes or pre-prototypes in order to converge
on a toolkit specification and design.

Implemented applications.

The two implemented domains are nearly
opposites. One ("EGIU') entails recognizing
about fifty types of events of several seconds'
duration that occur regularly during the mission.
Since unseen (unlabeled) events also occur, the
classifiers must include a "none-of-the-above"

category--a requirement that makes the
recognition task much more challenging.
Additional complications occur because events
can overlap in time, and noise or loss of signal
can obliterate a significant part of the signature.
Archival data is plentiful, but assigning labels to
this data is an expensive, manual process.
The other application, Guidance, Navigation,
and Control (GNC), distinguishes normal from
abnormal signatures in order to help controllers
decide whether the onboard guidance
components are functioning normally. Events
last ten minutes or more. Actual (as opposed to
simulated) failures are, fortunately, extremely
rare, but because of the paucity of data, defining
the appropriate level of generalization from
sparse training data and estimating the
confidence in the classifier are difficult.

Event Detection.

Most of the time the continuous EGIL data

stream contains only noise, indicating

steady-state loads on the onboard devices. By
experimentation, we learned that we could
identify most device activations by
differentiating the data stream and thresholding
the result. This method usually flags events in
such a way that the signatures appear at a
predictable offset in the time window; thus the
pattern recognition modules do not need to
resolve translational ambiguities. Another kind
of translational ambiguity is removed by
subtracting an average initial load value from the
samples passed to the pattern recognition
modules. The pattern recognizers, therefore, see
only the load associated with the device that
triggers the event, without the quiescent (DC)
load due to other devices on the same bus. One

other critical piece of information extracted by
the event detector is which of the three phases on
the electrical bus are active. This information

separates the signature classes into single-phase
and multi-phase classes, making subsequent
discrimination easier.

Data Management.

When managing our training data became a
major headache, we built a DW tool using an
off-the-shelf indexed-file component (GDBM)
and an interpretive X-Windows-based graphical
interface (TCL/TK). The DW runs on Unix
workstations, supports data visualization,
classification, and formatting, and is soon to be
extended for use with post-flight analysis.

System Architecture.

The two applications are running on several
flavors of Unix workstations and interact with

the controllers by means of an X Windows/Motif
interface. All original code is written in C.
Whereas quite a few software modules are
applicable to more than one application, they
may be used in different contexts. For example,
filters to remove bursty noise spikes prior to
processing the data stream are used in both the
EGIL and GNC applications, but they are not
invoked by the same modules nor are they
invoked in quite the same way. In order to reuse
such modules in multiple applications, we
developed an efficient "plug-in" interface to
replace hard-coded connections between
modules.

Each module (data acquisition, spike filter, FFT,
event detector, etc.) is written to conform to a
plug-in interface. Plug-in services include
initialization, termination, data distribution, and

timing. When a module is provided with data via
the data distribution interface, it operates on that

55

data and then can request that the plug-in
controller pass output products to the module's
recipients. The connections between processors
and recipients are made separately from the
modules in a dataflow module. The dataflow

modules are presently hand-coded in C; future
versions of the toolbox, however, will provide
the ability to graphically select and connect
modules.

Pattern Recognition.

We have experimented with a variety of
pattern-recognition algorithms in order to build a
library of PR modules. The NETS package
(developed by the Software Technology Branch
at JSC [1] has been successful for building
feed-forward neural network classifiers. Ad hoc
network architectures have also been used with

success, notably a basis-function network
combined with principle-components projection
that strongly localizes the set of active function
nodes [4]. Our experiences, positive and
negative, with network classifiers are in
concurrence with those documented by others,
e.g., [3].
We have also implemented a more conventional
statistical classifier that first extracts features

from the events and then applies a Bayesian
discriminant calculated from these feature

values. Since feature extraction is usually a
tricky, manual process, we worried about how
feature-based classifiers might be used in an
automated environment. In response we
developed a method for automating the
feature-extraction process based on a genetic
algorithm. The features constructed by the
algorithm can be used with any classifier

method, including networks and decision trees
[2]. With the addition of Fourier and wavelet
transforms, nearest-neighbor and local-linear

models, our repository of pattern classification
techniques is growing rapidly.

User Interface and Configuration Builders.

Currently each application interacts with the
users via an X-Windows/Motif interface. Work
remains to be done on a user-definable interface

builder tool and a system configuration tool, but
a consensus is developing on what such an
interface should include. For example, the
Mission-Control venue requires that the flight
controllers have a very high confidence in the
correctness of the application's outputs. The
user interface bolsters this confidence by making
available on the display both the signature
waveform and the system classifications.

Controllers can, therefore, correct an occasional

incorrect diagnosis and at the same time develop
confidence in the accuracy of the system.

SUMMARY AND FUTURE PLANS

The results of our work to date on the Automated

Signature Recognition Toolkit present a number
of avenues for future work. One important
direction is to continue development of specific
user applications which contain the core pattern
recognition tool set. As designed, multiple
end-user applications should be easily created
from a common system architecture, revolving
around plug-in pattern recognition modules.
Each end-user application will utilize pattern
recognition techniques tailored to the signals or
patterns for that particular console domain. New
console areas will be added on a regular basis
until all Mission Control Center positions with
relevant data have been evaluated.

Another important direction for this work is to
provide a well defined, categorized database of
patterns for evaluation and testing of various
algorithms. In the process of preparing the
existing tools and evaluating their performance
during Shuttle missions, we have gathered and
classified a large amount of real-world data that
is available offline for testing and comparing
classification algorithms.
Finally, future challenges include the integration
of expert rules with statistical pattern analysis
and utilizing regularities in the temporal
sequence of signature events.

References

[1] Paul T. Baffes, Robert O. Shelton, and Todd A.

Phillips. NETS user's guide (version 3.0). Technical

Report JSC-23366, Lyndon B. Johnson Space Center,
Houston, TX, 1991.

[2] Philip Laird and Ronald Saul. Automated feature

extraction for supervised learning. In Proceedings of

the IEEE Conference on Evolutionary Computation,

New York, 1994. IEEE Press.

[3] Justin D. Paola and Robert A. Schowengerdt. A

review and analysis of neural networks for

classification of remotely sensed muitispectral

imagery. Technical Report 93.05, Research Institute

for Advanced Computer Science, NASA Ames

Research Center, Moffett Field, CA, 1993.

[4] Robert O. Shelton. Pattern recognition tool kit for

strip chart signature analysis. In Proceedings of the

First Department of Energy workshop on Applications

of Neural Networks in Materials Science, 1994.

56

