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1. INTRODUCTION

1.1 An Analogy: Linguistics Versus Information Technology

In linguistics, one must confront and manage a multitude of human languages.
The overall attack to deal with such diversity and complexity is to try under-
standing “the system of principles, conditions, and rules that are elements or
properties of all human languages . . . the essence of human language” [Chomsky
1975]. (This is Chomsky’s controversial definition of the “universal grammar.”)
Such research cannot be separated from sociology, and other human sciences.
Similarly, in information technology, we are faced with a multitude of program-
ming languages, data representations, protocols, and other entities that are
regulated by some sort of grammar. Here, the overall attack must be to un-
derstand the principles, conditions, and rules that underly all use cases for
grammars. Grammars cannot be reduced to a few formal aspects such as the
Chomsky hierarchy and parsing algorithms. We rather need a kind of software
engineering that is grammar-aware by paying full attention to the engineering
aspects of grammars and grammar-dependent software.

1.2 The Definition of the Term Grammarware

We coin the term grammarware to comprise grammars and grammar-
dependent software.

—The term grammar is used in the sense of all established grammar for-
malisms and grammar notations including context-free grammars, class
dictionaries, and XML schemas as well as some forms of tree and graph
grammars. Grammars are used for numerous purposes, for example, for the
definition of concrete or abstract programming language syntax, and for the
definition of exchange formats in component-based software applications.

—The term grammar-dependent software is meant to refer to all software that
involves grammar knowledge in an essential manner. Archetypal examples
of grammar-dependent software are parsers, program converters, and XML
document processors. All such software either literally involves or encodes
grammatical structure: compare generated versus hand-crafted parsers.

1.3 A Research Agenda for Grammarware Engineering

This article is a call-to-arms for setting the employment of grammars in soft-
ware systems on a firm engineering foundation. In fact, this article is a research
agenda that promotes an engineering discipline for grammarware. We use the
term grammarware engineering to denote this discipline.

Grammarware engineering is focused on the following credo:

The development and maintenance of grammarware should be such
that the involved grammatical structure is subjected to best prac-
tises, tool support and rigorous methods that in turn are based on
grammar-aware concepts and techniques for design, customisation,
implementation, testing, debugging, versioning, and transformation.
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The underlying goal is to improve the quality of grammarware, and to increase
the productivity of grammarware development. Grammars permeate (or shape)
software systems. Hence, we deserve an engineering discipline for grammar-
ware, and we can expect that grammarware engineering is to the advantage of
software development in general.

1.4 Scenarios of Grammarware Development

Let us consider a few diverse scenarios of software development, in which dif-
ferent sorts of grammar knowledge play an essential role. These scenarios pin-
point some issues and problems regarding the development and maintenance
of grammarware:

—As a developer of commercial off-the-shelf software, you want to import user
profiles in order to promote the user’s transition from an old to a new ver-
sion, or from a competing product to your’s; think of Web browsers. Such
import functionality requires recovery of the relevant format. Import needs
to be robust and adaptive so that all conceivable inputs are parsed and all
convertible parts are identified.

—As a developer of database applications, you want to adopt a new screen def-
inition language for an information system. An automated solution requires
the ability to parse screen definitions according to the old format, to gener-
ate screen definitions according to the new format, and to define a mapping
from the old to the new format. Here we presume that screen definitions are
not ingrained in program code. Otherwise, additional, perhaps more involved
parsing, unparsing, and mapping functionality will be required.

—As an object-oriented developer, you want to improve static typing for XML
processing. That is, you want to replace DOM-based XML access by an XML
binding. An automated solution requires the ability to locate DOM usage
patterns in the code, and to replace them according to the XML binding
semantics. We face grammar knowledge of at least two kinds: the syntax of
the programming language in which XML access is encoded, and the schema
for the accessed XML data.

—As a tool provider for software re-/reverse engineering, you are maintaining
a Java code smell detector and a metrics analyzer. You have started this ef-
fort in 1996 for Java 1.0, while you are currently working on an upgrade for
Java 1.5. To support more sophisticated smells and metrics, you add intelli-
gence that recognises and handles various APIs and middleware platforms
used in Java applications, for example, Swing, WebSphere and JBoss. This
intelligence boils down to diverse grammar knowledge.

—As a developer of an in-house application generator, you face a redesign of the
domain-specific language (DSL) that is used to provide input to the generator.
You fail to provide backward compatibility, but you are requested to offer a
conversion tool for existing DSL programs. Furthermore, you are required
to handle the problem of generator output that was manually customised by
the programmers. Hence, you might need to locate and reuse customisation
code as it is ingrained in the generated code.
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—As a developer of an international standard or vendor-specific reference for a
programming language, you would like to guarantee that the language ref-
erence contains the complete and correct grammar of the described language
and that the shown sample programs are in accordance with the described
syntax (modulo elisions). One challenge is here that you need a readable syn-
tax description in the standard or reference as well as an executable syntax
definition for validation.

—As an online service provider, you want to meet your clients’ request to serve
new XML-based protocols for system use. For example, you want to replace an
ad hoc, CGI-based protocol by instant messaging via Jabber/XMPP, while you
want to preserve the conceptual protocol as is. You end up with reengineering
your application such that the alternation of the protocol technology will be
easier in the future.

1.5 Typical Engineering Aspects of Grammarware

The aforementioned scenarios involve various engineering aspects regarding
grammars:

—What is a “good grammar” in the first place—in terms of style or metrics?
—How does one recover the relevant grammars in case they are not readily

available?
—How does one choose among options for implementing grammar-dependent

functionality?
—How does one systematically transform grammatical structure when faced

with evolution?
—How does one maintain links between implemented variations on the same

grammar?
—How does one test grammar-dependent functionality in a grammar-aware

manner?
—How does one verify grammar-related properties of grammar-dependent

functionality?

(And so on.) Even though a body of versatile techniques is available, in real-
ity, grammarware is typically treated without adhering to a proper engineer-
ing discipline. Grammarware seems to be second-class software. For instance,
program refactoring is a well-established practice according to modern object-
oriented methodology. By contrast, grammar refactoring is weakly understood
and hardly practiced.

1.6 A Concerted, Interdisciplinary Research Effort

In order to make progress with grammarware engineering, we will need a
large-scale effort in the software engineering and programming language com-
munities. The present agenda takes an inventory, and it identifies open chal-
lenges. The next steps are the following. We need dedicated scientific meetings.
Doctoral students need to pick up the listed challenges. We need to start working
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on an engineering handbook for grammarware. We also need grammarware-
aware curricula at universities.

Grammarware engineering could have been a classic field of computer sci-
ence already for decades. After all, grammars and grammar-dependent soft-
ware are no recent invention. Grammarware engineering fits well with other
fields such as generic language technology, generative programming, software
re-/reverse engineering, aspect-oriented software development, program trans-
formation, metamodeling, and model-driven development. That is, grammar-
ware engineering employs these fields and contributes to them. In this com-
plex context, the focus of grammarware engineering is clearly defined: the
engineering aspects of grammars and grammatical structure in software
systems.

1.7 Road-Map of the Agenda

In Section 2, we will compile an inventory of grammarware. In Section 3, we
will analyze the reality of dealing with grammarware, which we will have to
summarize as grammarware hacking. In Section 4, we will uncover the gram-
marware dilemma in an attempt to explain the current, suboptimal situation.
This agenda has to cut a Gordian knot in order to prepare the ground for a sig-
nificant research effort on grammarware engineering. In Section 5, we will lay
out the promises of an engineering discipline for grammarware. In Section 6,
we will identify essential principles of the emerging discipline. Ultimately, in
Section 7, we will compile a substantial list of research challenges, which call for
basic and applied research projects. Throughout the article, we will survey ex-
isting contributions to the emerging engineering discipline for grammarware.
In Section 8, we summarize our results.

2. AN INVENTORY OF GRAMMARWARE

We use the term grammar as an alias for structural descriptions in software
systems, that is:

Grammar = structural description in software systems
= description of structures used in software systems.

Some representative examples of grammars are shown in Figure 1. When-
ever a software component involves grammatical structure, then we attest a
grammar dependency. (We will also say that the component commits to gram-
matical structure.) In this section, we will first demarcate our use of the term
grammar, that is, structural description, and we will then compile an inventory
of grammar formalisms, grammar notations, grammar use cases, grammar-
based formalisms and notations, and forms of grammar dependencies.

2.1 Structural Descriptions

When we say that grammars are structural descriptions, we make a number
of informal assumptions as to what it means to be a structural description.
First, we assume that a grammar (potentially) deals with several interrelated
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Fig. 1. Grammar samples: The syntax definition at the top is perhaps the most obvious example
of a grammar. The XML DTD in the middle defines the abstract representation of a company’s
organizational structure. It makes use of specific XML features such as attributes and references.
The signature at the bottom defines the structure of event traces for the execution of C programs.
Here, we are specifically interested in tracing assignments and function calls.

categories as opposed to a single category; cf. the nonterminals in a context-free
grammar. Second, we assume that there are constructs for the formation of
compound structure. Third, we assume that there are constructs for the choice
among different alternatives; cf. multiple productions for a nonterminal in a
context-free grammar, or the “|” operator in the BNF formalism.

These assumptions are intentionally lax, so as to avoid the exclusion of gram-
mar forms that we did not think of or that do not yet exist. However, we can
further demarcate the term grammar by excluding some artifacts and by iden-
tifying borderline cases:

—A parser specification is not a grammar, but it is an enriched grammar.
—A type declaration for polymorphic lists is a trivial (parameterized) grammar.
—An attribute grammar [Knuth 1968] is not a grammar in our restricted sense,
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but it definitely comprises a grammar, that is, the context-free grammar
whose derivation trees are attributed eventually. It is worth noting that the
attribute grammar might comprise yet another grammar—the one for the
structures that are synthesized.

—What is the relationship between the terms grammar and model (such as
software models in UML)? One direction: a model is not necessarily a gram-
mar because models can describe aspects other than structure. In particular,
a software model is not a grammar because grammars are models of struc-
tures, whereas software models are models of software. However, the class-
diagrammatic part of a software model could be viewed as a grammar—if
the classes, without all behavioral details, lend themselves to a meaningful
description of structures. A good example is a source-code model. The other
direction: a grammar is certainly a model, namely, a model of structures, but
it is, at best, an incomplete software model because a grammar, by itself, does
not model a software application.

—What is the relationship between the terms grammar and metamodel (in
the sense of metamodeling and model-driven development [metamodel.com
2003–2005; Mellor et al. 2003])? There are varying definitions for the latter
term. We adopt the view that a metamodel is a model of models such as a
model of software models. That is, metamodels describe language constructs
for modeling. One direction: we reckon that a metamodel includes a gram-
mar, that is, the structural description of a modeling language (as opposed
to semantic constraints on models, if any). The other direction: some gram-
mars are metamodels, namely, those that describe language constructs for
modeling (in particular, software modeling).

—A relational schema (in the sense of relational databases) is a borderline
case. In general, we do not expect grammarware engineering to subsume re-
lational modeling. Technically, the relational model comprises details, such
as foreign key constraints, that go arguably beyond plain “formation of struc-
ture.” Furthermore, the (basic) relational model lacks expressiveness for gen-
eral alternatives; it only allows for NULL versus NOT NULL values, which
correspond to the regular operator “?” in EBNF terminology.

2.2 Grammar Formalisms

We presume that the following formalisms provide the foundation for
grammars:

—context-free grammars,
—algebraic signatures,
—regular tree and graph grammars.

Clearly, these formalisms differ regarding expressiveness and convenience.
Context-free grammars happen to enable the definition of concrete syntax of
programming languages. Algebraic signatures are suitable for (per definition)
unambiguous abstract syntaxes. Graph grammars and the underlying schemas
cater to graph structures.
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There exist all kinds of partial, sometimes ad hoc, mappings to relate one
formalism to the other. For instance, one can convert a context-free grammar
into a signature by discarding terminals, by inventing a function symbol per
production, and finally by recasting productions as types of function symbols.
(Actually, there exists a somewhat forgotten algebraic interpretation of context-
free grammars, which precisely formalizes this direction.) The inverse direction
can also be served by assuming a fixed syntax for function symbols such as prefix
notation with parentheses and commas.

A grammar can be amenable to different interpretations. Since we want to
emphasize that a grammar is a structural description, some interpretations
are more meaningful than others. Let us consider some options for context-
free grammars. First we note that it is of minor relevance whether we consider
an acceptance-based versus a generation-based semantics. For our purposes,
a useful semantics of a context-free grammar is the set of all valid derivation
trees [Aho and Ullman 1972–1973]. By contrast, the de facto standard seman-
tics of a context-free grammar is its generated language [Aho and Ullman 1972–
1973]—a set of strings without attached structure. We contend that this seman-
tics does not emphasise a grammar’s role to serve as a structural description.

2.3 Grammar Notations

Actual structural descriptions are normally given in some grammar notation,
for example:

—Backus-Naur Form (BNF [Backus 1960]), Extended BNF (EBNF [ISO 1996]),
—the Syntax Definition Formalisms (SDF [Heering et al. 1989; Visser 1997]),
—the Abstract Syntax Description Language (ASDL [Wang et al. 1997]),
—abstract Syntax Notation One (ASN.1 [Dubuisson 2000]),
—syntax diagrams [Herriot 1976; McClure 1989; Braz 1990],
—algebraic data types as in functional languages,
—class dictionaries [Lieberherr 1988],
—UML class diagrams without behavior [Gogolla and Kollmann 2000],
—XML schema definitions (XSD [W3C 2000–2003]), and
—document type definitions (DTD [W3C 2004]),

In fact, there are so many grammar notations that we do not aim at a complete
enumeration. It is important to realize that grammar notations do not nec-
essarily reveal their grammar affinity via their official name. For instance, a
large part of all grammars in this world are “programmed” in the type language
of some programming language, for example, in the common type system for
.NET, or as polymorphic algebraic data types in typed functional programming
languages. (We recall the last example in Figure 1, which employed algebraic
data types.)

Some grammar notations directly resemble a specific grammar formalism.
For instance, BNF corresponds to context-free grammars. Other grammar no-
tations might be more convenient than the underlying formalism, but not nec-
essarily more expressive—in the formal sense of the generated language. For
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instance, EBNF adds convenience notation for regular operators to BNF. Hence,
EBNF allows us to describe structures at a higher level of abstraction, using
a richer set of idioms, when compared to BNF. Yet other grammar notations
appeal to a certain programmatic use. For instance, class dictionaries appeal
to the object-oriented paradigm; they cater immediately for inheritance hierar-
chies. Finally, there are also grammar notations that strictly enhance a given
formalism or a mix of formalisms. For instance, XSD is often said to have its
foundation in tree grammars, but, in fact, it goes beyond simple tree grammars
due to its support for references and unstructured data.

As with grammar formalisms, some couples of grammar notations are
amenable to uni-directional or even bidirectional conversion. For instance, one
can convert an EBNF grammar to a BNF grammar and vice versa. We also
call this yaccification and deyaccification for obvious reasons [Lämmel and
Wachsmuth 2001]. The SDF grammar format is richer than pure BNF and
EBNF; SDF adds constructs for modularization and disambiguation. Hence,
BNF grammars are easily converted into SDF grammars, but an inverse con-
version must be necessarily incomplete.

2.4 Grammar Use Cases

The grammars in Figure 1 are pure grammars, that is, plain structural descrip-
tions. Nevertheless, we can infer hints regarding the intended use cases of those
grammars. The BNF at the top of the figure comprises details of concrete syntax
as needed for a language parser (or an unparser). The DTD in the middle favors
a markup-based representation as needed for XML processing, tool interoper-
ability, or external storage. Also, the provision of references from employees to
their departments (cf. ID and IDREF) suggests that the use case asks for “easy”
navigation from employees to top-level departments (“business units”)—even
though this provision is redundant because an employee element is unambigu-
ously nested inside its business unit. The algebraic signature at the bottom of
the figure does not involve any concrete syntax or markup, but it addresses
nevertheless a specific use case. That is, the description captures the structure
of (problem-specific) event traces of program execution. Such event grammars
facilitate debugging and assertion checking [Auguston 1995]. Note that the
algebraic signature for the event traces differs from the (abstract) syntax def-
inition of the C programming language—even though these two grammatical
structures are related in a systematic manner.

For clarity, we use the term grammar use case to refer to the purpose of a
(possibly enriched) structural description. We distinguish abstract versus con-
crete use cases. An abstract use case covers the overall purpose of a grammar
without reference to operational arguments. For instance, the use cases “syn-
tax definition” or “exchange format” are abstract. A concrete use case commits
to an actual category of grammar-dependent software, which employs a gram-
mar in a specific, operational manner. For instance, “parsing” or “serialization”
are concrete use cases. Even the most abstract use cases hint at some problem
domain. For instance, “syntax definition” hints at programming languages or
special-purpose languages, and “exchange format” hints at tool interoperability.
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Here are details for representative examples of abstract grammar use
cases:

—Source-code models are basically syntax definitions, but they are en-
riched with features such as annotation, scaffolding, and markup [Purtilo
and Callahan 1989; Heuring et al. 1989; Koschke and Girard 1998; Sellink
and Verhoef 2000b; Mamas and Kontogiannis 2000; Holt et al. 2000;
Sim and Koschke 2001; Malton et al. 2001; Cordy et al. 2001; Kort and
Lämmel 2003b; Winter 2003]. Also, source-code models tend to be defined
such that they are effectively exchange formats at the same time.

—Intermediate program representations are akin to syntax definitions except
that they are concerned with specific intermediate languages as they are
used in compiler middle and back-ends as well as static analyzers. Repre-
sentative examples are the formats PDG and SSA [Ferrante et al. 1987;
Cytron et al. 1991]. Compared to plain syntax definitions, these formats
cater directly to control-flow and data-flow analyses.

—Domain-specific exchange formats cater to interoperation among software
components in a given domain. For instance, the ATerm format [van den
Brand et al. 2000] addresses the domain of generic language technology,
and the GXL format [Holt et al. 2000] addresses the domain of graph-based
tools. The former format is a proprietary design, whereas the latter format
employs XML through a domain-specific XML schema.

—Interaction protocols cater to component communication and stream pro-
cessing in object-oriented or agent-based systems. The protocols describe
the actions to be performed by the collaborators in groups of objects or
agents [Odell et al. 2001; Lind 2002]. Such protocols regulate sequences
of actions, choices (or branching), and iteration (or recursive interactions).
For instance, session types [Vallecillo et al. 2003; Gay et al. 2003] arguably
describe interaction protocols in a grammar-like style.

There are just too many concrete grammar use cases to list them all. We
would even feel uncomfortable to fully categorize them because this is a re-
search topic on its own. We choose the general problem domain of language
processing (including language implementation) to list some concrete grammar
use case. In fact, we list typical language processors or components thereof.
These concrete use cases tend to involve various syntaxes, intermediate repre-
sentations, source-code models, and other sorts of grammars:

—debuggers [Auguston 1995; Olivier 2000],
—program specializers [Jones et al. 1993; Consel et al. 2004],
—preprocessors [Favre 1996; Spinellis 2003] and post-processors,
—code generators in back-ends [Emmelmann et al. 1989; Fraser et al. 1992],
—pretty printers [van den Brand and Visser 1996; de Jonge 2002], and
—documentation generators [Sun Microsystems 2002; Marlow 2002].

In this agenda, all the grammar use cases that we mention are linked to
software engineering including program development. One could favor an even
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broader view on grammarware. Indeed, in Mernik et al. [2004], the authors re-
vamped the classic term grammar-based system while including use cases that
are not just related to software engineering, but also to artificial intelligence,
genetic computing, and other fields in computer science.

2.5 Meta-Grammarware

By itself, a grammar is not executable in the immediate sense of a program.
It requires commitment to a concrete use case and usually also an enriched
grammar before we can view it as an executable specification (or a program).
We use the term meta-grammarware to refer to any software that supports
concrete grammar use cases by some means of metaprogramming, generative
programming, or domain-specific language implementation [Eisenecker and
Czarnecki 2000; van Deursen et al. 2000].

The archetypal example of meta-grammarware is a program generator that
takes an (enriched) grammar and produces an actual software component
such as a parser. In practice, meta-grammarware is often packaged in frame-
works for software transformation, program analysis, language processing,
and program generation. Examples of such frameworks include the following:
ASF+SDF Meta-Environment [Klint 1993; van den Brand et al. 2001],
Cocktail [Grosch and Emmelmann 1991], Cornell Synthesizer Generator [Reps
and Teitelbaum 1984], DMS [Baxter 1992], Eli [Gray et al. 1992], FermaT
[Ward 1999], GENTLE [Schröer 1997], Lrc [Kuiper and Saraiva 1998], Progres
[Progres Group 2004], Refine [Smith et al. 1985; Abraido-Fandino 1987], RIGAL
[Auguston 1990], S/SL [Holt et al. 1982], Stratego [Visser 2001a], Strafunski
[Lämmel and Visser 2003], and TXL [Cordy et al. 2002].

There are a few use cases of meta-grammarware that allow for the immediate
derivation of the desired software component from plain grammatical structure.
For instance, the generation of an object-oriented API for matching, building,
and walking over grammatically structured data [Wallace and Runciman 1999;
de Jonge and Visser 2000; Sim 2000; de Jong and Olivier 2004; Lämmel and
Visser 2003; Moreau et al. 2003] is readily possible for algebraic signatures or
suitably restricted context-free grammars.

Most use cases of meta-grammarware require enriched structural descrip-
tions. For instance, there are the following:

—Parser specifications such as those processed by the YACC tool [Johnson 1975]
or any other parser generator. These specifications typically contain addi-
tional elements such as the parser-to-lexer binding, semantic actions, and
pragmas.

—Test-set specifications such as those processed by the DGL tool [Maurer 1990]
or any other grammar-based test-data generator. These specifications anno-
tate the basic grammar with control information so as to guide test-data
generation.

—Pretty-printing specifications [van den Brand and Visser 1996; de Jonge
2002]. These specifications attach horizontal and vertical alignment direc-
tives to the grammar structure so as to guide line breaks and indentation.
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—Serializable object models, where metadata for serialization is attached
to classes and fields in the object model such that serialization (and de-
serialization) functionality can be generated by a tool or it can be defined
in terms of reflection.

Our choice of the term meta-grammarware is inspired by Favre, who
has coined the term metaware [Favre 2003] in the metamodeling context
[metamodel.com 2003–2005]. That is, metaware is application-independent
software that helps producing software applications on the basis of suitable
metamodels. We emphasize that the term meta-grammarware applies to gram-
marware rather than software models and metamodeling.

2.6 Grammar-Based Formalisms and Notations

There are actually a number of more fundamental grammar-based formalisms
and corresponding notations. These are prominent examples of such grammar-
based formalisms:

—attribute grammars [Knuth 1968; Paakki 1995],
—general tree and graph grammars [Comon et al. 2003; Ehrig et al. 1996],
—definite clause grammars (DCGs) [Pereira and Warren 1980],
—advanced grammar formalisms for visual languages [Marriott and Meyer

1998], and
—logic programs (cf. the grammatical view in Deransart and Maluszyński

[1993]).

Corresponding grammar-based notations can be used for the implementation
of concrete grammar use cases. For instance, the Progres framework [Progres
Group 2004] supports graph grammars, while compiler compilers such as
Cocktail [Grosch and Emmelmann 1991], Cornell Synthesizer Generator [Reps
and Teitelbaum 1984] and Eli [Gray et al. 1992] support attribute grammars.

We note that the distinction fundamental grammar formalisms versus spec-
ification languages for meta-grammarware is not exact. For instance, parser
specifications in the sense of YACC are often viewed as an example of attribute
grammars. The difference is of an abstract, conceptual kind: grammar-based
formalisms provide formal, computational frameworks with different assorted
declarative and operational semantics. By contrast, specification languages
for concrete grammar use cases were designed back-to-back with the meta-
grammarware that supports them.

The aforementioned grammar-based formalisms have in common that the
formation of basic grammatical structure is still traceable in the otherwise en-
riched structural descriptions. In Figure 2, we provide illustrations. We discuss
a few examples of the relationship between basic structural description and
complete description:

—An attribute grammar starts from a context-free grammar, while each non-
terminal is associated with attributes, and each production is associated with
computations and conditions on the attributes of the involved attributes. The
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Fig. 2. Illustration of grammar-based formalisms. The definite clause grammar at the top refines
the syntax definition from Figure 1. Extra semantic actions (cf. { . . . }) establish type correctness
with regard to a symbol table L. The attributed multi-set grammar at the bottom defines the visual
syntax of horizontally aligned lists: think of x y z . There are constraints on the geometric
attributes xmax, xmin, etc., that ensure line segments and list elements to be horizontally aligned
along a center of meaning.

basic context-free grammar remains perfectly traceable in the completed at-
tribute grammar.

—Likewise, the attributed multiset grammar [Golin 1991] in Figure 2 starts
from the productions of a multiset grammar, while there are geometric at-
tributes and corresponding computations and conditions. The choice of a mul-
tiset grammar (as opposed to a context-free grammar) implies that formation
of structure is based on sets rather than sequences.

—The definite clause grammar in Figure 2 is more entangled in the sense that
semantic actions for checking context conditions are injected into the context-
free productions. However, the pure productions were easily extracted, if
necessary.
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—Regular graph grammars are still in accordance with our assumptions for
structural descriptions. Most applications of graph grammars [Nagl 1980,
1985; Hoffmann 1982; Schürr 1990, 1994, 1997] require more general graph
grammars. Given a general graph grammar, we can again identify a basic
structural description, namely, the underlying graph schema. Such a schema
defines types of nodes and edges.

2.7 Commitment to Grammatical Structure

It is trivial to observe that parser specifications (and likewise the generated
parsers) involve grammar dependencies because each such specification is quite
obviously based on a structural description. More generally, the use of any
grammar-based formalism or meta-grammarware implies grammar dependen-
cies of such a trivial kind. However, software components tend to commit to
grammatical structure by merely mentioning patterns of grammatical struc-
ture, giving rise to more scattered grammar dependencies.

The modern, archetypal example is the scenario of a (problem-specific) XML
document processor, be it an XSLT program. This program commits to the gram-
matical structure for the input, as expressed in patterns for matched input. Also,
the processor is likely to commit to the grammatical structure for the output,
as expressed in patterns for built output. Notice that the underlying program
merely refers to grammatical structure (for input and output), but it cannot
be viewed as an enriched structural representation by itself. As an aside, the
document processor is “driven” by (the grammatical structure of) the input with
a subordinated commitment to (the grammatical structure of) the output.

The fact that grammatical structure is entangled in programs is, to some
extent, intended and it is inherent in grammar-based programming. Many
software components, regardless of the programming language used and the
programming paradigm, end up committing to grammatical structure. Here
are diverse examples:

—In imperative and object-oriented programs, one can use APIs to operate
on grammatically structured data, for example, to match, build, and walk
over data. This approach is widely used whenever components for language
processing or document processing are encoded in mainstream languages.
The APIs for data access are often generated by program generators [Grosch
1992; Visser 2001b; de Jong and Olivier 2004]. The use of the API corresponds
to commitment to grammatical structure.

—In functional and logic programs, heterogeneous tree-shaped data is manip-
ulated on a regular basis. Depending on whether we look at a typed or an
untyped language, the grammatical structure is available explicitly or im-
plicitly (through use in code or documentation). As an aside, there is no need
for hand-crafted or generated APIs for data access, when compared to main-
stream imperative and OO languages, because functional and logic languages
support term matching and building natively.

—Some approaches to term rewriting [van den Brand et al. 1998; Moreau
et al. 2003] target language processing. For instance, the ASF+SDF
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Meta-Environment [Klint 1993; van den Brand et al. 2001] employs a
marriage of a syntax definition formalism (SDF [Heering et al. 1989])
for the terms to be processed and an algebraic specification formalism
(ASF [Bergstra et al. 1989]) for the actual rewriting rules.

—Grammar knowledge can also be expressed by the mere use of generic com-
binator libraries for concrete grammar use cases such as parsing, pretty-
printing, or generic traversal [Hutton and Meijer 1998; Swierstra 2001;
Hughes 1995; Lämmel and Visser 2002]. The required combinators are pro-
vided as abstractions in the programming language at hand, for example, as
higher-order functions in the case of functional programming. The encoding
of grammatical structure boils down to applications of the combinators.

—Reflective and aspect-oriented functionality commits to grammatical struc-
ture because the employed metaobject protocols and join point models
[Kiczales et al. 1991, 1997; Assmann and Ludwig 1999] are based on gram-
mars. Most notably, these protocols or models are ingeniously related to the
abstract syntax of the underlying programming language. A more concrete
scenario is debugging based on event grammars [Auguston 1995], where
the steps of program execution are abstracted in a grammatical event struc-
ture, which is aligned with the abstract syntax of the language.

—Any library (in any language) that offers an API for the construction (or “for-
mation”) of functionality presumes that the user code commits to the API,
which corresponds to commitment to grammatical structure in a broader
sense. There are other mechanisms for the systematic construction of func-
tionality or entire software systems, which give rise to similar commitments.
Examples include template instantiation, application generation, system
composition, and program synthesis [Smith 1990; Eisenecker and Czarnecki
2000; Batory et al. 1994; Jarzabek 1995; Thibault and Consel 1997].

We note that commitment to grammar knowledge in programs does not nec-
essarily imply that precise patterns of grammatical structure are to be expected
in source code. For instance, industrial compiler front-ends are often hand-
crafted. There are even techniques for grammarware development that inten-
tionally depart from a strict grammar-based approach. For instance, the frame-
works RIGAL [Auguston 1990] and S/SL [Holt et al. 1982] provide relatively
free-wheeling idioms for parsing. An impure style of encoding grammatical
structure is also practiced in languages like Perl or Python; see [Klusener et al.
2005] for an example.

3. STATE OF THE ART: GRAMMARWARE HACKING

Given the pervasive role of grammars in software systems and development
processes, one may expect that there exists a comprehensive set of best practices
adding up to an engineering discipline for grammarware. However:

In reality, grammarware is treated, to a large extent, in an ad hoc
manner with regard to design, implementation, transformation, re-
covery, testing, etc.
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Fig. 3. Parser development. The left-hand side illustrates common practice. Grammar knowledge,
as contained in a language reference, is coded directly as a proprietary parser specification. Options
for improvements are shown on the right-hand side. A technology-neutral grammar is recovered
from the grammar knowledge, and subsequent customization can target different parser technolo-
gies. The parsers are not just tested against the codebase of interest, but they are also stress-tested.
Extra grammarware tooling supports this process.

We will first contrast a typical case of wide-spread ad hoc treatment with the
potential of an engineering approach. Then, we will substantiate a lack of best
practices at a more general level. Afterwards, we will argue that the lack of best
practices is not too surprising since even foundations are missing. Also, there
are no comprehensive books on the subject, and university curricula do not yet
pay sufficient attention to the subject.

3.1 Hacking Versus Engineering

To give a prototypical example of current ad hoc approaches, we consider the
development of parsers, as needed for software re-/reverse engineering tools.
The common approach (shown on the left-hand side in Figure 3) is to manu-
ally encode a grammar in the idiosyncratic input language of a specific parser
generator. We encounter just one instance of grammarware tooling in this pro-
cess: a parser generator. The driving principle is to appeal to the grammar class
that is supported by the parser generator—often done by trial and error. The
codebase, that must be parsed, is the oracle for this process.

There are a number of techniques that could be put to work in order to convert
from hacking to engineering. Some of these techniques are illustrated on the
right-hand side in Figure 3:
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—A technology-neutral grammar is recovered semiautomatically from available
grammar knowledge, for example, from a language reference that contains
“raw” grammatical structure. In this process, the grammar is incrementally
improved by transformations that model corrections and provisions of omis-
sions. We can leverage tools for grammar extraction and transformation.

—We assume that the grammar can be executed by a prototype parsing frame-
work. At this stage, the quality of parse trees is irrelevant. Also, we might
largely ignore the issue of grammar-class conflicts and grammar ambiguities.
We use the grammar as an acceptor only. The codebase drives the incremental
improvement of the grammar.

—Parser specifications are derived semiautomatically from the recovered gram-
mar using tools that customise grammars for a certain technology. Different
parsing technologies can be targeted as opposed to an early commitment to a
specific technology. The customization process is likely to require input from
the grammarware engineer.

—There are opportunities for quality assurance by means of testing. We can
stress-test the derived parsers using huge generated test-data sets. We can
test a reference parser with positive and negative cases (not shown in figure).
We can perform a coverage analysis for the given codebase (not shown in the
figure) to see how representative it is.

We have exercised elements of this approach in our team for a string of
languages, for example, for Cobol [Lämmel and Verhoef 2001b], which is widely
used in business-critical systems, and for PLEX [Sellink and Verhoef 2000a],
which is a proprietary language used at Ericsson.

3.2 Lack of Best Practices

Our claim about grammarware hacking can be substantiated with a number
of general observations that concern the treatment of grammars in software
development:

—There is no established approach for adapting grammars in a traceable and
reliable manner—not to mention the even more difficult problem of adapting
grammatical structure that is ingrained in grammar-dependent software.
This is a major problem because grammatical structure is undoubtedly sub-
ject to evolution.

—There is no established approach for maintaining relationships between
grammatical structure as it is scattered over different grammar variations
and grammar-dependent software components. This situation implies a bar-
rier for the evolution of grammarware.

—There is no established approach for delaying commitment to specific technol-
ogy for the implementation of grammar use cases. Specific technology implies
idiosyncratic notations, which make it difficult to alter the chosen technology
and to reuse parts of the solution that are conceptually more generic.

The severity of the lack of best practices is best illustrated with yet another
example of large scale. There exists a widespread belief that parser generation
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counts as a good grammar-biased example of automated software engineering.
This belief is incompatible with the fact that some major compiler vendors do not
employ any parser generator. (This claim is based on personal communication.
The vendors do not wish to be named here.) One of the reasons that is sometimes
cited is the insufficient support for the customization of generated parsers.
Another limitation of parser generators is that they do not provide sufficient
programmer support for the grammar’s convergence to the properties required
by the technology. This leads to laborious hacking: cf. conflict resolution with
LALR(1); cf. disambiguation with generalized LR parsing. Parser development
is still a black art [van den Brand et al. 1998; Blasband 2001]. So if anyone is
saying that grammarware engineering is a reality just because we have (many)
parser generators, then this is not just a too restricted understanding of the
term grammarware engineering; even the implicit claim about the adoption of
parser generators does not hold as such.

3.3 Lack of Comprehensive Foundations

In fact, there is not just a lack of best practices. Even the fundamentals are
missing:

—There is no “discipline of programming” (of the kind discussed in Dijkstra
[1976]) for grammars and grammar-dependent software. Likewise, there
is no “mathematics of program construction” for grammars and grammar-
dependent software. At a pragmatic level, we do not even have design
patterns to communicate, and we also lack an effective notion of modular
grammarware.

—There is no comprehensive theory for transforming grammarware; there
are at best some specific kinds of grammar transformations, and some sorts
of arguably related program and model transformations. We also lack a
dedicated model for version management.

—There is no comprehensive theory for testing grammarware; this includes
testing grammars themselves as well as testing grammar-dependent soft-
ware in a grammar-aware manner. We also lack metrics and other quality
notions.

—There is no comprehensive model for debugging grammarware as there
exists for other sorts of programs, for example, the box/port model for logic
programming [Byrd 1980]. Debugging parsers or other grammar-dependent
software is a black art.

—There is no unified framework for relating major grammar forms and
notations in a reasonably operational manner. Theoretical expressiveness
results provide little help with the mediation between the grammar forms
in actual grammarware development.

3.4 Lack of Books on Grammarware

It is instructive to notice how little knowledge on grammarware is available in
the form of textbooks or engineering handbooks. Even in restricted domains,
there are hardly textbooks that cover engineering aspects. For instance, texts
on compiler construction, for example, Aho and Ullman [1972–1973], Aho et al.
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[1986], and Wilhelm and Maurer [1995], go into details of parsing algorithms,
but they do not address engineering aspects such as grammar style, grammar
metrics, grammar customization, evolutionary grammar transformations, and
grammar testing. There exist a few textbooks that discuss particular frame-
works for generic language technology or compiler construction, for example,
van Deursen et al. [1996] and Schröer [1997], without coverage of general
engineering aspects. There exist textbooks on problem domains that involve
grammar-based programming techniques. For instance, there is a comprehen-
sive textbook on generative programming [Eisenecker and Czarnecki 2000].
There is no such book for grammar-based software transformation. There exist
a few textbooks on paradigms for grammar-based programming techniques, for
example, attribute grammars [Alblas and Melichar 1991] and graph transfor-
mation [Ehrig et al. 1996]. Again, these books focus on a specific paradigm with-
out noteworthy coverage of the engineering aspects of the involved grammars.

3.5 Lack of Coverage in Curricula

In the last three decades or so, parsing algorithms and compiler construction
formed integral parts of computer science curricula at most universities. The
default host for these topics was indeed a compiler class. Some related theo-
retical aspects, such as the Chomsky hierarchy, were likely to be covered in
a class on foundations of computer science. Engineering aspects of grammar-
ware have never been covered broadly. It is conceivable that a modern compiler
class [Griswold 2002] incorporates more software engineering in general, and
engineering aspects of grammars (as they occur in compilers) in particular.

A dedicated grammarware class will be more comprehensive in terms of the
engineering aspects it can cover. Also, such a class will be a strong host for dis-
cussing different problem domains for grammarware including compiler con-
struction. Over the last few years, the fields of metamodeling and model-driven
development (MDD) have received ample attention from the research commu-
nity, and this trend could fully reach curricula soon. A metamodeling/MDD class
can be customized such that it covers technical aspects of grammarware engi-
neering, for example, the different grammar notations and their relationships,
the various grammar use cases and grammar-based testing. Likewise, classes
on software re-/reverse engineering, if they became popular, can be made more
grammar-aware.

4. THE GRAMMARWARE DILEMMA

We have shown that even though grammarware permeates software systems,
its engineering aspects are somewhat neglected. Here is what we call the gram-
marware dilemma:

Improving on grammarware hacking sounds like such a good idea!
Why did it not happen so far?

4.1 Unpopular Grammarware Research

Part of the answer lies in a popularity problem of grammar research. Gram-
mars in the sense of definitions of string languages are well-studied subjects in

ACM Transactions on Software Engineering and Methodology, Vol. 14, No. 3, July 2005.



350 • P. Klint et al.

computer science. Basic research on grammars and parsing was a wave of the
1960s and 1970s. The pervasiveness of grammars in software systems was not
yet so obvious at the time. Hence, engineering aspects did not get into focus.
We might see now the beginning of a second wave of grammar research, where
a new generation of researchers rediscovers this theme, while being driven by
engineering aspects. According to Thomas Kuhn’s The Structure of Scientific
Revolutions [Kuhn 1970], research generally tends to go in such waves, while so-
cial issues play an immanent role in this process. When grammar-enthusiastic
researchers of the first wave turned into senior researchers, then their junior
staff often favored the exploration of different territory.

4.2 Myths about Grammarware

The grammarware dilemma must also be explained in terms of myths about
grammarware. These myths are barriers for anyone who wants to do research
on grammarware. By naming these myths, we hope to prepare the ground for
work on a comprehensive engineering discipline for grammarware.

— Myth: “Grammarware engineering is all about parser development.”
In any language processor, the front-end with its parsing functionality is so
overwhelmingly visible that one can easily neglect all the other grammars
that occur in a language processor: different abstract syntaxes with varia-
tions on annotations, eliminated patterns due to normalization, preprocess-
ing information, and others. Software components that do not even start
from any concrete syntax are easily neglected as grammarware altogether.
For instance, a number of mainstream technologies for aspect-oriented pro-
gramming use XML at the surface for their pointcut languages rather than
any concrete syntax. The underlying schema for pointcuts and the function-
ality based on them should still be subjected to grammarware engineering.

— Myth: “Grammarware engineering is all about language processing.”
Incidentally, our reply to the parsing myth invites such a reduction. How-
ever, there are clearly grammar use cases that do not deal with language
processing. For instance, the use case “interaction protocol” is not related
to language processing according to common sense. Another example: the
problem of deriving hierarchical (XML-based) views on relational data in a
database, as addressed by various data access APIs in modern programming
environments, is about data processing rather than language processing.
Nevertheless, the language processing myth is actually a useful approxi-
mation of the scope of grammarware engineering, while it is important to
adopt a broad view on languages: programming languages, domain-specific
languages, configuration languages, modeling languages.

— Myth: “XML is the answer.”
Recall the question: what are the software engineer’s methods to design,
customize, implement, . . . and test grammars; how to handle grammatical
structure that is implemented in software components? “XML grammars”
(i.e., DTDs, XML schemas, etc.) are in need of an engineering discipline as
much as any other grammar notation. Issues of schema evolution, coevolution
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of schema-dependent software, and schema-aware testing of schema-based
software are all urgent research topics in the “narrow” XML context. Also,
XML offers new challenges for grammarware engineering. For instance, the
mere mapping between different grammar notations is absolutely nontriv-
ial if an (arbitrary) XML schema is involved on either side. Finally, XML
lacks support for some grammar use cases, most notably for concrete syntax
definitions.

— Myth: “Metamodeling is the answer.”
We rehash: grammarware engineering addresses development and mainte-
nance of grammars and grammar-dependent software. By contrast, meta-
modeling focuses on the provision of metamodels, that is, models of models,
in particular: models of software models. According to Section 2.1, grammars
and metamodels are not in any simple equivalence or subsumption relation-
ship, which implies that metamodeling and grammarware engineering are
complementary. In particular, most grammars tend to be models (of struc-
tures) rather than metamodels of anything. One might say that “metamodel-
ing for grammars” can be understood to cover the field of “grammar modeling
languages” (BNF, EBNF, ASN.1, etc.), which corresponds, indeed, to a cer-
tain part of grammarware engineering. It is hard to see how contemporary
metamodeling would address the technical challenges in grammarware en-
gineering, for example, transformation and testing of grammar-dependent
software, customization of grammars for use cases, or commitment to com-
mon technology options.

— Myth: “Grammarware engineering is a form of model-driven development.”
What is model-driven (software) development (MDD) in the first place?
MDD is an emerging field. Our current perception of MDD is inspired by
Mellor et al. [2003], Selic [2003], and Favre [2004]: MDD aims at a model-
centric approach to software development, where models are systematically
transformed into actual software applications. Normally, support for round-
trip engineering is also required, that is, changes to the software can be
pushed back into the models. According to Section 2.1, grammars and mod-
els are not in any simple equivalence or subsumption relationship, but one
could still want to argue that grammarware engineering is actually an in-
stance of MDD, that is, grammar-driven development (GDD) or MDD for
grammarware. We do not object to this view, and recent MDD literature in-
deed recognizes grammarware as one typical “technological space” in the
broader MDD context [Kurtev et al. 2002; Favre 2004]. In terms of aspira-
tions, the two fields differ as follows:
—MDD aspires to revolutionize software development by favoring models

over programs, modeling over programming, model transformations over
code revisions.

—Grammarware engineering is grammar-biased and “conservative”: it tar-
gets grammatical structure in all the grammar use cases that have been
existing for decades.

In Figure 4, we compare the mythical (or perceived) view and the proposed
view on grammarware. The mythical view has not triggered an effort on
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Fig. 4. In need of a paradigm shift. On the left-hand side, we only care about obvious grammar
forms, namely, the ratio of “all software” to “grammars in compiler front-ends.” On the right-hand
side, we admit two important facts: (i) there are many grammars other than those in compiler
front-ends; (ii) ingrained grammar dependencies have a deep impact on most software.

grammarware engineering. The proposed view emphasizes the pervasiveness
of ingrained grammar dependencies as opposed to merely the grammars that
reside within compiler front-ends. The proposed view justifies a major effort on
grammarware engineering.

5. PROMISES OF GRAMMARWARE ENGINEERING

At this point, the reader might face the following question:

Somehow we managed to deal with all these kinds of grammarware
for decades.

So what? That is, what are the potential benefits for IT?

The overall promise of grammarware engineering is that it leads to an im-
proved quality of grammarware and to increased productivity of grammarware
development. These promises should provide a good incentive since grammars
permeate software systems and software development. Of course, it is difficult
to justify such general claims at this time. To provide some concrete data, we will
report on two showcases (or even success stories). Afterwards, we will identify
more detailed promises on the basis of these showcases, but we will also refer
to further scattered experiences with the engineering aspects of grammarware.

5.1 Showcase: Grammar Recovery

This showcase is discussed in detail in Lämmel and Verhoef [2001b] and
Lämmel [2005]. Using elements of the emerging engineering discipline for
grammarware, we were able to rapidly recover a relatively correct and complete
syntax definition of VS Cobol II. The starting point for this recovery project was
IBM’s industrial standard for VS Cobol II [IBM Corporation 1993]. The syn-
tax diagrams had to be extracted from the semiformal document, and about
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400 transformations were applied to the raw syntax in order to add missing
constructs, to fix errors, and to ultimately obtain a grammar that could be used
for parsing. The recovery project was completed in just a few weeks, which in-
cluded the development of simple tools for diagram extraction and grammar
transformation. After that period, we were able to parse all the VS Cobol II
code that was available to us (several millions lines). We should note that addi-
tional effort will be needed to develop general, mature tools, and to deploy the
syntax definitions in different industrial settings. Key to success was a system-
atic process, automation of grammar transformations, and parser testing based
on a prototype technology. This project is part of a series of similar recovery
projects [van den Brand et al. 1997; Sellink and Verhoef 2000a; van den Brand
et al. 2000]. The recovered syntax definition for Cobol is widely used by tool de-
velopers and researchers around the world. This was the first freely available,
high-quality syntax definition for Cobol in the 40 years of this language. (Even
today, most business-critical code still resides in Cobol portfolios [Arranga et al.
2000].) Industrial Cobol front-ends are always considered intellectual property
because the costs for their development and maintenance are considerable and
the involved technologies are proprietary.

5.2 Showcase: API-fication

This showcase was discussed in detail in de Jong and Olivier [2004]. Us-
ing elements of the emerging engineering discipline for grammarware, mem-
bers of our team dramatically improved the architecture of the ASF+SDF
Meta-Environment [Klint 1993; van den Brand et al. 2001]. This system sup-
ports generic language technology on the basis of executable specifications for
language-based, interactive tools. The current system is the result of many per-
son years of design, development, and evolution. The system is being used in
industrial applications dealing with software renovation, domain-specific ap-
plication generation [van den Brand et al. 1996], and others. The architectural
revision of the system concerned the usage of the internal ATerm format [van
den Brand et al. 2000] for generic data representation. While infrastructures for
generic language functionality normally require such a generic format, a con-
sequence is that programmers are encouraged to encode specific format knowl-
edge of manipulated data in the code. This leads to heavily tangled code. In
the case of the C- and Java-based ASF+SDF Meta-Environment knowledge
of several parse-tree formats and other specific formats was scattered all over
the ATerm-based functionality in the system. The architectural revision of the
system aimed at an “API-fication.” We use this term to denote the process of
replacing low-level APIs by higher-level APIs. Here, an API is viewed as a set
of C functions, Java methods, and that alike. In the showcase, the low-level
API supports processing of plain ATerms, while several high-level APIs sup-
port data access for different parse-tree formats and others. The high-level
APIs were generated from grammars. The API-fication of the ASF+SDF Meta-
Environment led to an explicit representation of specific formats. Also, nearly
half of the manually written code was eliminated.
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5.3 Promise: Increased Productivity

The recovery showcase suggests increased productivity as a promise of gram-
marware engineering because other known figures for the development of qual-
ity Cobol grammars are in the range of 2 or 3 years [Lämmel and Verhoef 2001a,
2001b]. We analyzed the IT value of this speedup in [Lämmel and Verhoef
2001a]. In essence, the ability to recover grammars for the 500+ languages
in use enables the rapid production of quality tools for automated software
analysis and modification. Such tools make software re-/reverse engineering
scalable in the view of software portfolios in the millions-of-lines-of-code range.
Currently, solution providers for legacy modernisation are not able to serve the
full spectrum of languages and dialects, as noted by the Gartner Group [Gartner
Research 2003]. Apparently, parser development and source-code modeling are
very expensive in practice, up to a degree that automated software analysis and
modification becomes unaffordable.

Productivity gains are by no means restricted to grammar recovery. Gener-
ally, systematic processes and automation in the grammarware life cycle in-
crease productivity.

5.4 Promise: Improved Evolvability

The API-fication showcase made extra grammatical structure accessible to
static typing. This is clearly beneficial for evolution because types make evo-
lutionary adaptations of grammarware more self-checking. In fact, the API-
fication effort was triggered by the need to change the parse-tree format, which
was found to be too difficult to perform on the original system with its implicit
grammar knowledge.

Improved evolvability can also be expected from techniques that opera-
tionalize links between scattered grammar knowledge. That is, if grammati-
cal structure changes in the context of one use case, then these changes can be
propagated to other use cases. An example of an operationalized link is the semi-
automatic derivation of a tolerant parser from a more strict grammar [Barnard
1981; Barnard and Holt 1982; Klusener and Lämmel 2003].

5.5 Promise: Improved Robustness

Static typing of grammarware improves its robustness because it rules out
inconsistent grammar patterns in code. That is, the type system of the used
specification or programming language is exploited to enforce adherence to a
grammar. The API-fication showcase illustrates that generic language tech-
nology can require special efforts. The aforementioned operationalization of
links between scattered grammar knowledge tackles robustness as well: it
makes sure that different components “talk in the same language,” which is
clearly important for robust interoperability. Robustness of grammarware will
also be improved by effective reuse. Unfortunately, we do not yet fully under-
stand how to reuse grammarware. Contemporary grammarware tends to be
too monolithic, too technology-dependent, and too application-specific for reuse.
Finally, robustness of grammarware will also be improved by grammar-based
testing. Most notably, differential testing and stress testing can be supported
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by grammar-based test-data generation using a stochastic approach or even
proper coverage criteria. Applications of grammar-based testing are reported
in McKeeman [1998], Sirer and Bershad [1999], and Veerman [2005].

5.6 Promise: Fewer Patches, More Enhancements

The promises of grammarware engineering can be compared with known bene-
fits of modern development methodologies. Dekleva [1992] addressed the (as it
turned out unsubstantiated) assumption that the improved quality of a system’s
structure and other improvements would reduce maintenance time. This was
a shared misconception at that time. Dekleva [1992], page 355, summarized:

The survey findings do not support the proposition that the appli-
cation of modern information systems development methodology de-
creases maintenance time. However, some benefits are identified. Time
spent on emergency error correction, as well as the number of sys-
tem failures, decreased significantly with the application of modern
methodology. Systems developed with modern methodologies seem
to facilitate making greater changes in functionality as the system
changes.

Likewise, we expect that patching work in grammarware maintenance will
diminish as failures of grammarware are avoided by construction, so that more
time will be left for enhancing grammarware, while enhancements will not
harm robustness of the grammarware. In fact this is the main motive for aiming
at an engineering discipline for grammarware.

6. PRINCIPLES OF GRAMMARWARE ENGINEERING

We contend that an engineering discipline for grammarware should be based on
the principles that follow. None of the principles should be surprising since they
are all adopted from contemporary common sense in software engineering. The
point is that contemporary grammarware development does not adhere to these
principles, despite their advisability. However, there exist several supportive
examples of using these principles. We will provide corresponding references
in due course.

6.1 Principle: Start from Base-Line Grammars

When designing grammarware, too early commitment to a concrete use case,
specific technology (meta-grammarware), and other implementational choices
shall be avoided. To this end, grammarware development shall depart from
pure grammars: more or less plain structural descriptions using a fundamen-
tal notation. Within the grammarware life cycle, we use the term base-line
grammar to denote such grammars. Base-line grammars should be sufficiently
structured and annotated to be useful in the potential derivation of concrete
syntaxes, object models, and other typical forms of use-case specific grammars.
If necessary, base-line grammars can be complemented by assorted constraints
and semantics for the described structures. The constraints and the semantics
shall be “universal,” that is, they must not be specific to a use case.
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6.2 Principle: Customize for Grammar Use Cases

We derive new grammars and enriched structural specifications via customiza-
tion from base-line grammars. Here are some existing techniques that exercise
this principle:

—In Kadhim and Waite [1996], and Wile [1997], approaches for the opera-
tionalization of the link between concrete and abstract syntax definition are
described. That is, concrete syntax definitions are customized into abstract
syntax definitions.

—In Aho et al. [1986], and Lohmann et al. [2004], advanced transforma-
tions for the removal of left-recursion in a context-free grammar are de-
scribed. This sort of customization is a preparatory step when we want
to commit to basic parsing technology for recursive descent. The cited ap-
proaches are advanced insofar that transformation is not limited to context-
free grammars but the grammar transformation is also lifted to the level
of attribute grammars. Here, we assume that the attribute grammars
model parse-tree synthesis. The approaches guarantee that the synthe-
sized parse-trees do not change, even though the underlying grammar does
change.

—Customization is expected to be useful for converting pure grammars into
parser specifications. Relevant idioms for parser specification exist in abun-
dance. For instance, there are idioms that address disambiguation: extra
actions for semantics-directed parsing [Parr and Quong 1994; Breuer and
Bowen 1995], decorated tokens [Malloy et al. 2003], and filters on parse-tree
forests [Klint and Visser 1994; van den Brand et al. 2002]. These idioms tend
to be coupled with specific technology. Also, one cannot exercise these idioms
in an incremental fashion such that a given grammar could be adapted in
the context of a specific use case.

—A very limited form of grammar customization is provided by GDK—the
Grammar Deployment Kit [Kort et al. 2002], which generates different parser
specifications from a general grammar notation. Some minor details of gener-
ation can be controlled via a trivial command-line interface. Otherwise, GDK
assumes that grammars are prepared prior to export to the chosen parser
technology—by means of grammar transformations.

The present-day approach to customization is predominantly ad hoc and
manual. A general view on automated grammar customization could be based
on concepts of aspect-oriented programming [Kiczales et al. 1997; Elrad
et al. 2001] pending an adoption of grammarware. That is, any customiza-
tion step could be viewed as the superimposition of advice onto an existing
grammar or grammar-dependent software component. This superimposition
would be realized by grammarware transformations using a weaving seman-
tics. Furthermore, concepts of model-driven development [Mellor et al. 2003;
Selic 2003], in particular, model transformations [Sendall and Kozaczynski
2003], could provide a useful organization principle for customization. That
is, the base-line grammar in grammarware engineering can be viewed as
the platform-independent model (PIM) in model-driven architecture (MDA
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[OMG 2001–2004]), and each grammar use case, or each intermediate step
can be viewed as a platform-specific model (PSM).

6.3 Principle: Separate Concerns in Grammarware

Separation of concerns in software (including grammarware) is supposed to fa-
cilitate reuse and modular reasoning [Dijkstra 1976]. A given piece of grammar-
ware indeed tends to deal with several concerns. One can distinguish grammar
concerns (i.e., modularization of the grammar as such), and grammar-based
concerns (i.e., modularization of functionality on top of the grammar). For in-
stance, in a typical re-/reverse engineering front-end, one can find the following
grammar concerns (which are unfortunately not separated in practice):

—base syntax,
—comments and layout (indentation),
—preprocessing syntax, and
—error handling rules.

A re-engineering transformation could exhibit the following grammar-based
concerns:

—the primary transformation,
—preparatory or on-the-fly analyses,
—a helper concern for change logging, or
—a helper concern for sanity checking.

Some techniques for the separation of grammar concerns are described in
Purtilo and Callahan [1989], Kadhim and Waite [1996], Malton et al. [2001],
and Cordy [2003]. Research on modular attribute grammars has resulted in
some techniques for the separation of grammar-based concerns [Farrow et al.
1992; Kastens and Waite 1994; Lämmel 1999a, 1999b; Lämmel and Riedewald
1999; de Moor et al. 2000]. There are mixed techniques such as origin tracking
in term rewriting [van Deursen et al. 1993], and parse trees with “active” an-
notations [Kort and Lämmel 2003b]. We contend these techniques need to be
further developed and marketed before they are widely adopted.

An effective separation of concerns in grammarware often requires advanced
means of modularization. To give an example, let us consider pretty-printing
program text. One concern is to define a comprehensive set of pretty-print rules
for all constructs. Another potential concern is the preservation of preexisting
formatting information [de Jonge 2002]. The challenge is that these concerns
(or features) interact with each other in a complicated, so far insufficiently
understood manner.

6.4 Principle: Evolve Grammarware by Transformation

The present-day approach to grammarware evolution is predominantly ad hoc
and manual. We propose that evolution of grammarware is operationalized via
automated transformations. Since grammars permeate grammar-dependent
software, any grammar change has a strong impact. Hence, the evolution of
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Fig. 5. Multilevel transformations in the XML setting. The primary transformation is defined at
the XML schema level, while the transformations at the document-processing level (e.g., XSLT)
and the XML-stream level are supposed to be implied.

grammatical structure must be effectively transposed to the level of grammar-
dependent software components. That is, any grammar transformation has to
be completed by a transformation of all grammar-dependent functionality. Like-
wise, any grammatically structured data is subject to a data transformation
in case the type-providing grammar has been changed. Consequently, we face
transformations at three levels:

—grammar transformations,
—software transformations for grammar-dependent software, and
—data transformations for grammatically structured data.

Evolution must also handle the issue of grammar variations that reside in
different software components. The related grammars either evolve jointly, or
the evolution of one grammar (use case) must be hidden from the other grammar
(use case) by means of a “grammar bridge,” that is, a grammar-based conversion
component.

In Figure 5, we instantiate the different levels of grammarware evolution for
XML:

Grammarware XML
Grammar XML schema (or DTD)
Grammar-dependent program XML document processor (e.g., XSLT)
Grammatically structured data XML data (XML stream / document)

The middle layer in the figure represents an XML-schema transformation. The
top and the bottom layers complete the primary schema transformation to be
meaningful for dependent document-processing functionality and correspond-
ing XML streams.

The derivation of a data transformation from a schema transformation is
relatively well understood in the context of databases (cf. database schema
mappings coupled with an instance mapping [Hainaut et al. 1993; Henrad et al.
2002; Gogolla and Lindow 2003]). Some similar work has been reported on XML
grammars [Lämmel and Lohmann 2001; IBM Research 2002]. More generally,
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we view pairs of transformations on schema and data as an important instance
of the notion of “coupled transformation” [Lämmel 2004a]).

The derivation of a program transformation from a schema transformation
is weakly understood both in the XML context and the database context. How-
ever, object-oriented program refactoring [Griswold and Notkin 1993; Opdyke
1992] instantiates this sort of coupling, where class structures can be refac-
tored and all dependent method implementations are “automatically” updated.
Clearly, evolutionary transformations can go beyond mere refactoring. In Kort
and Lämmel [2003a], we considered coupled transformations for types and func-
tions in a functional program, while we even went beyond refactoring. Some
forms of model transformations [Sendall and Kozaczynski 2003] (in the sense
of the emerging field of model-driven development) might be applicable in the
grammarware context.

Evolution comprises refactoring and enhancement, as well as cleanup. In
the broader sense, evolution also comprises retargeting grammarware from one
technology to another. Basic grammar transformations for refactoring, enhance-
ment, and cleanup were developed in Lämmel [2001a]. Evolutionary transfor-
mations of software have generally not yet received much attention, except
for the refactoring mode of evolution. The situation is not different for gram-
marware, but some initial ideas were summarized in [Lämmel 1999b, 2004b],
where rule-based programs were transformed in a number of ways, including
some grammar-biased modifications, some of them going beyond refactoring.

6.5 Principle: Reverse-Engineer Legacy Grammarware

We cannot assume that suitable base-line grammars are readily available for
all legacy grammarware. However, it is fair to assume that there is some en-
coded grammar knowledge available, from which base-line grammars can be
recovered by means of reverse engineering. The grammar knowledge can re-
side in data, for example, one can infer an XML schema from given XML docu-
ments. The grammar knowledge can also reside in source code or in a semistruc-
tured document, for example, in a hand-crafted recursive-descent parser or in
a semiformal reference manual. The latter scenario was discussed in detail in
Section 5.1.

The recovery of base-line grammars is an issue for grammars in a broad
sense, not just for syntax definitions of widely used programming languages. It
is a common maintenance scenario to recover grammars for DSLs and (data-
access) APIs. Typical triggers for such recovery efforts are the following:

—A proprietary language or API must be replaced.
—New grammar-based tools have to be developed.
—The language or API at hand must be documented.

Here are two specific examples that illustrate the link between recovery and en-
abled forward engineering. In Sellink and Verhoef [2000a] and van den Brand
et al. [2000], we described a project related to the proprietary language PLEX
used at Ericsson. The project delivered a recovered PLEX grammar, a docu-
mentation of PLEX, and a new parser for PLEX. In de Jonge and Monajemi
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[2001], a project was described that related to the proprietary SDL dialect used
at Lucent Technologies. The project delivered a recovered SDL grammar, and a
number of SDL tools, for example, a graph generator for finite state machines.

6.6 Principle: Ensure Quality of Grammarware

We need quality notions or metrics in the first place. We need automated metrics
calculation in the second place. We need effective (computable) techniques to
assess quality of grammarware and to steer the improvement of quality. This
development has to distinguish between grammars versus grammar-dependent
software. As far as grammars are concerned, we need to identify grammar
metrics, grammar styles, and notions of correctness and completeness. Quality
attributes of grammar-dependent software shall be these: correctness in the
sense of differential testing, conformance in the sense of conformance testing,
performance attributes, complexity metrics, type validation, and others.

Some grammar metrics have been defined and used in Sellink and Verhoef
[2000a] in the context of assessing the code quality and the status of grammars
during grammar reverse engineering. Specific notions of relative grammar cor-
rectness and completeness were defined in Lämmel [2001b] with the goal of
aligning a grammar to a proprietary (i.e., black box) reference parser.

Techniques for quality assessment and improvement for grammar-
dependent software might explicitly involve the grammatical structure at hand,
in which case we call these techniques grammar-based. For instance, grammar-
based testing of grammar-dependent software would be based on test-data
sets that cover the underlying grammar [Purdom 1972; Lämmel and Harm
2001]. Grammar-based testing can be partially automated by grammar-based
test-data generation; see Burgess [1994] and McKeeman [1998] for compiler
testing, and Maurer [1990] and Sirer and Bershad [1999] for other settings.
Clearly, validation of a grammar-dependent software component is not neces-
sarily grammar-based. For instance, validation by means of manually developed
conformance suites [NIST 2003; Malloy et al. 2002] might focus on I/O behavior
rather than grammatical structure.

6.7 The Grammarware LifeCycle

The discussed principles can be integrated in a grammarware life cycle; see
Figure 6. By having a proper grammarware lifecycle we can invigorate the
normal software lifecycle. Most notably, the distinction of base-line grammars
versus grammar use cases allows us to apply evolutionary transformations to
the former such that the adaptations of the latter are mostly implied. That is,
grammar use cases are supposed to coevolve with base-line grammars. There
are clearly evolution scenarios that are inherently technology- and use-case-
specific, in which case evolutionary transformations must be carried out on
grammar use cases.

To align the grammarware lifecycle with the normal software lifecycle, we
will briefly go through Figure 6. We will focus on forward engineering—knowing
that we will neglect some trips through the figure. There are the following
phases:
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Fig. 6. The grammarware life cycle. Base-line grammars do not commit to a technology or a use
case. The stack in the middle lists some grammar use cases, which are derived by customization.
Both base-line grammars and grammar use cases can be subject to different sorts of evolution,
while evolution of base-line grammars should be preferred over evolution of grammar use cases,
whenever possible. Grammar use cases can be implemented by meta-grammarware or by grammar-
based programming techniques. The grammar life cycle is enabled by grammar recovery, which
recovers base-line grammars from implementations or others, if necessary.

—provision of base-line grammars,
—customization to derive grammar use cases,
—implementation to obtain actual grammar-dependent software, and
—(potentially grammar-based) testing of the grammar-dependent software.

Here is one scenario for forward engineering from Figure 6: going from
a base-line grammar to an object-oriented visitor framework through a cus-
tomized class hierarchy. The derivation of the use case requires a class dic-
tionary. (Hence, either the base-line grammar must be a class dictionary, or it
must be amenable to a mapping that delivers a class dictionary.) For the sake of
an interesting (and realistic) customization requirement, we assume that the
final object structures are supposed to carry extra links for use/def relations.
To this end, the customization has to enhance the class hierarchy accordingly,
when compared to the base-line grammar. The enhanced class hierarchy can
now be “implemented” by generating a visitor framework for traversing object
structures, as it is pursued in Visser [2001b] and elsewhere. Ultimately, we ob-
tained a component of grammar-dependent software: a compiled and packaged
visitor framework.

6.8 Automated Grammar Transformations

Several principles of grammarware engineering can be supported through
transformations, which are to be automated for reasons of traceability and
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scalability. We will now focus on grammar transformations, assuming that they
can also steer the provision of grammar-aware transformations of grammar-
dependent software. Grammarware engineering employs grammar transforma-
tions in the sense of a metaprogramming technique. A grammarware engineer
“codes” grammar transformations to express intents of evolution, customiza-
tion, and recovery. (This view differs from compiler construction [Aho et al.
1986], where grammar transformations are executed by parser generators and
other tools in a black-box fashion.) Grammar transformations can be recorded in
scripts. One can envisage interactive tool support for grammar transformation.

Let us consider some examples. We will illustrate recovery transforma-
tions for a syntax definition of Cobol. The reported examples were encoun-
tered in the aforementioned recovery project [Lämmel and Verhoef 2001b] for
a Cobol grammar. According to the industrial standard for VS Cobol II [IBM
Corporation 1993], an ADD statement can be of the following form (in EBNF
notation):

add-statement =

"ADD" (identifier|literal)+ "TO" (identifier "ROUNDED"?)+

("ON"? "SIZE" "ERROR" imperative-statement)?

("NOT" "ON"? "SIZE" "ERROR" imperative-statement)?

"END-ADD"?

// two other forms of ADD statements omitted

This production is actually incomplete in terms of the intended syntax.
We quote an informal rule from IBM’s VS Cobol II reference [IBM Corporation
1993]:

A series of imperative statements can be specified
whenever an imperative statement is allowed.

To implement this rule, we can apply a transformation operator generalise as
follows:

generalise imperative-statement

to imperative-statement+

The transformation replaces the occurrences of the nonterminal imperative-

statement by the EBNF phrase imperative-statement+, as suggested by the in-
formal rule. We call this a generalization because the resulting grammar is more
general than the original one—in the formal sense of the generated language.
Here is the result:

add-statement =

"ADD" (identifier|literal)+ "TO" (identifier "ROUNDED"?)+

("ON"? "SIZE" "ERROR" imperative-statement+)?

("NOT" "ON"? "SIZE" "ERROR" imperative-statement+)?

"END-ADD"?

We will also illustrate transformations for grammar refactoring. The
ON-SIZE-ERROR and NOT-ON-SIZE-ERROR phrases occur in other forms of
ADD-statements and many other Cobol statements again and again. So we single
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out these phrases by extraction, which will lead to a more concise grammar. We
apply the following transformations:

extract "ON"? "SIZE" "ERROR" imperative-statement+

as on-size-error-phrase

extract "NOT" on-size-error-phrase

as not-on-size-error-phrase

That is, we extract some parts of the productions for ADD-statements (and
others) such that they constitute new nonterminals on-size-error and
not-on-size-error. Consequently, the modified production looks as follows:

add-statement =

"ADD" ( identifier | literal )+ "TO" ( identifier "ROUNDED"? )+

on-size-error? not-on-size-error?

"END-ADD"?

Generally, one can classify grammar transformations in terms of usage sce-
narios (and the assorted preservation properties). We have seen examples of
generalization and extraction. Here is a more profound list of scenarios:

—Refactoring: a grammar is improved to become more concise, more readable,
better amenable to subsequent changes. Refactoring can be used during
evolution, customization, and recovery. Extraction (see above) is a form of
refactoring.

—Style conversion: a grammar of a certain normal form (“style”) is derived.
For instance, regular operators can be eliminated in an EBNF to arrive at
a pure BNF. (Style conversions preserve the generated language, just as
refactoring does. Style conversion is a global, systematic operation, while
refactoring is normally a more specific, programmer-initiated operation.)

—Generalization: productions are added or regular expressions are general-
ized in the sense of extending the generated language. Generalization is
particularly meaningful during grammar evolution and grammar recovery.

—Restriction: the opposite of generalization.
—Insertion: rules are enhanced by inserting extra subphrases. For instance,

a base-line grammar could be customised as a parse tree format such that
inserted subphrases cater to position information or comments and layout.

—Deletion: the opposite of insertion.
—Amalgamation: two or more rules are merged into a single rule. (This sort

of transformation can be viewed as a generalizing transformation followed
by the elimination of doubles in the rule set.) Amalgamation caters for
simplified, problem-specific grammars. A good example of amalgamation
can be found in the work on agile parsing [Dean et al. 2002, 2003].

—Separation: the opposite of amalgamation.
—Transformations supporting grammar properties, for example, conflict

resolution for LALR(1), or disambiguation for generalized LR parsing.
Eventually, many of these transformations cannot be described on pure
grammars alone, but they rather involve commitment to a richer grammar
notation or even to a specific technology (at least, as of today).
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A number of systems for language processing have been meanwhile
used to support certain forms of automated grammar transformations (in
the sense of grammarware engineering); we know of uses of ASF+SDF
Meta-Environment, LDL, Popart, Strafunski, Stratego, TXL—as discussed
in Lämmel and Wachsmuth [2001], Lämmel and Verhoef [2001b], Wile [1997],
Lämmel and Visser [2003], de Jonge et al. [2001], and Dean et al. [2002].

7. A LIST OF RESEARCH CHALLENGES

We have encountered various techniques throughout the agenda, which are in-
deed very versatile, and which substantiate that we are facing the emergence of
an engineering discipline for grammarware. We contend that a proper research
effort is needed to study foundations in a systematic manner, and to deliver best
practices with a high degree of automation and generality. The required effort
should not be underestimated. To give an example, so far, there is no reason-
ably universal operator suite for grammar transformations despite all reported
efforts. Presumably, the toughest challenge is to provide faithful coverage for
the many different usage scenarios for these transformations, and to be mean-
ingful to most if not all grammar notations and grammar-based programming
setups. This large scale makes us think of a public research agenda as opposed
to a short-term project.

The following list entails research issues on foundations, methodology, best
practices, tool support, and empirical matters. Each item is self-contained,
and could serve as a skeleton of a doctoral project (except the last one:
miscellaneous).

7.1 An Interoperational Web of Grammar Forms

We have enumerated many different grammar notations. In practice, there
exist all kinds of more or less ad hoc mappings between these notations. For
instance, regular operators can be transformed away such that pure BNF no-
tation is sufficient. Also, context-free grammars can be refactored such that
the productions correspond immediately to abstract and concrete classes in
an object-oriented inheritance hierarchy. Ultimately, we need a comprehensive
grammar web, where the side conditions and implications of mapping one nota-
tion to the other are described in an operational and pragmatic manner—with
reference to details of grammar use cases. Some relevant results can be found
in Koskimies [1991], van der Meulen [1994], de Jonge and Visser [2000], Kort
et al. [2002], McLaughlin [2002], de Jong and Olivier [2004], Hinze et al. [2004],
and Herranz and Nogueira [2005]. There exist various theoretical expressive-
ness results about different grammar forms. These results are relevant and
should be exploited, but they must not be confused with practically meaningful
mappings between the grammar notations.

7.2 A Collection of Grammarware Properties

What is the complexity of a grammar? What is the grammar-related complex-
ity of grammar-dependent functionality? What are effective notions of grammar
equivalence and friends? What is the distance between two grammars? What
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are preservation properties, as they can be used to discipline grammar trans-
formations? What is a grammar slice? What is a grammar module? What is
the grammar contract that is relied upon in grammar-dependent functionality?
What are typical analyses to be performed on grammars? And so on. We pre-
sume that the development of a comprehensive framework for grammarware
properties can be based on existing work for grammar-flow analysis [Mönck
and Wilhelm 1991; Jeuring and Swierstra 1994].

7.3 A Framework for Grammar Transformations

What are suitable primitives? What are the composition principles? What are
pre- and postconditions? How to infer transformations from given grammars?
What classes of transformations do exist? How do transformations apply across
grammar notation? How to reuse such pure grammar transformations in the
context of customization for grammar use cases? How to support data and gram-
mar integration by grammar transformations? And so on. One should aim at an
operator suite that covers the various transformation scenarios including refac-
toring, disambiguation, normalization, enhancement, and cleanup. The final de-
liverable can be a domain-specific language for grammar transformation, which
is simple to use, and which comes with a dedicated theory for formal reasoning
about grammar transformations. Ideally, the transformation language should
lend itself to interactive tool support for transformation. Relevant results can
be found in Wile [1997], Pepper [1999], Bernstein and Rahm [2001], Lämmel
and Verhoef [2001b], Lämmel [2001a], Lämmel and Wachsmuth [2001], Dean
et al. [2002], and Erwig [2003].

7.4 Coevolution of Grammar-Dependent Software

We recall the archetypal example from Section 6.4: the coevolution of an XSLT
program in reply to a change of the underlying XML schema. Another example
is the coevolution of a customization concern for parser tweaking or parse-tree
construction in reply to a change of the underlying syntax. There exists related
work on the subject of the joint transformation of grammars and dependent
declarative (rule-based) programs [Lämmel 1999a, 1999b; Lämmel and Riede-
wald 1999; Lohmann and Riedewald 2003; Kort and Lämmel 2003a; Lohmann
et al. 2004; Lämmel 2004b]. We adopt the term coevolution from D’Hondt et al.
[2000], Wuyts [2001], and Favre [2003], where it was specifically used in the
context of joint adaptation of object-oriented designs and implementations. We
propose that coevolution of grammar-dependent software should be approached
in a language-parametric manner—as far as the programming language for
grammar-dependent functionality is concerned. This sort of genericity is de-
scribed, to some extent, in Lämmel [2002] and Heering and Lämmel [2004].

7.5 Comprehensive Grammarware Testing

What are grammar-based coverage criteria? What are means to characterize
problem-specific test cases? What techniques are needed to analyze coverage
and to generate test data? There exist few coverage criteria for grammars:
Purdom’s rule coverage [Purdom 1972] for context-free grammars, and refine-
ments thereof [Lämmel and Harm 2001; Lämmel 2001b]. Test-data generation
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necessitates a string of techniques:

—to deal with the standard oracle problem,
—to minimize test cases that act as symptoms,
—to enforce nonstructural constraints,
—to accomplish negative test cases, and
—to achieve scalability for automated testing.

Specific results regarding some of these issues can be found in Purdom
[1972], Celentano et al. [1980], Kastens [1980], Maurer [1990], Burgess [1994],
McKeeman [1998], Sirer and Bershad [1999], and Harm and Lämmel [2000].

7.6 Parsing Technology Revisited

Even basic parsing regimes are still subject to ongoing research and defense.
What is the ultimate regime? Is it generalized LR-parsing with powerful forms
of disambiguation [Klint and Visser 1994; van den Brand et al. 2002]; is it
top-down parsing but with idioms for semantics direction [Parr and Quong
1994; Breuer and Bowen 1995]; it is simple LALR(1) parsing with token deco-
ration [Malloy et al. 2003]; is it plain recursive descent parsing with provisions
for limiting backtracking [Breuer and Bowen 1995; Kort et al. 2002]? Perhaps,
there is no ultimate regime. So then, when to use what regime? How to migrate
from one regime to the other? Analyzing the engineering aspects of different
parsing technologies, and allowing programmers to detach themselves, to some
extent, from specific technology is the perfect showcase for grammarware en-
gineering. This showcase really requires best practices and corresponding tool
support. Engineering aspects of parser development are largely neglected in the
literature, but we refer the reader to Crawford [1982] for a small but good exam-
ple, where some engineering guidelines for the construction of LALR grammars
are provided.

7.7 Grammar-Aware API Migration

Consider the following archetypal example. Given is an object-oriented program
that access XML data through the simple (generic) Document Object Model
(DOM [W3C 1997–2003]). Let us assume that the accessed data is required
to always be validated against some given XML schema. In that case, static
typing of the program could be improved by making use of an XML data binding
technology (such as JAXB [Sun Microsystems 2001] in the case of the Java
platform). That is, XML access will be based on classes that are generated from
the XML schema. The challenge is that API migration is weakly understood
in terms of the required code transformations. More generally, the question is:
what grammar-based methods can be provided for the support of API migration
(potentially also including APIs other than obvious data-access APIs)?

7.8 Modular Grammarware Development

What advanced means of modular composition can improve reuse of gram-
mars, grammar slices, other grammar fragments, and grammar-dependent
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functionality? What are generic aspects for grammar-dependent functionality,
and what are the means to instantiate them? Modular or even aspect-oriented
programming [Kiczales et al. 1997; Elrad et al. 2001] should be fully instanti-
ated for grammarware. Relevant results can be found in Farrow et al. [1992],
van Deursen et al. [1993], Kastens and Waite [1994], Lämmel [1999a, 1999b],
de Moor et al. [2000], Malton et al. [2001], Swierstra [2001], Winter [2003],
Cordy [2003], and Kort and Lämmel [2003b]. An archetypal scenario is parser
development. Achieving an effective modularization of all the concerns in the
following list—on top of mainstream parsing technologies—would be a major
step forward in the parsing arena:

—concrete syntax,
—abstract syntax,
—lexical syntax,
—preprocessing syntax,
—parse-error recovery,
—parse-tree construction,
—semantics-directed parsing,
—computations for attributed parse-trees, and
—annotation of parse trees with position information.

7.9 Grammarware Debugging

It is common practice to debug grammarware just in the same way as any other
software—that is, without actual grammar-awareness. This is not necessarily
appropriate. For instance, consider grammar-based programming using visi-
tor techniques in object-oriented programming. Stepping through code for tree
walking, one is likely to inspect code that is not related to the problem-specific
parts of the traversal. Grammar-aware breakpoints with assorted use-case-
specific debug information are needed. There exists related work on visualiz-
ing the inner workings of compilers [Schmitz 1992], and on debugging mod-
els for generic language technology [Olivier 2000]. In addition to debugging
grammar-dependent software, there is also a need for debugging grammars, by
themselves. For instance, consider the desirable property of a grammar to be
unambiguous. While the property is generally undecidable, one can perhaps
use static analyses, such as LR(k) conflict analysis for smaller ks, as to obtain
indications of sources of ambiguity.

7.10 Adaptive Grammarware

In some grammarware development projects, the use of entirely precise gram-
mars is not necessarily the preferred option—from an engineering point of view.
Less precise grammars, and more adaptive grammarware, might be preferable
or even mandatory. For instance, a precise grammar might simply not exist for
the use case at hand—as in the case of processing interactive input with tran-
sient syntax errors. Even in case a precise grammar is obtainable in principle,
precision might still be too expensive. Also, overprecision can pose a barrier for
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evolution of grammarware and for unanticipated variations on grammatical
structure. Examples of adaptive techniques are known in parsing [Barnard
1981; Barnard and Holt 1982; Koppler 1997; Moonen 2001; Klusener and
Lämmel 2003; Synytskyy et al. 2003]. Clearly, adaptiveness triggers additional
concerns such as correctness, as we discuss for parsing in Klusener and Lämmel
[2003]. There is a need for a general methodology for adaptive grammarware.

7.11 Grammar Inference Put to Work

Grammar recovery is an essential phase in the grammarware lifecycle. One
option for recovery is to extract available traces of grammatical structure, and
to issue transformations that lead to a useful grammar [Lämmel and Verhoef
2001b]. An alternative form of grammar recovery can be based on grammar
inference. While there is a considerable body of theoretical results on grammar
inference of context-free grammars (and other grammars) from data [Mäkinen
1992; Koshiba et al. 2000], there is little experience with applying grammar
inference to nontrivial software engineering problems. In particular, known
efforts to infer grammars for use in programming-language parsers are quite
limited in scale; see, for example, Mernik et al. [2003], Javed et al. [2004],
and Dubey et al. [2005]. For instance, in Mernik et al. [2003], the syntax of a
small domain-specific language was inferred using an evolutionary approach,
namely, genetic programming. We have not yet seen work that clearly motivates
grammar inference from an engineering point of view. How to make sure that
the grammar will be meaningful to the grammarware engineer? How to make
inference predictable such that similar results are obtained for slightly different
inputs? How to take into account informal knowledge about the grammar? How
to test the grammar as inference proceeds?

7.12 Reconciliation for Meta-Grammarware

Consider the following archetypal example, which deals with the evolution of
a domain-specific language (DSL [van Deursen et al. 2000]). We assume that
the DSL is implemented by the generation of low-level code from high-level
DSL code. We assume that the developer can readily customize the generated
code, whenever necessary. The evolution of the DSL or alterations of the gen-
erator tool make it likely that code has to be regenerated, which poses the
following challenge. The newly generated code has to be reconciled with previ-
ously customized code. Considering (software) models rather than grammars
(or grammarware), such reconciliation issues relate to round-trip engineering
in model-driven development [Mellor et al. 2003; Selic 2003]. In that case,
a platform-independent model (PIM) is transformed into a platform-specific
model (PSM) and eventually into code. Any customization of PSM (or code)
would need to be pushed back to the PIM.

7.13 Grammarware Lifecycling

Processes for typical lifecycle scenarios of recovery, evolution, and customization
need to be defined in detail. This development shall differentiate various gram-
mar notations and grammar use cases. For instance, there will be variations
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of processes that are specific to document processors versus language proces-
sors. The defined processes are supposed to highlight the potential for auto-
mated transformation, quality assessment, and choice points for technology
options. This development will eventually add up to a collection of methods,
best practices, and comprehensive processes that can form the core of an engi-
neering handbook for grammarware.

7.14 Comprehensive Grammarware Tooling

The future grammarware engineer shall be provided with an environment for
Computer-Aided Grammarware Engineering (CAGE)—akin to the classic term
CASE (Computer-Aided Software Engineering). A CAGE environment should
cover interactive and batch-mode grammar transformations, coevolution of
grammar-dependent programs, test-set generation, coverage visualization, cal-
culation of grammar metrics, indication of bad smells, customization of gram-
mars, and others. CAGE tooling needs to be made available in integrated devel-
opment environments such as Eclipse or Visual Studio. Given the recent surge
of model-driven development (MDD), one might add CAGE tooling to MDD
environments. For instance, tool support for technology-specific customization
of grammars (as in the parsing context) could be provided as transformation
cartridges in the sense of model-driven architecture [OMG 2001–2004].

7.15 Miscellaneous

What are measurable losses caused by grammarware hacking? What are suc-
cess stories, and what are key factors for success? What is the mid- and long-
term perspective for the distribution of different kinds of grammarware? What
do organizations know about their grammarware assets? How to enable the cre-
ation of such knowledge [Klint and Verhoef 2002]? What are further insights in
the grammarware dilemma, and how does this compare to other dilemmas in
software engineering? What lessons can be learned from unsuccessful adoption
of grammarware technology? (As a reviewer phrased it: “lex and yacc are the
only tools the world out there has understood; the rest was ignored. Why?”.)

8. SUMMARY

We have argued that current software engineering practices are insufficiently
aware of grammars, which is manifested by an ad hoc and manual treatment
of both—grammars as such and grammatical structure as it occurs in software
components. We have compiled an agenda that is meant to stimulate research
on the engineering aspects of grammarware. We have identified promises and
principles of the engineering discipline for grammarware.

The promises are increased productivity of grammarware development, im-
proved evolvability, and improved robustness of grammarware. The principles
are akin to state-of-the-art software engineering. For instance, the principle
“implement by customization” corresponds to a grammarware-tailored instance
of model-driven development [Mellor et al. 2003; OMG 2004]; the principle “sep-
arate concerns” requires advanced means of modularization, just as in aspect-
oriented programming [Kiczales et al. 1997; Elrad et al. 2001]; the principles
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“evolve by transformation” and “ensure quality” are well in line with agile
methodologies as they are becoming common in today’s software engineering.

We call for a major research effort, which is justified by the pervasiveness of
grammars in software systems and development processes. We have provided
a substantial list of challenges, which can be viewed as skeletons for doctoral
projects. Such challenges need to be addressed in order to make progress with
the emerging discipline of grammarware engineering.
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LÄMMEL, R. 2004b. Evolution of rule-based programs. J. Logic Algebr. Programm. 60–61C, 141–
193. (Special issue on structural operational semantics.)
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SCHÜRR, A. 1994. Specification of graph translators with triple graph grammars. In Graph-
Theoretic Concepts in Computer Science, 20th International Workshop, E. W. Mayr, G. Schmidt,
and G. Tinhofer, Eds. Lecture Notes in Computer Science, vol. 903. Springer-Verlag, Herrsching,
Germany, 151–163.
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