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ABSTRACT. 30 

This study documents the current state of glacier coverage in the Colombian Andes, the 31 

glacier shrinkage over the 20th century and discusses indication of their disappearance in the 32 

coming decades. Satellite images have been used to update the glacier inventory of Colombia 33 

reflecting an overall glacier extent of about 42.4±0.71 km2 in 2016 distributed in four 34 

glacierized mountain ranges. Combining these data with older inventories, we show that the 35 

current extent is 36% less than in the mid-1990s, 62% less than in the mid-20th Century, and 36 

almost 90% less than the Little Ice Age maximum extent. 37 

Focusing on Nevado Santa Isabel (Los Nevados National Park), aerial photographs from 1987 38 

and 2005 combined with a terrestrial LiDAR survey show that the mass loss of the former ice 39 

cap, which is nowadays parceled into several small glaciers, was about -2.5 m w.e. yr-1 during 40 

the last three decades. Radar measurements performed on one of the remnant glaciers, La 41 

Conejeras glacier, show that the ice thickness is limited (about 22 m in average in 2014) and 42 

that with such a mass loss rate, the glacier should disappear in the coming years. 43 

Considering their imbalance with the current climate conditions, their limited altitudinal 44 

extent and reduced accumulation areas, and in view of temperature increase expected in future 45 

climate scenarios, most of the Colombian glaciers will likely disappear in the coming decades. 46 

Only the largest ones located on the highest summits will probably persist until the second 47 

half of the 21st century although very reduced. 48 

 49 
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1. INTRODUCTION 52 

Glaciers in Colombia are more than ice on mountains: they indeed are key components of the 53 

landscapes lived by the Colombian society (Ceballos et al., 2012). For peasants, indigenous, 54 

mountain climbers, artists, scientists and city dwellers, glaciers in Colombia fulfill different 55 

functions within their territories and are part of their daily practices in different ways: from 56 

sentinels of global climate changes, local water resources, unique ecosystems, to local-to-57 

regional sources of mass flow hazards from glaciers on active volcanoes in the Cordillera 58 

Central (Jordan et al., 1989; Thouret, 1990; Linder, 1991, 1993; Linder et al., 1994; Huggel et 59 

al., 2007). The large ice loss of Colombian glaciers since the late 1970s, (Ceballos et al., 60 

2006; Morris et al., 2006; Poveda and Pineda, 2009), like in most part of the tropical Andes 61 

(Rabatel et al., 2013a), has strengthened the necessity of a glacier monitoring combining 62 

repeated inventories at the national scale and in-situ measurements on benchmark glaciers 63 

located in the two mostly glacierized mountain ranges of Colombia (e.g., Ceballos et al., 64 

2012; Mölg et al., 2017). Such a monitoring strategy is in line with the international strategy 65 

for glacier monitoring defined by the Global Terrestrial Network for Glaciers (GTN-G, gtn-66 

g.org). 67 

In-situ measurements were initiated after the eruption event of Nevado del Ruiz in 1985 and 68 

are nowadays conducted by the Instituto de Hidrología, Meteorología y Estudios Ambientales 69 

(IDEAM). These activities have been part of different international programs: started by the 70 

Instituto Geográfico Agustín Codazzi (IGAC, Bogota) in 1988 supported by Deutsche 71 

Forschungsgemeinschaft (DFG) and Volkswagen-Foundation, IDEAM has taken over the 72 

task, presently cooperating with the joint international laboratory GREAT-ICE (Sicart et al., 73 

2015) financed by the French Institut de Recherche pour le Développement (IRD), the World 74 

Glacier Monitoring Service (wgms.ch), and the CATCOS project (Capacity Building and 75 

http://wgms.ch/�


Twinning for Climate Observing Systems) financed by the Swiss Agency for Development 76 

and Cooperation (SDC). 77 

The aims of this paper are: 1) to present and analyze the current state of glaciers in Colombia, 78 

with the results of a new glacier inventory from 2016; 2) to draw a multi-decadal perspective 79 

of changes in glacier surface-area using repeated glacier inventories since the mid-20th 80 

Century and Little Ice Age maximum extent; and 3) to estimate the future evolution of 81 

glaciers in Colombia on the basis of the up-to-date inventory, current surface-area and mass 82 

loss rates, as well as future possible changes (until 2100) in air temperature according to 83 

climate scenarios. 84 

 85 

2. STUDY AREA 86 

Glaciers in Colombia are located in four main areas (Fig. 1): from North to South: Sierra 87 

Nevada de Santa Marta (about 10°50’ N; 73°40’ W), Sierra Nevada de El Cocuy (about 6°25’ 88 

N; 72°20’ W), Cordillera Central: Los Nevados National Park (Ruiz-Santa Isabel-Tolima, 89 

about 4°45’ N; 75°20’ W), and Cordillera Central: Nevado Huila (about 2°55’ N; 76°00’ W). 90 

In the two northernmost areas, small slope glaciers can be found, whereas in the two 91 

southernmost areas, small ice caps lying on more or less active volcanoes with significant 92 

different slope angles (e.g., nevados del Ruiz, de Santa Isabel, de Tolima and del Huila) are 93 

the dominant glacier type. 94 

Table 1 lists the main characteristics of the glacierized areas of Colombia, with the glacier 95 

cover in 2016, the maximum ice thickness estimate -where it exists- together with the year of 96 

the estimate. One can note that the averaged maximum elevations of the glacierized summits 97 

range in most parts between 5,100 and 5,400 m a.s.l. which is rather low in comparison with 98 

the other glacierized areas in the tropical Andes of Ecuador, Peru and Bolivia where the 99 

highest elevations frequently exceed 6,000 m a.s.l. (Rabatel et al., 2013a). 100 



2.1. Climatic settings 101 

From a climatological point of view, Colombia belongs to the inner tropics (Troll, 1941) with 102 

continued humidity, homogeneous temperature (daily amplitude > annual amplitude) and 103 

almost constant incident solar radiation throughout the year. At the seasonal scale, the 104 

displacement of the inter-tropical convergence zone (ITCZ) strongly controls the annual 105 

regime of precipitation which results to be contrasted from one region to the other at the 106 

country scale (e.g., Poveda et al., 2005). The central and western parts of Colombia 107 

(glacierized areas C and D on Fig. 1) experience a bimodal precipitation regime with two 108 

periods of high precipitation (April-May and October-November) and two periods of less 109 

precipitation (December-February and June-August). On the other hand, the Caribbean coast 110 

(glacierized area A on Fig. 1) and the Pacific coast of the isthmus with Panama show a 111 

unimodal precipitation regime (May-October), resulting from the northernmost position of the 112 

ITCZ. The easternmost glacierized mountain range (glacierized area B on Fig. 1) also 113 

experiences a single precipitation peak occurring during June-August which results from deep 114 

convection of the moisture transported from the Amazon basin due to the orographic barrier 115 

of the Andes. 116 

The IDEAM maintains automatic weather stations (AWS) in the glacierized areas B and C (at 117 

elevations up to 4700 m a.s.l.). Mölg et al. (2017) presented the data from the AWS located 118 

on the Nevado Santa Isabel (glacierized area C) which show that over the monitoring period 119 

(2009-2016), the average 0 °C isotherm was located at 4980 m a.s.l., higher than the summit 120 

located at 4940 m a.s.l. In Sierra Nevada de El Cocuy (glacierized area B) the average 0 °C 121 

isotherm over the period 2007-2016 was located at 5045 m a.s.l. It is worth noting that these 122 

average 0 °C isotherm estimates may slightly vary within the considered glacierized areas and 123 

in the other glacierized areas of Colombia due to local site effects. 124 



The inter-annual variability of atmospheric conditions is dominated by the El Niño-Southern 125 

Oscillation (ENSO). Although the climate characteristics of La Niña/El Niño events are not 126 

uniform at the scale of a country, El Niño years (warm phase of ENSO) tend to be warmer 127 

and drier, while La Niña years (cold phase of ENSO) are typically associated with colder and 128 

wetter conditions in the mountains (e.g., Poveda et al., 2011). Poveda et al. (2011) underlined 129 

that the ENSO effects are phase-locked to the above described seasonal cycle: i.e. stronger 130 

during more intense precipitation months and vice versa. 131 

2.2. Glacier surface processes 132 

In terms of surface mass balance regime, the Colombian glaciers belong to the inner-tropics 133 

(Kaser and Osmaston, 2002) as precipitation may occur all year long with one or two periods 134 

of more intense precipitation depending on the glacierized region concerned. 135 

Using the longest Colombian surface mass balance time series (since 2006) on La Conejeras 136 

glacier on the Nevado Santa Isabel, Mölg et al. (2017) showed that there is no seasonal cycle 137 

with ablation/accumulation processes that can occur all year long covering parts of or the 138 

entire glacier surface area. They also mentioned that the impact of temperature and 139 

precipitation on the surface mass balance relies on the phase of precipitation and the 140 

subsequent albedo effect. This is in line with the former studies made on another glacier of the 141 

inner-tropics located in the Ecuadorian Andes: Antizana 15 glacier, where both surface mass 142 

and energy balance studies (Francou et al., 2004; Favier et al., 2004) revealed the strong 143 

relationship between glacier surface albedo and melting. These studies showed that the 144 

frequency and intensity of snowfalls, which can occur all year long, play a major role in 145 

attenuating the melting processes and consequently, both precipitation and temperature are 146 

crucial for the annual surface mass balance. 147 

In a review paper about the state of glaciers in the tropical Andes, Rabatel et al. (2013a) 148 

concluded that the sensitivity of inner tropical glaciers to climate is closely linked to the 149 



absence of temperature seasonality and to the fact that the 0 °C isotherm constantly oscillates 150 

through the glaciers. As a consequence, a minor variation in air temperature can influence the 151 

melt processes by determining the phase of precipitation and consequently affects the surface 152 

albedo and mass balance. 153 

 154 

3. METHODS AND DATA 155 

3.1. Quantification of glacier surface-area 156 

Former studies have documented the glacier surface-area changes since their maximum extent 157 

during the Little Ice Age and until the early 2000s (e.g., Jordan et al., 1989; Florez, 1992; 158 

Pulgarin et al., 1996; Ceballos et al., 2006; Poveda and Pineda, 2009; Herrera and Ruiz, 159 

2009). Note that the Little Ice Age maximum extent has not been so systematically dated in 160 

the Colombian Andes as it was the case in the other countries of the tropical Andes (e.g., 161 

Rabatel et al., 2005, 2008; Jomelli et al., 2009), even if the link between moraines and 162 

reliably dated Ruiz eruptions on 1595/03/12 and 1845/02/18 locally provides good indicators 163 

(Jordan et al., 1987; Jordan and Mojica, 1987). The former studies on the extent of Colombian 164 

glaciers in the past are based on moraines (reflecting the Little Ice Age maximum extent), 165 

aerial photographs from the late 1940s to the mid-1990s, and Landsat TM and ETM from the 166 

mid-1990’s to the early 2000s. In the current study, an update of the glacial coverage across 167 

all Colombian glacierized mountain ranges has been realized using images from the following 168 

satellites: QuickBird (2007, spatial resolution of 2.5 m in multispectral mode = visible + near-169 

IR), ALOS (2007, 2008, 2009, spatial resolution of 10 m in multispectral mode = visible + 170 

near-IR), RapidEye (2010, spatial resolution of 5 m in multispectral mode = visible + near-IR) 171 

and Landsat-8 OLI (2016, Fig. 1). 172 

On the basis of Landsat-8 images from late January-early February 2016, a detailed inventory 173 

was produced and a database was generated according to the design of the GLIMS glacier 174 



relational database. For an extensive description of the database content, the reader will refer 175 

to the GLIMS website (http://www.glims.org/MapsAndDocs/db_design.html). The 2016 176 

Landsat-8 images provide the perfect conditions for a glacier inventory: no snow cover 177 

outside the glaciers and no cloud cover on the mountains, a particular challenge in Colombia 178 

due to often persistent cloudy weather conditions. These images have a spatial resolution of 179 

30 m in multispectral mode and 15 m in the panchromatic mode (the spectral bands “green”, 180 

“NIR-IR” and “MIR” available at 30 m have been pansharpened at 15 m). Due to the small 181 

size of the glaciers and their limited number, the delineation of the glacier outlines has been 182 

made manually. Manual delineation can have advantages over automatic detection of glacier 183 

ice in shadowed areas (Gardent et al., 2014). Note that debris-covered glacier areas are 184 

limited in Colombia, either because the glaciers are small ice caps, or remnants of ice caps, or 185 

slope glaciers; and in every case, rock walls overhanging the glaciers are limited or absent. 186 

However, ashes resulting from eruptions can cover some parts of the ice caps located on 187 

active volcanoes. On the 2016 satellite images, it was the case on the north-western side of the 188 

Nevado del Ruiz, but because the ash cover was not homogeneous and ice free areas can be 189 

seen, it did not prevent an accurate delineation of the glacier margin. For older data sources, 190 

aerial photographs from 1959, 1987 and 2005 used on Nevado del Ruiz allowed an accurate 191 

delineation of glacier contour due to their high spatial resolution. 192 

Regarding the uncertainties, they largely depend on the data sources (moraines, aerial photos, 193 

satellite images). It is noteworthy that the estimated values for the Little Ice Age are probably 194 

associated with the highest uncertainty compared with inventories performed using aerial 195 

photos or satellite images. Indeed, for the Little Ice Age the surface area reconstruction is 196 

based on the moraine ridges which are not always continuous over the glacier foreland. 197 

However, the uncertainty is not given in all the related studies. Regarding the aerial photos 198 

http://www.glims.org/MapsAndDocs/db_design.html�


and the satellite images, to compute a margin of uncertainty on the delineation of the glacier 199 

outline Rabatel et al. (2011) considered different sources related to: 200 

(i) the pixel size of the image or digital photograph, which has an influence on the 201 

digitization; 202 

(ii) the process of geometric correction and georeferencing of the images, orthophotos 203 

and numerical maps, which affects the geometry of the used data source; 204 

(iii) the errors associated with visual identification and manual delineation of the 205 

glacier outline; which depend on the ability and experience of the operator. After a 206 

test of multiple digitization, this error was set a ±1pixel for the Landsat satellite 207 

images used for 2016, and ±2 pixels for the orthophotos or very high resolution 208 

satellite images like Quickbird used for 2007 and RapidEye used for 2010; 209 

(iv) the possible residual snow cover, which compromises the accurate visual 210 

identification of the border of the glacier. This error has a huge spatial variability, 211 

but is always limited in our case because the images were selected to have a 212 

minimum snow cover outside the glaciers. 213 

The total uncertainty is the root of the quadratic sum of the different independent errors. 214 

Uncertainty in surface area can be considered as the horizontal uncertainty of the position of 215 

the margin times its length (Rabatel et al., 2011). 216 

3.2. Quantification of glacier volume 217 

Ice thickness measurements have been acquired on La Conejeras glacier (Nevado Santa 218 

Isabel) using an ice penetrating radar (IPR) during field campaigns in January-February 2014. 219 

Our IPR is a geophysical instrument specially designed by the Canadian company Blue 220 

System Integration Ltd in collaboration with glaciologists to measure the thickness of glacier 221 

ice (Mingo and Flowers, 2010). It comprises a pair of transmitting and receiving 5 MHz 222 

antennas that allow continuous acquisition, georeferenced with a GPS receiver. 223 



14 cross profiles and two longitudinal profiles have been acquired on this small glacier (0.19 224 

km² in 2014, Fig. 2), which is a remnant of the Santa Isabel ice cap (Fig. 3). From the in-situ 225 

IPR continuous acquisitions, 200 measurements have been selected (Fig. 2) representing 226 

points with clear reflection signal with an average density of 1 pt / 100 m². Note that these 227 

data have been integrated to the glacier thickness database (GLATHIDA 2.0, WGMS, 2016). 228 

The main uncertainty in the ice thickness measurements comes from the analysis of the radar 229 

signal and results from the manual picking on the radargram of the signal reflected by the 230 

bedrock. The analysis of the radar data has been made using the software IceRadarAnalyzer 231 

4.1 (Mingo and Flowers, 2010) and the uncertainty on each individual ice thickness 232 

measurement was estimated at 2 m resulting in a uncertainty of the total glacier volume of 233 

about 10%. 234 

3.3. Quantification of surface elevation changes 235 

Changes in glacier-surface elevation can be computed by the difference of digital elevation 236 

models (DEMs) realized by topography (DGPS, LiDAR) or using aerial photographs or 237 

satellite stereo-images from high spatial resolution data (e.g. SPOT 5-7, Pléiades, Ikonos, 238 

Worldview). However, such accurate DEMs are not available for all the Colombian glaciers. 239 

Nevado del Ruiz and Santa Isabel are two of the exceptions with photogrammetric restitutions 240 

performed on the basis of 1959, 1987 and 2005 aerial photographs. All the technical details 241 

about these restitutions, as well as more results and interpretation can be found in Linder 242 

(1991, 1993) Braitmeier (2003) and González et al. (2010). Figures 3A and 3B show the 243 

ortho-photos from 1987 and 2005 respectively. The ortho-photo from 2005 shows the extent 244 

of the Santa Isabel ice cap in 1987, 2005 and 2016 (Fig. 3B) 245 

During the January-February 2014 field campaign for glacier thickness measurements on La 246 

Conejeras glacier (a remnant of Santa Isabel ice cap, Fig. 3B), a complete topography of the 247 

glacier surface was generated using a terrestrial LiDAR (an ultra-long-range RIEGL VZ-6000 248 



device, Fig. 4A). This system emits a near-infrared laser beam at 1064 nm ideal for 249 

glaciological studies (e.g., Gabbud et al., 2015; Fischer et al., 2016). Ten reflector targets 250 

with 5 cm diameter were fixed on stakes or rocks around the glacier for georeferencing 251 

purposes. Their position has been measured using differential GPS. Three distinct scan 252 

positions were set to achieve good coverage of the whole glacier and its surroundings. The 253 

LiDAR data were processed using the software RiSCAN PRO. The main processing steps 254 

included a filtering of points (e.g., due to atmospheric reflections caused by dust or moisture), 255 

a merge of the point clouds from the different scan positions, and the georeferencing of the 256 

final grid using the target reference points. Figure 4B provides an illustration of the final point 257 

cloud. The resulting DEM has a homogeneous resolution of 0.5 m and was reprojected to 258 

MAGNA Colombia Bogotá (EPSG 3116), the current official georeference system of 259 

Colombia. 260 

The changes in glacier surface elevation have been quantified by subtracting the different 261 

DEMs. This was possible at the scale of the entire Santa Isabel ice cap as published in Linder 262 

(1991) for the period from 1959 to 1987; now with more detail for the period 1987-2005, and 263 

additionally for La Conejeras glacier only for the periods 1987-2005 and 2005-2014 using the 264 

2014 LiDAR data. 265 

From these surface elevation changes, the geodetic average annual mass balance has been 266 

quantified considering the average surface area between the two considered dates, the time 267 

between the two DEMs and an average ice density of 900 kg m-3. For more details about the 268 

geodetic method the reader may refer to the literature (e.g. Rabatel et al., 2006; Cogley, 2009; 269 

Basantes Serrano et al., 2016). 270 

3.4. In situ glacier surface mass balance data 271 

Two glaciers in Colombia are monitored with in-situ measurements to quantify their surface 272 

mass balance: La Conejeras glacier on the Nevado Santa Isabel and Ritacuba glacier in the 273 



Sierra Nevada de El Cocuy (Ceballos et al., 2012). Accumulation and ablation measurements 274 

are performed at monthly scale with the classical glaciological method (snow pits and ablation 275 

stakes) since 2006 for La Conejeras and 2008 for Ritacuba glacier. Recently, the entire 276 

monthly surface mass balance data series of La Conejeras glacier has been reanalyzed by 277 

Mölg et al. (2017) where more details on the monitoring network and the results of this 10-yr 278 

monitoring program are provided. 279 

 280 

 281 

4. RESULTS AND DISCUSSION 282 

4.1. 2016 Colombian glaciers inventory 283 

Table 2 gives an overview of the distribution of glaciers according to size classes for the 2016 284 

inventory for the whole Colombian Andes and considering the four main glacierized areas: 285 

Sierra Nevada de Santa Marta, Sierra Nevada de El Cocuy, Los Nevados National Park 286 

(including los nevados del Ruiz, de Santa Isabel and de Tolima) and Nevado del Huila. 287 

Glaciers of the Colombian Andes covered 42.42±0.71 km2 in early 2016 with 7.2±0.27 km² in 288 

the Sierra Nevada de Santa Marta, 15.5±0.33 km² in the Sierra Nevada de El Cocuy, 289 

11.8±0.52 km² in Los Nevados National Park and 8.0±0.23 km² for the Nevado del Huila. At 290 

the scale of the Colombian Andes the mean glacier size was 0.43 km² (median = 0.22 km², 291 

indicating that the distribution is clearly dissymmetric toward small-sized glaciers); glaciers < 292 

0.5 km² represented 70% of all glaciers and 28% of the total glacierized area. Glaciers > 1 293 

km² accounted for 66%, 37%, 16% and 14% of the glacierized area in Sierra Nevada de El 294 

Cocuy, Los Nevados National Park, Sierra Nevada de Santa Marta and Nevado del Huila, 295 

respectively. 296 

Glacier minimum, maximum, and mean altitudes have been computed from the ASTER 297 

GDEM V2. This global DEM was generated from ASTER images dating from the period 298 



2000-2010. The exact dating for each region is unknown but it can be considered that the 299 

elevation provided by this DEM is representative of the 2000s. The mean altitude has been 300 

computed from the area-altitude distribution. Indeed, such mean altitude can be considered as 301 

a proxy of the balanced-budget equilibrium-line altitude corresponding to the glacier extent 302 

(Jordan, 1991; Machguth et al., 2012; Rabatel et al., 2013b; Braithwaite, 2015). Considering 303 

the different glacierized regions, the average of the mean altitude of each individual glacier 304 

are 5170 m a.s.l., 4910 m a.s.l., 5140 m a.s.l. and 5020 m a.s.l. for Sierra Nevada de Santa 305 

Marta, Sierra Nevada de El Cocuy, Los Nevados National Park, and Nevado del Huila, 306 

respectively. 307 

The maximum altitude of the glacier is an interesting variable, because when compared to the 308 

equilibrium-line altitude it allows computing the altitudinal extent of the accumulation zone, 309 

and together with the glacier-area distribution the accumulation-area ratio. The highest 310 

altitudes of glaciers’ top can be found in the Sierra Nevada de Santa Marta where they reach 311 

5678 m a.s.l. On the Nevado del Huila, the altitude of glaciers’ top ranges between 5160 and 312 

5390 m a.s.l. In the two other glacierized areas, the uppermost elevations are lower, ranging 313 

between 4785 and 5346 m a.s.l. for the Sierra Nevada de El Cocuy and between 4925 and 314 

5314 m a.s.l. in Los Nevados National Park. Assuming that the current elevation of the 0 °C 315 

isotherm at ~5000 m a.s.l. in glacierized areas B and C (see 2.1) can be representative of the 316 

two other glacierized areas, about 20% of the glaciers in Colombia have their uppermost 317 

elevation located below. 318 

In terms of altitudinal extent (difference between the minimum and maximum elevations of 319 

the glacier), the Colombian glaciers span over limited altitudinal ranges: in average (max.) 320 

550 m (770 m) on the Nevado del Huila, 340 m (870 m) in the Sierra Nevada de Santa Marta, 321 

300 m (600 m) in the Sierra Nevada de El Cocuy and 280 m (700 m) in Los Nevados National 322 

Park. 323 



4.2. Historical glacier surface area changes 324 

Table 3 presents the surface area changes in the different glacierized areas of the Colombian 325 

Andes. Note that Los Nevados National Park encompasses the three volcanoes Ruiz, Santa 326 

Isabel and Tolima (Fig. 1C). These changes are also illustrated in Figures 5A and 5B 327 

including the rates of mean annual surface area loss in percentage per year for each 328 

glacierized area since the mid-20th century. 329 

The overall glacierized surface area in the Colombian Andes decreased by ~90% since the 330 

Little Ice Age maximum extent (undated). Note that in addition to the 349 km2 in the six 331 

glacierized areas, eight other areas in Colombia presented glaciers during the Little Ice Age 332 

(with an estimated surface area of 23.7 km2) and are currently without glaciers (Florez, 1992; 333 

Baumann, 2006). 334 

Considering the glacierized surface area in the mid-20th Century (about 110 km²), the 2016 335 

extent is about 62% smaller. In the last two decades (i.e. since 1995) the glacierized surface 336 

area has decreased by about 36%. 337 

However, Figure 5 illustrates that the trend has not been homogeneous since the mid-20th 338 

century, both temporally and spatially. Indeed, the mean annual surface area loss rate (black 339 

curve in Fig. 5B) has remained close to -1% per year from the 1940s till the mid-1970s, with a 340 

slightly reduced loss rate between the mid-1960s and the mid-1970s. Since the mid-1970s, the 341 

mean annual surface area loss rate has increased continuously, reaching -3% per year during 342 

the current decade in average for all the Colombian glacierized areas. On the other hand, this 343 

retreating trend is spatially highly contrasted, with the most important loss rate found for 344 

Santa Isabel and Tolima volcanoes, which is in agreement with their lowest elevations and the 345 

very small glaciers. Glaciers of the Sierra Nevada de Santa Marta show a slightly lower 346 

surface area loss rate over the last decades. This has to be related with the higher elevation of 347 

this mountain range: glaciers’ top ranges between 4970 and 5678, and only five of the 28 348 



glaciers have a median elevation located below 5000 m a.s.l. (approx. the elevation 0 °C 349 

isotherm in the other glacierized areas of Colombia). 350 

It is noteworthy that for some ice masses located on active volcanoes like on the Nevado del 351 

Ruiz, Nevado del Tolima and Nevado del Huila, the glacier shrinkage is not only influenced 352 

by changes in climate conditions but is also due to eruptions increasing the geothermal flux 353 

and depositing ashes at the glacier surface. This leads to an increase in snow and ice melt. 354 

Such an event occurred in 1985 on the Nevado del Ruiz leading to an important ablation and 355 

surface-area shrinkage from the mid-1980s to the late 1990s (Thouret, 1990; Linder 1991, 356 

1993; Linder and Jordan, 1991; Linder et al., 1994; Borrera et al., 1996). This important 357 

shrinkage (~1.5 times the country scale average) during more than a decade, mainly related to 358 

the eruption (i.e. not exclusively climate related) is probably at the origin of the observed 359 

lower shrinkage rate observed for the Nevado del Ruiz during the last decade. 360 

4.3. Glacier volume estimation from field data at La Conejeras glacier 361 

The 2014 ice thickness data from the 14 cross profiles and two longitudinal ones acquired on 362 

La Conejeras glacier (Fig. 2) have been interpolated using the software PCI-Geomatica 363 

(MQSINT: multiquadratic spline interpolation). Figure 6 presents the resulting raster with a 364 

spatial resolution of 15 m (pixel size). The maximum ice thickness located in the central part 365 

of the glacier was slightly above 50 m in 2014. The total ice volume was estimated to 4.325 x 366 

106 m3, which corresponds to 3.893 x 106 m3 of water equivalent (using an ice density of 0.9). 367 

Considering a surface area of 0.199 km², the average ice thickness of La Conejeras glacier 368 

was about 22 m in 2014. 369 

4.4. Decadal mass balances 370 

In-situ mass balance measurements over the last decade on La Conejeras and Ritacuba 371 

glaciers in Los Nevados National Park – Nevado Santa Isabel and in the Sierra Nevada de El 372 

Cocuy, respectively, have shown a clear unbalanced situation (Ceballos et al., 2012). Indeed, 373 



the balacance-budget equilibrium line altitude (ELA0, cf. Cogley et al., 2011) derived from 374 

the surface mass balance measurements for La Conejeras glacier is about 4920 m a.s.l., thus 375 

160 m above its mean altitude computed from the area-altitude distribution (i.e. 4760 m a.s.l.), 376 

and 120 m above the mean altitude of the glaciers located on the Nevado Santa Isabel. This is 377 

the same for the Sierra Nevada de El Cocuy where the mean altitude of the glaciers is 4910 m 378 

a.s.l., 120 m below the ELA0 derived from in situ measurements on Ritacuba glacier.  379 

Reanalyzing the 10-yr monthly mass balance time series of La Conejeras glacier, Mölg et al. 380 

(2017) have shown that the mean annual mass balance has been close to -3 m w.e. yr-1 over 381 

the period 2006-2015 (cf. Fig. 7 where annual mass balance are plotted). Mölg et al. (2017) 382 

also showed that the annual ELA was on average close to the glacier maximum altitude 383 

during the monitoring period, with an accumulation-area ratio of about 4%, i.e. almost no 384 

accumulation zone. 385 

On the other hand, the comparison between the 2014 Lidar DEM and the photogrammetric 386 

DEM from 1987 (see section 3.3) showed that the glacier-surface elevation has lowered by 80 387 

m at 4700 m a.s.l. (altitude of the glacier surface close to the front of the glacier in 2014) 388 

between the two dates; 50 m between 1987 and 2005 (Fig. 6). The geodetic mass balance was 389 

-2.56 m w.e. yr-1 for the period 1987-2005 and -2.46 m w.e. yr-1 for the period 2005-2014 390 

(Fig. 7). Note that the in situ surface mass balance averaged over the closest period (i.e. 2007-391 

2014) was -2.45 m w.e. yr-1. This very good agreement between the two independent methods 392 

shows that the well distributed network of in situ measurements at the surface of La Conejeras 393 

glacier allows an accurate quantification of the mass balance using the glaciological method. 394 

Computed at the scale of the entire Santa Isabel ice cap, the geodetic mass balance between 395 

1987 and 2005 was -2.69 m w.e. yr-1, i.e. slightly more negative than considering La 396 

Conejeras glacier only. 397 

 398 



4.5. Future changes of Colombian glaciers 399 

The strong shrinkage of the Colombian glaciers since the mid-20th century and in particular 400 

the constant increase in the rate of shrinkage at the country scale over the past four decades is 401 

an indication of the strong imbalance of glaciers with current climate. Figure 7 shows the 402 

volume loss of La Conejeras glacier computed on the basis of the ice thicknesses measured in 403 

2014, the annual changes in surface-area and the surface mass balances in situ measured since 404 

2006. A linear extrapolation of the glacier volume changes of the last decade for the future 405 

would result in the disappearance of La Conejeras glacier in the first years of the 2020s, likely 406 

in concert with the other remaining glaciers of Nevado Santa Isabel. 407 

The mass balances measured on La Conejeras and Ritacuba glaciers cannot be directly 408 

extrapolated to the scale of all other glaciers in Colombia, as neighboring glaciers under 409 

similar climate conditions can show different mass balances in relation with the dynamic 410 

response of glaciers to a change in climate forcing (e.g., Rabatel et al., 2016). Estimates of 411 

future changes and disappearance of Colombian glaciers based on decadal trends in glacier 412 

surface-area loss therefore imply some uncertainty. Nevertheless, as a first approximation a 413 

linear trend extrapolation from the observed glacier surface-area shrinkage rates in the 414 

different glacierized areas of Colombia during the last decades (Fig. 5A) allows a rough 415 

estimation of their future changes and disappearance. Accordingly, glaciers on the Nevado de 416 

Tolima will likely disappear before 2030, and most of the glaciers in the Sierra Nevada de 417 

Santa Marta and Sierra Nevada de El Cocuy before 2050. Only the few largest glaciers with 418 

the highest maximum elevations on Nevado del Huila, Nevado del Ruiz and in the Sierra 419 

Nevada de Santa Marta and Sierra Nevada de El Cocuy will probably persist after the mid-21st 420 

century although strongly reduced. Our results suggest that glacier extinction in Colombia 421 

happens much faster than the corresponding estimates in the 4th Assessment Report of the 422 

Intergovernmental Panel on Climate Change (IPCC) (Magrin et al., 2007: “within the next 423 



100 years”), but not as dramatic as suggested by Poveda and Pineda (2009: “by the late 2010-424 

20 decade”). The latter estimates are based on Landsat TM and ETM+ images from 1989-425 

2007 and result in slightly smaller total areas for 2004-07, and correspondingly higher loss 426 

rates, than the present study. 427 

Taking into account the influence of temperature changes on glacier surface processes (see 428 

2.2.), an alternative to the extrapolation of surface-area changes can be made from the 429 

relationship between the 0 °C isotherm and the maximum elevation and/or the ELA of the 430 

glaciers, and considering the future projections of temperature using different climate 431 

scenarios. Figure 8 shows the Hadcrut4 observations (Morice et al., 2012) as well as historical 432 

and future CMIP5 experiments following the two extreme radiative concentration scenarios 433 

(RCPs) RCP 2.6 and 8.5 (Taylor et al., 2012) for the near-surface air temperature. Data from 434 

different global climate models (see Fig. 8 caption) are averaged over the region defined as 435 

the box 2°-10°N, 72°-77°W to encompass the different glacierized areas in Colombia. Over 436 

the reference period extended from 1961-1990, both model and observations show a 437 

temperature increase within the range of 0.5 °C, an increase smaller than the inter-annual 438 

variability over this period. The scenarios RCP 2.6 and RCP 8.5 show an increase in air 439 

temperature reaching respectively 1.6 °C [0.5 to 2.7 °C] and 6.3 °C [5.4 to 7.2 °C] by the end 440 

of the 21st century considering a 10-year average of the multi-model ensemble experiments. 441 

Assuming that the current vertical gradient of air temperature remains unchanged, such an 442 

increase in temperature would raise the 0 °C isotherm by 320 m (ranging from 100 to 540 m) 443 

for RCP 2.6 and by 1260 m (ranging from 1080 to 1440 m) for RCP 8.5; i.e. reaching the 444 

elevation of 5320 and 6260 m a.s.l., respectively. Note that these estimates are in close 445 

agreement with the results found by Schauwecker et al. (2017) for the Peruvian Andes. In 446 

such conditions, 75% (100%) of the Colombian glaciers would be entirely located below the 0 447 

°C isotherm by the end of the 21st century considering RCP 2.6 (8.5).  448 



In addition, although the time-series are short (~10 years) the meteorological and 449 

glaciological data from La Conejeras glacier (Mölg et al., 2017) allow quantifying the 450 

sensitivity of the ELA to air temperature and elevation of the 0 °C isotherm. The significant 451 

correlation between the ELA and the 0 °C isotherm (r = 0.9, p < 0.002) shows that a 100-m 452 

increase in the 0 °C isotherm leads to an increase in the ELA by 160 m. As a consequence, the 453 

above mentioned increases in the 0 °C isotherm by the end of the 21st century would place the 454 

ELA 500 and 2000 m above its current location for the RCP 2.6 and 8.5. Assuming that these 455 

estimates made from the data available on La Conejeras glacier can be transposed to the other 456 

glacierized areas in Colombia, the projected ELA would be above the maximum elevation of 457 

80% (100%) of the Colombian glaciers. In such conditions, glaciers in Colombia would 458 

constantly be in ablation over most or the totality of their surface-area (very limited or no 459 

accumulation zone would persist) and their shrinkage/disappearance looks ineluctable. 460 

It is worth noting that considering the RCP 2.6, the increase in air temperature during the 461 

coming decades would mainly occur before 2040-2050, meaning that the remaining 462 

glacierized surface areas in Colombia would stabilize during the second half of the 21st 463 

century. 464 

Finally, it must be reminded that even with the use of "anomaly" approaches applied to 465 

remove the biases of climate models, large uncertainties remain when using CMIP5 scenarios, 466 

in particular because of the potential non-stationarity of the model bias. Global climate 467 

models show also weaknesses to simulate regional atmospheric circulation changes 468 

(Shepherd, 2014) and their coarse resolution does not allow to simulate correctly the 469 

feedbacks strengthening the warming with the altitude (MRIEDW, 2015) and the local impact 470 

of particle deposition on glacierized areas (Hansen and Nazarenko, 2004). Even with 471 

significant improvements in terms of ENSO modeling from CMIP3 to CMIP5 (Bellenger et 472 

al., 2014), it is very challenging to anticipate the potential ENSO changes over the next 473 



decades, and these ones may have strong impacts on the Colombian climate. Nevertheless, the 474 

use of CMIP5 model projections is currently one of the unique ways to anticipate the future 475 

changes in temperature and precipitation. Retrospective validations show that CMIP models 476 

reproduce the main features of the current climate in Southern America (e.g., Vera et al., 477 

2006; Sillmann et al., 2013) and can be used to estimate the future trends of temperature over 478 

this continent, whereas the uncertainties in terms of precipitation are very high (Blazquez et 479 

al., 2013). By setting up calibration approaches, Marzeion et al. (2014) and Réveillet et al. 480 

(2015) demonstrated the possibility to use CMIP outputs to simulate glaciers future evolution. 481 

We describe here a potential evolution for the Colombian glaciers that follows two scenario 482 

based on different societal evolutions. A limitation of our study relies on the regional or local 483 

forcing and feedbacks described previously that could modulate these future evolutions. 484 

4.6. Potential impacts of future glacier changes 485 

In other regions of the tropical Andes glaciers represent an important source of water for 486 

domestic, agricultural or industrial use, for example in La Paz - Bolivia where the water 487 

coming from the glaciers represents up to 30% of the runoff during the dry season (Soruco et 488 

al., 2015), and recent studies have shown the negative impacts of current glacier shrinkage on 489 

the biodiversity of the proglacial areas (e.g., Dangles et al., 2017; Zimmer et al., 2017). In 490 

Colombia, the potential impact of glacier shrinkage mainly relates to the páramo ecosystems 491 

(Brown et al., 2007), as well as for local agriculture and tourism. However, the glacierized 492 

volcanoes in Colombia remain – at least for the next few decades – a natural hazards, as 493 

dramatically shown with the example of the post-eruption lahars of the Nevado del Ruiz in 494 

1985 (e.g., Jordan et al., 1987; Thouret, 1990). Because the Nevado del Ruiz presents the 495 

largest single ice coverage in Colombia (10.11 km² in 2016) with an estimated ice volume of 496 

484 x106 m3 back in 2003 (measured maximum and mean thickness of 190 and 47 m in 1999, 497 

Huggel et al., 2007), the risk of lahars generated from the interaction of volcanic activity and 498 



snow and ice will still persist for several decades. As a consequence, to better estimate the 499 

potential water release resulting from an eruption of the Nevado del Ruiz and to prepare 500 

potential impact scenarios, an accurate mapping to the ice thickness and distribution, as we 501 

presented here for La Conejeras glacier, is urgently recommended. A similar mass of ice (8.0 502 

km² in 2016 and 648 x106 m3 of ice estimated for 2001) persists on Nevado del Huila which 503 

produced several far-reaching (up to 150 km) lahars in 2007 and 2008 when Nevado del Huila 504 

erupted and large amount of water were produced (Worni et al., 2012). 505 

 506 

5. CONCLUSION 507 

In this study we presented the results of a new glacier inventory of the Colombian Andes 508 

using 2016 Landsat images, in combination with in situ measurements of glacier thickness 509 

using radar and of glacier surface topography using LiDAR and aerial photogrammetry on the 510 

well studied La Conejeras glacier located on the Nevado Santa Isabel in Los Nevados 511 

National Park. 512 

The main results showed that: 513 

- The glacier surface area is nowadays very reduced in Colombia, with a total ice covered 514 

area in 2016 of 42.4 km². The mean glacier size was 0.43 km², and small size glaciers 515 

largely predominate (70 % < 0.5 km²). 516 

- The glacier shrinkage is strong since the mid-1970s and, remarkably, almost constantly 517 

increasing reaching a mean annual area loss rate of -3 % yr-1 during the last years, which 518 

points to a continued climatic forcing, possibly in addition to local topographic and 519 

geometric effects. 520 

- Mass loss on the Santa Isabel ice cap has been strong over the last three decades with an 521 

average annual mass balance of about -2.5 m w.e. yr-1 since 1987 quantified using aerial 522 

photogrammetry and terrestrial LiDAR. 523 



Considering the imbalance of the glaciers in Colombia with the current climate conditions, the 524 

relative low altitude of the Colombian glaciers, and the expected changes in air temperature 525 

for the 21st century, most of them will most likely disappear in the coming decades and only 526 

the largest ones located on the highest summits will persist until the second half of the 21st 527 

century.  528 
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Glacierized area 

Glacier 

cover 
(km²) in 

2016 

Highest 
elevation 

of the 

area 
(m a.s.l.) 

Average 
max. 

elevation 

of glaciers 
(m a.s.l.) 

Average 
mean 

elevation 

of glaciers 
 (m a.s.l.) 

Average 
min. 

elevation of 

glaciers 
 (m a.s.l.) 

Max 

thickness (m) 
and year of 

estimate 

S.N. de Santa 
Marta 

7.2±0.27 5678 5340 5170 5000 // 

S.N. de El Cocuy 15.5±0.33 5346 5055 4910 4750 // 

Los Nevados 
National Park 

11.8±0.52 5314 5170 5060 4900 190, 1999 

V.N. del Huila 8.0±0.23 5390 5250 5020 4710 // 

 767 

Table 1: Colombian glacierized areas with the most up-to-date glacier cover surface-area and 768 

topographic features of the glaciers. Note that the elevation data are computed from ASTER 769 

GDEM V2 and may differ from other sources due to differences in the accuracy of used data. 770 

Maximum thickness estimates are taken from Huggel et al. (2007) and Ceballos et al. (2012), 771 

but the original data have been provided by J. Ramirez (Servicio Geologico de Colombia). 772 

S.N. = sierra nevada, V.N. = volcán nevado. 773 
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Size class (km²) Colombia Sta Marta El Cocuy P.N. Los Nev. Huila 

<0.1 Number 30 13 6 11 
 

 
Number (%) 30 46 24 35 

 
 

Area (km²) 1.73 0.74 0.37 0.62 
 

 
Area (%) 4 10 2 5 

 
0.1-0.5 Number 40 11 11 10 8 

 
Number (%) 40 39 44 32 53 

 
Area (km²) 10.02 2.70 2.54 2.00 2.77 

 
Area (%) 24 38 16 17 35 

0.5-1 Number 19 3 3 7 6 

 
Number (%) 19 11 12 23 40 

 
Area (km²) 13.72 2.61 2.28 4.74 4.10 

 
Area (%) 32 36 15 40 51 

1-5 Number 10 1 5 3 1 

 
Number (%) 10 4 20 10 7 

 
Area (km²) 16.92 1.13 10.28 4.39 1.12 

 
Area (%) 40 16 66 37 14 

Total Number 99 28 25 31 15 

 
Area (km²) 42.4 7.2 15.5 11.8 8.0 

 775 

Table 2: Summary statistics (number and area) on glaciers in Colombia for the 2016 776 

inventory. 777 
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 Santa Marta El Cocuy Ruiz Santa Isabel Tolima Huila Total 

 (km²) (km²) (km²) (km²) (km²) (km²) (km²) 

LIA max 82.60 c/* 148.70 c/* 47.50 c/* 27.80 c/* 8.60 c/* 33.70 c/* 348.9+23.7c/* 

1939 21.40 c/* 
      

1946    
10.80 c/* 3.10 c/* 

  
1954 19.40 c/* 

     

110.6 

1955  
38.90 g 

    
1958     

2.7 c/* 

 

1959 
  

21.40 a/+ 

20.70 b/+ 
21.00 c/* 

9.78 a/+ 

9.50 b/+ 
9.40 c/* 

2.22 a/+ 
 

1961      
18.86 d/+ 

1965 
     

19.77 a/+      
16.30 c/* 

19.06 d  

1970      
18.21 d 

 
1973 14.1 e/°° 28.0 e/°°      
1974 16.26 a/+       

1975   
19.60 c/* 

    
1976   21.3 e/°° 10.8 e/°° 3.8 e/°° 26.0 e/°° 

 

1978  
39.12 a/+ 
38.80 c/*      

1981 16.10 c/* 
    

15.40 c/* 

87.95 

1985  
35.70 c/* 18.70 c/* 

   
1986  

31.45 g 17.00 c/* 
   

1987   
17.70 b/+ 

6.50 b/+ 

6.40  f/+ 

6.56 h/+ 

2.10 c/* 

1.60 g  

1989 12.00 c/* 
    

14.72 d/+ 
 

1990   
14.10 c/* 

    
1994  

23.70 g 
    

66.43 
1995 11.10  g 

    
13.39 d/+ 

1996    
5.30 g 

  
1997   

11.76 g 
 

1.18 g 
 

2001      
12.95 g 

 
2002 8.40  g 

 
10.32 g 3.33 g 1.03 g 

 
53.33 

2003  
19.8 g 

    
2005    

2.78 h/+ 
  

2007 7.70 /°+ 18.60 /°+ 

 
2.60 /°+ 0.93 /°+ 10.80 /°+ 

2008  
17.70 /° 

     
2009 7.40 /° 17.40 /° 

     
2010  

16.00 /° 

 
1.80 /° 0.74 /° 9.70 /° 

 
2016 7.20±0.27 /° 15.46±0.33 /° 10.11±0.26 /° 1.0±0.08 /° 0.65±0.06 /° 8.00±0.23 /° 

42.42±0.71 

~2005-2016 -6 % -17 % -2 % -62 % -30 % -25 % -20 % 

~1995-2016 -35 % -35 % -14 % -81 % -45 % -40 % -36 % 

~1985-2016 -55 % -51 % -46 % -84 % -59 % -48 % -52 % 

~1955-2016 -63 % -60 % -53 % -90 % -71 % -58 % -62 % 

LIA-2016 -91 % -90 % -79 % -96 % -92 % -76 % -88 % 

 779 

Table 3: Surface area changes since the Little Ice Age maximum. For each glacierized area 780 

the surface area (km²) for each date is presented as well as the loss for different periods (in % 781 

of the initial surface area for the considered period). Data before 2007 were taken from 782 

previous studie, the letter indicates the original study: a = Jordan et al., 1989; b = Linder 1991, 783 

1993; c = Florez, 1992; d = Pulgarin et al., 1996; e = Hoyos-Patino, 1998; f = Braitmeier, 2003; 784 

g = Ceballos et al., 2006; h = Gonzalez et al., 2010. Symbols indicate the method: *  = 785 



planimetry on aerial photos; + = photogrammetric restitution with uncertainty estimate; ° = 786 

planimetry on satellite ortho-images (pixel size between 0.5 and 15 m); °°  = planimetry on 787 

Landsat MSS (pixel size of 79 m). Regarding the total glacier cover computed for the gray 788 

shaded lines, when several surface-areas are available for a glacierized area, the average is 789 

considered. The uncertainty for the 2016 inventory have been computed from the quadratic 790 

sum of the uncertainties of each glacier of the considered area. 791 
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Figure 1: Glacierized areas in Colombia. The spectral bands combination used for the 793 

Landsat-8 images provided by USGS-EDC involves the bands #6 (middle infra-red: MIR), #5 794 

(short-wave infra-red: SWIR) and #3 (green). 795 

 796 
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Figure 2: IPR measurements acquired in Jan-Feb 2014 on La Conejeras glacier. 798 

 799 
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Figure 3: A) Ortho-photo of Nevado Santa Isabel with glacier extent in 1987 and 2016. B) 801 

Ortho-photo from 2005, with the outline of the ice cap in 1987 (in dark grey) and the outline 802 

of the remnant glaciers in 2005 and 2016 (light blue and red respectively). The horizontal 803 

scale shown on A is the same for B. Sources: Braitmeier (2003) for the 1987 ortho-photos and 804 

González et al. (2010) for the 2005 ortho-photos. 805 
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Figure 4: A) RIEGL VZ-6000 operating at the front of La Conejeras glacier. B) Scanned 808 

point cloud of La Conejeras glacier. 809 
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Figure 5: A) Glacier surface area changes in the different glacierized areas of Colombia since 812 

the 1940s. B) Rates of mean annual area loss in percentage per year for each glacierized area. 813 

The black curve and grey area represent the average with 1 st-dev. interval. The average has 814 

been smoothed using a polynomial fit. 815 
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Figure 6: Map of ice thickness in 2014 at La Conejeras glacier. The image in the background 818 

is the ortho-photo from 2005 with the outlines for 1987 and 2005 (see Fig. 3 for the glacier 819 

extents of the entire ice cap). The brown contour lines show the ice thickness loss (in m) 820 

between 1987 and 2005 from González et al. (2010). 821 
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Figure 7: Surface mass balance and volume changes of La Conejeras glacier. Red squares 824 

show the annual surface mass balance with the average for the period 2006-2015 (red line) 825 

from Mölg et al. (2017). The green lines illustrate the average glacier-wide annual mass 826 

balance computed from the difference between the 1987, 2005 and 2014 DEM. The blue 827 

diamonds show the annual glacier volume computed on the basis of 2014 estimate (dark blue 828 

diamond) using thickness measurements; the black line shows the linear regression. 829 
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Figure 8: Near-surface air temperature anomalies computed with respect to the average 1961-832 

1991: Hadcrut4 observations (black, Morice et al., 2012; historical CMIP5 simulations (blue); 833 

CMIP5 scenarios based on low GHG emissions (RCP2.6, green) and high GHG emissions 834 

(RCP8.5, red). A 12-month running mean has been applied to the anomalies computed as an 835 

average over 2°-10°N, 72°-77°W to encompass all the glacierized areas in Colombia. Shading 836 

indicate the maximum-minimum range across three CMIP5 models (GFDL-CM3 (4 837 

members); IPSL-CM5A-LR (5 members); MPI-ESM-LR (3 members). See Taylor et al. 838 

(2012) for the description of the CMIP5 experiments. 839 
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