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Proteome-scale protein interaction maps are available for many organisms, ranging from bacteria,

yeast, worms and flies to humans. These maps provide substantial new insights into systems

biology, disease research and drug discovery. However, only a small fraction of the total number of

human protein–protein interactions has been identified. In this study, we map the interactions of

an unbiased selection of 5026 human liver expression proteins by yeast two-hybrid technology

and establish a human liver protein interaction network (HLPN) composed of 3484 interactions

among 2582 proteins. The data set has a validation rate of over 72% as determined by three

independent biochemical or cellular assays. The network includes metabolic enzymes and liver-

specific, liver-phenotype and liver-disease proteins that are individually critical for themaintenance

of liver functions. The liver enriched proteins had significantly different topological properties

and increased our understanding of the functional relationships among proteins in a liver-

specific manner. Our data represent the first comprehensive description of a HLPN, which could

be a valuable tool for understanding the functioning of the protein interaction network of the

human liver.
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Introduction

Large-scale human protein–protein interaction maps provide

new insights into protein functions, pathways, molecular

machines and functional protein modules. However, only a

fraction of the total number of human protein–protein

interactions has been identified (Rual et al, 2005; Stelzl et al,

2005; Stumpf et al, 2008; Venkatesan et al, 2009). Enhancing

the assembly rate of the human interactome remains among the

most important goals of current research. Moreover, studies

have indicated that tissue-specific networks are vital to under-

standing tissue specificity, given that each cell has an identical

proteome (Bossi and Lehner, 2009; Kirouac et al, 2010).

In this study, we map the interactions of an unbiased

selection of 5026 human liver expression proteins by a yeast

two-hybrid (Y2H) technology and establish a human liver

protein interaction network (HLPN) composed of 3484

interactions among 2582 proteins. Computational biological

analyses and independent biochemical assays validated the

overall quality of the Y2H interactions. The network is highly

enriched for metabolic enzymes and liver-specific (LS), liver-

phenotype (LP) and liver-disease (LD) proteins that are

individually critical for the maintenance of liver functions.

The liver enriched proteins had significantly different topo-

logical properties and, therefore, increased our understand-

ing of functional relationships of proteins in a liver-specific

manner. This network can also help to predict genes that are

related to liver phenotype and liver diseases in mice and

humans. In addition, we determined that GIT2 (G-protein-

coupled receptor (GPCR)-kinase interacting protein 2) recruits

the TNFAIP3 (tumor necrosis factor, a-induced protein 3)

ubiquitin-editing complex to IKBKG (inhibitor of k light

polypeptide gene enhancer in B cells, kinase g) and is involved

in the regulation of the NF-kB pathway.
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Results and discussion

To better understand the regulatory and functional rela-

tionships between the proteins expressed in the liver, we

developed a strategy for constructing a liver protein interaction

network (Figure 1A). The human liver expresses 418 000

genes, and, therefore, a complete mapping of its interactome

remains beyond current capabilities. Therefore, we selected

5026 proteins based on the characteristics of the human

liver proteome (CNHLPP Consortium, 2010) for interaction
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Figure 1 Construction of the proteome-scale HLPN. (A) Strategy of high-throughput Y2H screening. (B, C) Distribution of the GO categories of cellular component
(CC) and molecular function (MF). From inside to outside, the rings represent all of the human proteins (16 022 with CC and 15 259 with MF annotations), human liver
proteins (12 066 with CC and 10 863 with MF annotations), Y2H matrix proteins (4553 with CC and 4374 with MF annotations) and HLPN proteins (2342 with CC and
2252 with MF annotations). Each section reflects the percentage of proteins assigned to the given GO category. (D) GST pull-down assay. Bacteria-expressed GST or
GST-tagged proteins were immobilized on glutathione-Sepharose 4B beads, and the beads were subsequently incubated with the Myc- or Flag-tagged proteins
expressed in the HEK293T cell lysates. The proteins were detected using the indicated antibodies. (E) Co-IP assay. Flag- or Myc-tagged plasmids were transfected into
HEK293T cells. Immunoprecipitations were performed using anti-Myc or anti-Flag antibodies and protein A/G-agarose. The lysates and immunoprecipitates were
detected using the indicated antibodies. Myc-, GST- and Flag-fusions mean the fusion proteins with Myc, GST or Flag tags. (F) Luciferase reporter gene assays of
SMAD3. Data are presented as mean values±s.d. (n¼3). The results are representative of three independent experiments.
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screening (Supplementary Table S1), which includes the

functional and regulatory proteins that play important roles

in liver development, regeneration, metabolism, biosynthesis

and diseases. The data set includes 684 metabolism enzymes

(ME), consisting of liver-specific bile acid-, bilirubin- and

drug-ME, 201 LS proteins, 337 LP proteins (mouse-homo-

logous proteins, knockouts of which cause liver phenotypes)

and 488 LD-related proteins. Unbiased, these proteins repre-

sent the human liver proteome through Gene Ontology (GO)

(Ashburner et al, 2000) and the Kyoto Encyclopedia of Genes

and Genomes (KEGG) analysis (Kanehisa et al, 2004) (Figure

1B and C; Supplementary Figure S1). These molecules are

involved in 84 of the 85 KEGG metabolic pathways, including

those of carbohydrates, lipids, nucleotides, amino acids,

vitamins, hormones, bile acid and drugs (Supplementary

Figure S1A). The selected proteins covered all 114 human

regulatory pathways in the KEGG, including the ErbB, MAPK

and TGF-b signaling pathways, which have been shown to play

key roles in the regulation of liver function (Supplementary

Figure S1B).

To screen the protein interactions using a high-stringency

Y2H system, a matrix with 4788� 4740 unique genes (based

on 5026 selected proteins) was successfully constructed by a

bacterial homologous recombination method (Zhu et al, 2010)

and was screened as described (Rual et al, 2005). After

detecting 42.26�107 combinations (covering 1.13�107

unique pairs), 1818 interactions among 1777 proteins were

obtained (Supplementary Table S2). We aimed to construct a

protein interaction network reflecting the characteristics of the

liver. Because the Y2H array that we constructed was unable to

catch all of the proteins expressed in the liver, the information

that we obtained may be limited. Additionally, previous

research has shown that different Y2H screening strategies

can obtain more interaction information. Therefore, we

randomly selected 1428 baits from 5026 proteins for Y2H

library screening. The functional classification of 1428 baits is

consistent with the 5026 proteins, which are involved

primarily in such functions as liver metabolism, apoptosis,

cell proliferation, transcription, signal transduction, transport

and biosynthesis. We screened an adult liver cDNA library

using 1428 constructed baits, and we obtained 1713 non-

redundant protein interactions involving 1239 proteins (Sup-

plementary Table S2). Only 47 interactions overlapped

between the two screens, which suggest the necessity of

performing array and library screening in parallel. In total,

3484 protein interactions involving 2582 proteins were

obtained, and only 258 interactions were reported previously

in the Human Protein Reference Database (HPRD) (http://

www.hprd.org).

To evaluate the reliability of the interactions, we assigned a

confidence score to each interaction by a bioinformatics tool,

the PRINCESS (Li et al, 2008), which uses Bayesian network

approaches to combine multiple heterogeneous biological

findings to assign reliability score to protein–protein interac-

tions. In the 2940 interactions identifiable by the PRINCESS,

we found 1105 high-confidence interactions (i.e. score 42),

thereby indicating that 37.6% of the interactions were

supported by bioinformatics evidence. The rate was higher

than that of the other two large-scale data sets (Rual et al, 2005;

Stelzl et al, 2005) (30.6 and 22.0%, respectively). Additionally,

we adopted a reported method to evaluate the confidence of

the HLPN data set (Yu et al, 2008). It is estimated that the false

positive rate of the HLPN is 58.9%. This finding might be

because the analysis method greatly exaggerates the false

positive rate. There are many true interactions in the golden

negative interaction data set (nucleus–membrane protein

pairs). Even in the HPRD, there are 192 interactions between

1044 nucleus proteins and 783 membrane proteins. Other than

the bioinformatics evaluation of the confidence of the HLPN,

the more convincing strategies are to validate the interactions

by conducting independent experiments. Thus, we validated

randomly selected interactions by performing independent

biochemical or cellular assays (Supplementary Table S2).

A total of 47 interactions were tested by a GST pull-down assay

with a verification rate of 72.3% (Figure 1D). Another 94

interaction pairs were verified by a co-immunoprecipitation

assay with a verification rate of 76.6% (Figure 1E). We also

examined 117 interactions by a co-localization assay and found

that 84.6% were co-localized (Supplementary Figure S2).

To confirm the functional interactions, we validated selected

SMAD3-interacting candidates by a luciferase reporter gene

assay. Mutant TbRI that phosphorylated SMAD3 constitutively

was added to activate the reporter gene. We found that six of

the factors affected the reporter gene in a dose-dependent

manner (Figure 1F). Taken together, our results show that a

large percentage of the Y2H interaction screenings can be

verified by other independent biochemical approaches and

thus provide clear evidence to support the low rate of false

positives in the obtained interactions. At least 72% of the

interactions were confirmed by independent biochemical or

cellular assays (Supplementary Table S2). Therefore, the false

positive rate might be o28%, which is similar to previous

reports of human interactome data sets (Rual et al, 2005; Stelzl

et al, 2005). Another common feature of large-scale two-hybrid

screening is the high frequency of false negatives or missed

interactions. It has been estimated that o20% of the

interactions could be identified by Y2H technology (Venkate-

san et al, 2009). In our study, two different screening strategies

were used to ensure that more protein interactions were

obtained. However, a false negative ratio of B60% of the

HLPN is estimated based on the previous report of the size of

the human interactome (Stumpf et al, 2008). This result might

be because of the technical limitations of Y2H technology.

Using computational analysis, we found that the HLPN is

composed of a large, connected subnet containing 2215

proteins and 134 smaller networks composed of fewer than

10 proteins (Figure 2A). The global properties of the HLPN

were similar to the features found in previous reports

(Supplementary Figure S3) (Rual et al, 2005; Stelzl et al,

2005). However, several features suggest that the network

could be specifically used to understand the human liver

proteome. First, the HLPN includes 324ME, 154 LS, 218 LPand

175 LD, which have been shown to be specifically expressed in

the liver or required individually for controlling liver

functions. The HLPN indicated functional properties similar

to those of the initial set of bait genes. Moreover, the

distribution of the GO categories of HLPN proteins was

consistent with that of the liver proteome (Figure 1B and C).

Second, the HLPN revealed the different topological proper-

ties of liver enriched proteins. To analyze the local network
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characteristics, we extracted subnetworks for ME, LS, LP and

LD. Next, we compared these subnetworks with the randomly

generated networks. We examined two important network

measurements: degree and betweenness centrality. The global

properties of the four protein sets were summarized (Table I).

We found that the degree centrality and the betweenness

centrality values of LP and LD were significantly higher than

for other HLPN proteins. This result is consistent with a

previous report of phenotype proteins in yeast (Said et al,

2004) and other human-disease proteins (Goh et al, 2007).

In the ME and LS subnetworks, we found that ME or LS did

not have vital network positions in the HLPN. However, the

degree and the betweenness centrality of their partners were

significantly greater than the expected values. These results

indicated that ME and LS tended to interact with the proteins

that occupied important network positions. Significantly, the

GO analysis revealed that the neighbors of LS are primarily

involved in development, regulation of gene expression and

apoptosis. Accumulated evidence shows that these proteins

play a key role in liver development and formation. In fact,

among the 200 proteins that interact with LS, 44 are LP and 27

are LD (Supplementary Table S3). This observation led us to

propose the hypothesis that the expression of a few LS proteins

might be an economical and effective means of regulating liver

cell development and functional formation through protein

interactions. The HLPN contains only part of the entire human

liver network, which might lead to sampling bias. To address

this concern, we compiled a virtual liver protein–protein

interaction network with the data from HPRD databases using

a reportedmethod (Bossi and Lehner, 2009). All of the proteins

that expressed in the human liver were included in construct-

ing the network. In the compiled liver protein interaction

network, all topological properties of ME, LS, LP and LD

remained true (Supplementary Table S4). Moreover, we

randomly added or removed 5–20% of the edges and found

that all of the conclusions still held, which suggests that the

topological features of ME, LS, LP and LD of the HLPN are not

artifacts of the biased data sets.

Third, novel interactions of ME connect their biological

functions to form multiple cellular processes. The HLPN

contains 324 ME that are involved in 637 interactions. Among

them, 74 interactions are between two ME, of which 32

interactions are in the same KEGG metabolic pathway, and

the others are enzymes from different metabolic path-

ways (Supplementary Table S5). We detected six interactions

(UGT1A1/UGDH, NAGK/GNPNAT1, NME1/POLR1C, GK/

GPD1, CYP4F12/SOD2 and RDH13/CYP3A5) that are direct

neighbors in the human metabolic network, which might

allow the channeling of metabolic intermediates from

one active site to the next. Interestingly, we found that only

17% of the 446 ME partners participated in the regulation of

the metabolic process by GO classification. Most of the ME

partners are involved in various cellular processes (Figure 2B),

which suggests that ME might directly play roles in multiple

cellular functions other than metabolism in the liver. For

example, 4-hydroxyphenylpyruvate dioxygenase and sorbitol

dehydrogenase were found to connect with the NF-kB path-

way and regulate its transcription activity (Supplementary

Figure S4). Additionally, glycerol kinase (GK) was found

to associate with nuclear receptors NR4A1 and retinoid

X receptor A (Perlmann and Jansson, 1995). The overexpres-

sion of GK inhibited the binding of NR4A1 to its specific

DNA-binding sequence and the transcription activity (Supple-

mentary Figure S5).

Reactive oxygen species (ROS) are created in normal

hepatocytes and are critical for its normal physiological

processes. To maintain an appropriate level of ROS, cells have

developed an enzymatic antioxidative system. We found that

these enzymes bind strongly with each other (Figure 2C).

PRDX4 binds directly to PRDX1, 2 and 3, which suggests

Table I Topological analysis of metabolic enzymes and liver-specific, liver-phenotype and liver disease-associated proteins in the HLPNa

Classification ME MEP LS LSP LP LPP LD LDP

Degree centrality 2.3 (3.0)b 5.7 (2.3) 2.9 (2.9) 7.0 (2.4) 4.7 (2.7) 4.4 (2.4) 4.0 (2.8) 4.5 (2.3)
P-value 3.3�10�2 4.6�10�56 2.8�10�1 1.6�10�46 5.9�10�7 2.8�10�33 6.3�10�9 4.7�10�36

Betweenness centrality
(� 10�3)

1.6 (2.5) 6.5 (1.4) 2.6 (2.3) 7.9 (1.6) 5.5 (2.1) 4.2 (1.7) 3.6 (2.2) 4.7 (1.5)

P-value 9.0�10�2 5.5�10�52 1.7�10�1 7.9�10�42 8.8�10�6 1.6�10�28 6.6�10�9 1.8�10�31

LD, liver disease-associated proteins; LDP, interaction partners of LD; LP, liver-phenotype proteins; LPP, interaction partners of LP; LS, liver-specific proteins;
LSP, interaction partners of LS; ME, metabolic enzymes; MEP, interaction partners of ME.
aDegree centrality and betweenness centrality values of the indicated group of proteins are shown. The non-parametric Mann–WhitneyU-test was used to compare the
indicated group of proteins with the other proteins of HLPN. A P-value of o0.01 was regarded as statistically significant.
bNumbers in parentheses are the values for the other proteins in the HLPN.

Figure 2 Network views of the HLPN. (A) Visualization of the HLPN. Yellow circles, selected Y2H proteins; red lines, interactions identified by library screening; blue
lines, interactions identified by array screening; green lines, overlapping interactions of library and array screening; bold edges, interactions reported in the HPRD.
(B) Distribution of the GO categories of biological processes for metabolic enzymes and their partners in the HLPN. The sections reflect the percentage of proteins
assigned to the given GO category. (C) The ROS subnetwork. Blue circles, ROS proteins; red lines, data from the HPRD. (D) The liver-phenotype proteins network.
Bold edges, interactions reported in the HPRD. (E) Liver-disease-associated proteins network. Red circles, HCC; cyan circles, cholangiocellular carcinoma; blue circles,
liver fibrosis; yellow circles, other liver-disease proteins; gray circles, proteins without human liver disease annotation in the Library of Molecular Associations database
(http://www.medicalgenomics.org/databases/loma); red lines: interactions among liver-disease proteins; yellow lines, interactions among non-liver-disease proteins;
green lines, other interactions.
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that various peroxiredoxins might form a homo- or hetero-

polymer. Moreover, these enzymes were also found to interact

with many proteins that are involved in multiple cellular

processes, such as the interaction of PRDX4 with APOB, LBP,

CYP27A1 and SULT2A1. All of these enzymes play a role

in cholesterol metabolism. Interestingly, GPX2 was found to

interact with TP53 and MYC, both of which are key

transcription factors for the regulation of ROS homeostasis

(Sharpless and DePinho, 2002; Prochownik, 2008). It has been

reported that PRDX1 interacts with c-Myc and reduces the

ability of c-Myc to activate transcription and, presumably,

limits its induction of ROS (Mu et al, 2002). Thus, this

regulatory model might play a significant role in the regulation

of ROS homeostasis.

Fourth, we can predict LPand LD based on their connectivity

features (Figure 2D and E). Both LP and LD proteins tend to

interact with LP and LD proteins, respectively, in the HLPN,

which is a condition that could be used to predict the potential

LP and LD proteins. A total of 218 LP are involved in 895

interaction pairs in the HLPN. Of these pairs, 94 LP (43.1%)

interact with each other via 93 interactions, which is

significantly greater than the expected value in a random

network (empirical P-valueo0.001, permutation test). Among

the 93 interaction pairs, 77 pairs composed a connective

cluster with an average short path length of 4.8 (Figure 2D).

It is worth noting that, in the LP subnetwork, several proteins,

such as IKBKG, SMAD3, RELA and CCND3, are critical for the

network topology. Moreover, 166 proteins were found that

interacted with two or more known LP proteins, among which

31 proteins were LP. This finding represents a seven-fold

enrichment compared with all of the proteins encoded by the

human genome (Supplementary Table S6). For example,

EP300 is an acetyltransferase that interacts with seven liver-

phenotype proteins. EP300 is highly expressed in the human

liver. Knockout of EP300 results in defects of the heart, lung

and small intestine and death at midgestation. Recently, it was

reported that acetylation of metabolic enzymes of the liver is

ubiquitous and is important for their function (Zhao et al,

2010). Thus, it is reasonable that EP300 might contribute to

liver-specific functions and change the phenotype of the liver.

Moreover, 50/175 (28.6%) LD proteins interact with each

other to produce 31 non-self interactions (27 were not

reported). This interaction was significantly greater than in

the random network (empirical P-value o0.001, permutation

test). In the HLPN, cross-validation using the known LP and

LD as benchmarks revealed that the enrichment is 10.6- and

31.2-fold, respectively, which are greater values than those of

randomly selected proteins. These features indicate that the

HLPN information alonemay offer a simple, efficient means by

which to annotate protein function and prioritize candidate

genes for complex human diseases. For example, we found

that 27 proteins were connected to more than two hepatocel-

lular carcinoma (HCC)-related proteins, and six of these

proteins were reported to be related to HCC (Supplementary

Table S7). The chance of these 27 proteins being HCC proteins

was 3.4-fold higher than for randomly selected proteins

from the HLPN (P-value¼0.006, hypergeometry distribution

test). For example, the immune response and inflammation

signaling pathway is closed relative to liver cancer (He

and Karin, 2011). A few members of the NF-kB signaling

pathway, such as IKBKG, MYD88 and NFKB1, were identi-

fied as potential HCC candidates that might play certain roles

during the pathogenesis of HCC.

Finally, many interactions were observed that involve

critical signal transduction factors. In the HLPN, 279 proteins

were distributed among 11 signal transduction pathways in the

KEGG; these proteins were mainly involved in MAPK, ERbB,

VEGF, Wnt, TGF-b and other signaling pathways that

participate in the regulation of liver functions. The 279

proteins participated in 1211 interactions with 1057 proteins,

among which 778 proteins were not annotated as signal

transduction cofactors in the KEGG. A total of 76 pairs of

interactions are annotated in a same KEGG signaling pathway,

and 37 pairs are supported by the literature. This finding

suggests that another 39 pairs have a high reliability and

indicates newmechanisms bywhich proteins participate in the

regulation of corresponding signaling pathways (Supplemen-

tary Table S8). In the HLPN, 141 unannotated proteins are

linked to two or more proteins in the same signaling path-

way, suggesting that they are candidate regulators of these

signaling pathways. For example, PHC2, SHANK3, KHDRBS1,

FAM59A and ARHGEF5 can be linked to two or more proteins

in the MAPK pathway, of which KHDRBS1, SHANK3 and

FAM59A had been reported to participate in the MAPK path-

way (Martin-Romero and Sanchez-Margalet, 2001; Schuetz

et al, 2004; Tashiro et al, 2009). Moreover, 135 proteins were

identified as cross-talk proteins in the HLPN, which links two

or more different signal transduction pathways (Supplemen-

tary Table S9). Furthermore, 53 interactions were identified

between proteins involved in two different signaling path-

ways and were considered potential cross-talk of different

pathways (Supplementary Table S10). In addition, our studies

confirmed that the transcriptional activity of STAT3 is

negatively regulated through binding with NFKBIZ (Wu et al,

2009), and NUMBL inhibits TNF-a and IL-1b-induced activa-

tion of NF-kB through interaction with MAP3K7IP2 (Ma

et al, 2008). The latter results link the NF-kB pathway to

the JAK-STAT pathway and the Notch pathway. We also found

that RELA negatively regulates the Nrf2-Keap1 oxidative

stress signaling pathway through interaction with KEAP1

(Yu et al, 2011).

SPOP, TNIP1, TRAF1, IKBKG, TNFAIP3 and NFKBIB were

identified as putative binding partners of the GPCR-kinase

interacting protein 2 (GIT2). Of these partners, TNFAIP3 and

TNIP1 are subunits of the TNFAIP3 ubiquitin-editing complex,

which mediates the deubiquitination of IKBKG and negatively

regulates the NF-kB pathway (Wertz et al, 2004; Oshima et al,

2009). GIT2 is a ubiquitous multidomain protein that has an

important role in the scaffolding of signaling cascades (Hoefen

and Berk, 2006). Therefore, we proposed that GIT2 may be

involved in the NF-kB pathway through regulation of the

interaction between IKBKG and TNFAIP3. To test this

hypothesis, we confirmed the interaction between GIT2 and

IKBKG (Figures 1E and 3A). The overexpression of GIT2

enhanced the deubiquitination activity of TNFAIP3 toward

IKBKG, and siRNA targeted at GIT2 abrogated the TNFAIP3-

dependent deubiquitination of IKBKG and impaired the ability

of TNFAIP3 to inhibit NF-kB activation (Figure 3B–D). This

finding suggests that endogenous GIT2 plays a role in

negatively regulating inducible NF-kB activity.
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Materials and methods

Y2H screening

The interactome data set of the human liver was generated using the
large-scale Y2H method. The full-length ORFs or fragments of genes
were amplified by PCR from cDNA and subcloned into pDBleu and
pPC86 vectors (Invitrogen) in frame with GAL4 DNA-binding domains
or activation domains. Detailed information regarding the constructs is
provided in Supplementary Table S1. The GAL4-based Proquest Y2H
system was used (Invitrogen). To create an array for automated Y2H
screening, the bait plasmids (with Gal4 DNA-binding domains) and the
prey plasmids (with Gal4 activation domains) were transformed into
the yeast strains MaV203 (MATa) and MaV103 (MATa), respectively.
The colonies that did not pass the self-activation test were removed.
The remaining yeast colonies were assembled in 96-well plates.
Each set of 12 preys was assembled into a pool and screened against
the baits by yeast mating methods using a liquid handling robot
(Biomek FX). Diploid yeast colonies that activated the HIS3, URA3 or
LacZ reporter gene were selected for further expanded Y2H screening.
All of the positive clones in the first round of screening were mated
with each of the 12 preys in the second round of screening. Those
colonies that grew on SC–Trp–Leu–His–Ura plates and activated the

LacZ reporter gene were recorded as positives. The interactions that
passed two independent screens were considered true positives. For
Y2H library screening, the bait plasmids were transformed into yeast
MaV203. To test whether the bait could self-activate reporter genes
without the presence of interaction partners, the bait constructs were
transformed into the yeast strain MaV203 and were grown on an
SC–Leu–Trp–His medium containing 0, 25, 50, 75 or 100mM 3-AT for
1 week. The lowest concentration of 3-AT was used for library
screening. Appropriate amounts of 3-AT were added to inhibit self-
activation. For Y2H screens, the yeast strain MaV203 was sequentially
transformed with the bait constructs and human liver cDNA library
fusions containing the GAL4 activation domain according to the user
manual. At least 1�106 transformants were screened. The yeast
transformants were selected in high-stringency medium. The plates
were incubated at 30 1C for 5–10 days. The positive colonies grown on
SC–Trp–Leu–His–Ura were restreaked onto new SC–Trp–Leu–His and
SC–Trp–Leu–Ura plates to grow for another 3 days. Colony-lift filter
assays were used to test the expression of the reporter gene LacZ
following the manufacturer’s protocol. Positive colonies that activated
at least two of the three reporter genes (His, Ura or LacZ) were picked
up and transferred to another new plate. The interactions were
confirmed by a retransformation assay in yeast. Next, the prey
plasmids were extracted and sequenced to identify the encoded genes.
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Figure 3 GIT2 is a negative regulator of the NF-kB signaling pathway. (A) Confirmation of the interaction between GIT2 and IKBKG by the GST pull-down assay.
(B) GIT2 enhances the TNFAIP3-dependent deubiquitination of IKBKG. HEK293 cells were transfected with the indicated plasmids. Cell extracts were
immunoprecipitated with anti-Flag antibody and detected by western blotting. (C) Knockdown of GIT2 by siRNA impairs the TNFAIP3-dependent deubiquitination of
IKBKG. HEK293 cells were cotransfected with the indicated plasmids or the GIT2 siRNA. Cell extracts were immunoprecipitated with an anti-Flag antibody and detected
by western blotting. (D) Knockdown of GIT2 impairs the TNFAIP3-mediated inhibition of NF-kB activity. HEK293 cells were cotransfected with the indicated plasmids.
One day after transfection, the cells were stimulated with TNF-a for 6 h. Relative reporter activity was measured. Data are presented as mean values±s.d. (n¼3).
The results are representative of three independent experiments.
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Publicly available data sets

A PPI human reference set containing 39142 PPIs between 9673
proteins was obtained from the HPRD (status 13 April 2010) (Keshava
Prasad et al, 2009). Mouse phenotypic data were obtained from the
Mouse Genome Database 59 (9 April 2009) (http://www.informatics.
jax.org). Liver-specific expressed genes were downloaded from the
Tiger (Liu et al, 2008), EHCO (release 14 February 2008) (Hsu et al,
2007) and HUGE index (Misra et al, 2002). Liver-disease-related genes
were obtained from the LOMA database (Buchkremer et al, 2010).

The protein interaction data set from this publication has been
submitted to the IMEx (http://imex.sf.net) consortium and assigned
the identifier IM-15364.

Bioinformatics analyses of the PPI map

Using gene_info (NCBI, 13 November 2009, release), proteins were
mapped to an Entrez Gene namespace through their accession
numbers, which were obtained in a BLASTP search against the nr
(NCBI) databases. The network graphs were produced using Cytos-
cape software (Shannon et al, 2003), and their topological parameters,
such as degree centrality, betweenness centrality, clustering coeffi-
cients, shortest path lengths and closeness, were determined using
the Cytoscape plug-in Network Analyzer (Assenov et al, 2008). GO
assignments were made using NCBI gene2go (17 November 2009)
and the GO consortium’s OBO (9 November 2009). Pathway assign-
ment was performed using the KEGG data set (Release 53.0). The
enrichment of specific GO terms was tested using a hypergeometry
test, followed by the Bonferroni multiple testing correction to control
for the false discovery rate (Li et al, 2005). GO co-annotations of
interacting proteins were evaluated with a previously described
method (Stelzl et al, 2005). To analyze the interconnection tendency
between proteins of the same or different categories,we used empirical
P-values to evaluate the statistical significance of an enrichment
number against 1000 random networks, which were generated by
randomizing the corresponding relationships between proteins
and their category assignment in the real network. The empirical
P-value was calculated as the fraction of random networks in which
the number of certain kinds of interactionwas not less than (upper tail)
nor larger than (lower tail) the fraction in the real network. Signi-
ficantly enriched or depleted cases in the real protein–protein inter-
action network existed when the upper-tailed/lower-tailed P-value
was o0.05.

To estimate the false positives of our data set, we adopted a method
developed by Vidal and colleagues (Yu et al, 2008). A golden standard
negative data set (GSN) was constructed by selecting the proteins with
different cellular locations (Rhodes et al, 2005). There are 455 nucleus
proteins and 242 membrane proteins in the HLPN. After the manual
analyses, we found that 68 interactions between nucleus and
membrane proteins had a relatively high probability of being negative
(we do not mean that any of them were false positive). Considering
thewhole negative interaction space for the 2582 HLPN proteins, there
might be 68� (2582� 2581/2�8348)/(455� 242)¼2053 negative
interactions. The false positive rate is 2053/3484¼58.9%.

We evaluated the false negative ratio of HLPN based on the pre-
vious report of human interactome size (Proc Natl Acad Sci USA,
2008, 105(19):6959–6964); we estimated the false negative ratio of the
HLPN to be 1�3484� (1–20%)/(650 000� (2582� (2582�1)/2))/
(25 000� (25 000�1)/2)¼60%. The ratio of false negatives might be
attributable to the technical limitations of any given large-scale
method.

Co-IP, pull-down and co-localization assays

For co-IP assays, the corresponding genes were cloned into pFlag-
CMV2 and pCMV-Myc vectors. HEK293T cells were transfected with
the indicated plasmids to express the proteins. After 24–48h of growth
following transfection, the cells were harvested. Cell lysates were
prepared in a lysis buffer (50mM Tris–HCl, pH 7.5, 150mM NaCl, 1%
Tween 20, 0.2% NP-40 and 10% glycerol) and supplemented with a
protease inhibitor cocktail (Roche) and phosphatase inhibitors (10mM
NaF and 1mM Na3VO4). Immunoprecipitations were performed using

anti-Myc or anti-Flag antibodies and protein A/G-agarose (Santa Cruz)
at 4 1C. The lysates and immunoprecipitates were detected using the
indicated primary antibodies and then the appropriate secondary
antibody, followed by detection with the SuperSignal chemilumines-
cence kit (Pierce). For pull-down assays, the corresponding genes were
cloned into pGEX-4T-2 and pCMV-Myc or pFlag-CMV2 vectors.
Bacterially expressed GST or GST-fusion proteins were immobilized
on glutathione-Sepharose 4B beads (GE, UK) and washed. Next, the
beads were incubated with Myc- or Flag-fusion proteins expressed
in HEK293T cell lysates for 3 h at 4 1C. Beads were washed with a
GST-binding buffer (100mMNaCl, 50mMNaF, 2mMEDTA, 1%NP-40
and protease inhibitor cocktail), and proteins were eluted, followed by
western blotting. For co-localization assays, HEK293T cells were
transfected with RFP and GFP expression plasmids or with Myc and
Flag expression plasmids. One day after transfection, the cells were
fixed with 5% paraformaldehyde for 30min. The cells were visualized
with a confocal microscope.

Luciferase reporter gene assays

HEK293 cells were transfected with the reporter NF-kB-Luc (for NF-kB
pathway) or CAGA6-Luc (for the TGF-b reporter gene), with or without
the indicated stimulation. After transfection for 24–36 h, the cells were
lysed with a passive lysis buffer (Promega). The luciferase activity was
measured with the Dual Luciferase Reporter Assay System (Promega)
according to the manufacturer’s protocol. The plasmid pRL-TK
(Promega) was used as an internal transfection control. Reporter
assays were performed three times in parallel, and each experiment
was repeated at least three times.

In vivo ubiquitination assays

For the in vivo ubiquitination assays, HEK293 cells were cotransfected
with plasmids expressing Myc-GIT2, Myc-TNFAIP3, Flag-IKBKG,
HA-Ub or GIT2 siRNA (50-CGUUGAUUAUGCAAGGCAA-30) in various
combinations. At 24–36 h post-transfection, the cell extracts were
prepared and analyzed for polyubiquitination of IKBKG, either
by western blotting of total extracts or by immunoprecipitating
Flag-IKBKG with anti-Flag beads followed by western blotting with
an anti-HA-Ub antibody.

RNAi assays

The siRNAoligos for GIT2 (sense 50-CGUUGAUUAUGCAAGGCAATT-30;
antisense: 50-UUGCCUUGCAUAAUCAACGGG-30) were synthesized by
GenePharma Biotechnology (Shanghai, China). The siRNA oligos
against GIT2 and the indicated plasmids were transfected into the
HEK293 cells using Lipofectamine 2000 reagent. After 24–36h, cells
were harvested and subjected to western blotting or reporter gene
assays.

Statistical analysis

All data from reporter gene experiments were presented as mean
values±s.d.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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