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Abstract— Future requirements for drastic reduction of CO2

production and energy consumption will lead to significant
changes in the way we see mobility in the years to come.
However, the automotive industry has identified significant
barriers to the adoption of electric vehicles, including reduced
driving range and greatly increased refueling times.

Automated cars have the potential to reduce the environ-
mental impact of driving, and increase the safety of motor
vehicle travel. The current state-of-the-art in vehicle automation
requires a suite of expensive sensors. While the cost of these
sensors is decreasing, integrating them into electric cars will
increase the price and represent another barrier to adoption.

The V-Charge Project, funded by the European Commission,
seeks to address these problems simultaneously by developing
an electric automated car, outfitted with close-to-market sen-
sors, which is able to automate valet parking and recharging for
integration into a future transportation system. The final goal
is the demonstration of a fully operational system including
automated navigation and parking. This paper presents an
overview of the V-Charge system, from the platform setup to
the mapping, perception, and planning sub-systems.

I. INTRODUCTION

As part of their “Europe 2020” program, the European

Commission has outlined a number of ambitious targets

for Europe to meet by the year 2020 [1]. These targets

address a wide range of social, environmental, and economic

issues. Part of the strategy is to address the problem of

climate change, to reduce greenhouse gas emissions, to move

toward renewable sources of energy, and to increase energy

efficiency.

One aspect of this challenge will be the reduction in

reliance on fossil fuels and the move to electric motor vehicle

transport. However, the automotive industry has identified

significant barriers to the electrification of vehicles, including

reduced driving range and increased refueling times [2].

Automated cars have the potential to reduce the environ-

mental impact of driving, reduce traffic jams, and increase
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Fig. 1. The initial experimental platforms for the V-Charge project—each
VW Golf has been modified to support fully automated driving using only
close-to-market sensors. A similar plug-in hybrid is being developed.

the safety of motor vehicle travel [3]. The current state-

of-the-art in automated vehicle technology requires precise,

expensive sensors such as differential global positioning

systems, highly accurate inertial navigation systems and

scanning laser rangefinders [3]. While the cost of these

sensors is going down as robots become more ubiquitous,

integrating them into electric cars will increase the price and

represent yet another barrier to adoption.

The European V-Charge Project seeks to address these

problems simultaneously by developing an electric auto-

mated car, outfitted with close-to-market sensors, which is

able to automate valet parking and recharging for integration

into a future transportation system. To provide a balance

between individual and public transportation, such a system

could be used to support coordinated parking, charging, and

pickup of vehicles for park-and-ride public transit.

This implies three major fields of research: (i) vehicle

functionality, onboard localization detection of static and dy-

namic obstacles, and on-board planning using only close-to-

market sensors, (ii) logistics, optimal scheduling of charging

stations and assignment of parking spots, and (iii) infrastruc-

ture, development of a secure and reliable communication

framework to store and share a database of information about

the parking area.

After a short section concerning the state of the art, this

paper will present an overview of the V-Charge project and

its goals, starting with a description of the platform and in-

frastructure setup, followed by a section about the mapping,

perception and planning software components. Results from

year one of the project are presented within each section.
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A. State of the art

The DARPA Grand Challenge (2004, 2005) and Urban

Challenge (2007) [4] competitions were instrumental in

pushing research on automated driving out of the lab and

into near real-world conditions. As such, they remain the de

facto baseline for automated driving systems. In both cases,

the vehicle had to drive fully autonomously in either an off-

road environment or an urban environment. Among other

competencies, these tasks required local obstacle perception

and tracking, local path planning to avoid collisions as well

as accurate global localization to enable progress toward

high-level mission goals. All of the successful teams in these

competitions utilized a highly sophisticated suite of expen-

sive sensors, such as sweeping laser range finders, RADAR

systems, and color cameras, most of them pointing ahead

to detect the road parameters and potential obstacles (e.g.

[5], [6], [7]). Most vehicles also used one GPS antenna in

combination with a 6 degree of freedom inertial measurement

unit (IMU) for localization as well as two additional GPS

antennae to discern absolute heading. In addition, in the

Urban Challenge, the cars had to select their own routes,

perceive and interact with other traffic, execute lane changes,

U-turns and parking maneuvers.

However, the sensor setup in the previously mentioned

projects is much too costly to consider inclusion into se-

ries automobiles. The research initiative PReVENT [8] is

one step closer to market-ready automated vehicles. In this

project low-cost sensors such as cameras or radio-based car

to car communication were used. Similarly, [9] describes

a full architecture for decision making under uncertainty

during autonomous city driving and provides experiments

showing the effectiveness of their approach in simulations

of many real traffic situations. However, in both cases, long

distance fully automated driving was not demonstrated.

The Park Assist system by Volkswagen1 is an example

of an automatic driving application already on the market.

This system assists the driver with maneuvering the vehicle

in parallel or head in parking spots. The automatic parking

mode is enabled in collaboration with the driver but using

stock sensors only.

Consequently, fully automated driving in dynamic urban

environments using only close-to-market sensors and on-

board computation remains an open research challenge.

II. PLATFORM OVERVIEW

This section gives an overview of the hardware and

software platforms used in the V-Charge project.

A. Hardware

Currently, a modified conventional combustion engine VW

Golf VI is used as the test platform of the project. The

modifications include integration of a sensor array used as

data source for environment perception and ego-localization,

installation of a computer cluster responsible for the control

1http://www.volkswagenag.com/content/vwcorp/

content/en/innovation/driver_assistance/parking_

steering_assistance.html

of the vehicle, adaptation of vehicle ECU network enabling

the drive-by-wire operation, and installation of additional

safety elements. We are working on analogous modifications

of a plug-in hybrid vehicle that will serve as the final test

platform for the project.

Fig. 2. The sensor setup of the V-Charge test vehicles including a schematic
representation of the field of view of the individual sensors (green is used
for sonar sensors, red for stereo-camera system, and blue for mono fish-eye
cameras).

Fig. 2 gives an overview of the sensor system installed on

the V-Charge test vehicles. Currently it consists of 12 sonar

sensors responsible for obstacle detection in short range, a

45� field of view (FOV) front stereo camera used for obstacle

perception, and a set of 4 fish-eye cameras providing a 360�

imagery of the vehicle surroundings. A rear-facing stereo

sensor will be integrated in the future. The vehicle is also

equipped with a standard GPS receiver and the onboard

sensor cluster including stock odometers, accelerometers,

and gyroscopes.

Each of the mono-cameras has a nominal FOV of 185�

and 1.3Mpx resolution. They are synchronously triggered at

a 12.5Hz. The stereo sensor is described in Sec. V-B.1. Each

sonar sensor has an aperture angle of 60� horizontally and

30� vertically and range of about 3–4.5m. The sonar system

provides the first and second direct and indirect reflections

for each sensor at about 10Hz.

The computer cluster consists primarily of 6 PCs installed

in the trunk of the vehicle. It can be powered directly from

the alternator or—if the engine is off—from the standard

12V DC battery.

The automated driverless operation of the V-Charge test

vehicles is achieved by using stock actuators only. Even

though the steering, throttle, brakes, and gearbox of a regular

VW Golf VI are generally controllable from within the CAN

network, some significant modifications to the vehicle were

necessary. These included (i) modification of the network

topology to enable two-way communication with the com-

puter cluster, (ii) adaptation of the engine ECU to enable the

availability of the Automatic Cruise Control (ACC) interface

at low-speeds, and (iii) installation of an electronic parking

brake.

In order to assure safe operation of the vehicle during

the test phases and demonstrations a number of additional

safety elements have been installed in the vehicle. The most

important elements and principles include (i) a remote kill

switch that will disconnect the V-Charge system from the

ECU network and initiate an emergency stop, (ii) an onboard

kill switch that will disconnect the V-Charge system from
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the ECU network to enable safe manual driving, (iii) control

inputs may be overridden by the driver at any time, and (iv)

the control inputs are monitored for integrity and filtered by

the CAN gateway.

In order to assure the highest possible safety level of

the system, a Failure Mode and Effects Analysis will be

performed with an independent organization.

B. Software
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Fig. 3. The V-Charge navigation architecture including adjacent modules
to highlight the relevant interfaces. Modules colored in light blue operate
on the central server side, those colored in dark blue on each automated
car.

Fig. 3 displays the conceptual layout of the overall V-

Charge navigation framework. It shares key aspects with the

architectures employed by the top DARPA Urban Challenge

finishers discussed in Sec. I-A, including a behavioral layer

that handles priority between a set of specialized planning

instances (called task processors).

We distinguish modules operating on the central server

side (light blue) from those on each of the automated vehicles

(dark blue). The parking manager processes requests of

incoming and outgoing vehicles. It will assign free parking

spots and charging areas by considering charging needs and

expected parking time. The global task planner operates on a

regularly updated road graph (obtained from the road graph

server). It is responsible for topological route planning and

task assignment. The mission executive located on vehicle

side is responsible for task assignments to the individual task

processors, management of task processor exceptions and the

overall correct execution of events.

III. INFRASTRUCTURE, COMMUNICATION AND

MANAGEMENT

Since the number of charging stations at large parking

areas, due to cost reasons, will be limited, the search for

an available (and charging-capable) parking spot will be

typically even more complicated and time-consuming for

electric vehicle (EV) drivers than for drivers of internal

combustion engine (ICE) cars. V-Charge therefore provides

an automated parking and charging system, based on a

central back-end server [10] which is in charge of an efficient
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Fig. 4. Mission control architecture. A disruption tolerant network will be
used for vehicle to infrastructure communication and the DDS middleware
will be used for communication within individual components.

parking resource management. It also provides each vehicle

with relevant mission information allowing it to navigate to

its assigned target destination.

To enable this system functionality, two main contributions

to the management and infrastructure part of the project

are made. First, the above-mentioned concepts for efficient

parking management are developed. Based on driver re-

quirements, e.g., prospective parking time, current battery

charging level and required travel distance, the Java EE-

based V-Charge server assigns (schedules) available parking

resources, such as regular parking spots and, in particular,

scarce charging stations to connected vehicles. The resulting

scheduling algorithms are being evaluated in a simulation

environment with real-world parking statistics to learn their

suitability for different usage scenarios (e.g., downtown vs.

airport parking). Requirements for charging station schedul-

ing as well as a short overview of first evaluation results are

given in [11]. Second, a sophisticated Disruption Tolerant

Networking (DTN) framework for vehicle-to-infrastructure

(V2I) and vehicle-to-vehicle (V2V) (both terms are often

subsumed as vehicle-to-x, or V2X) communications is de-

veloped. This framework enables the distribution of mission

information to connected vehicles. Of course, state-of-the-art

security and trust concepts are factored in. Driver interaction

(status check, drop-off, pick-up) is realized via mobile user

devices (smartphones). An overview is given in Fig. 4.

IV. MAPPING

In order to build a system suitable for both outdoor

and indoor parking places, we have designed a layered

topological/metric map to support both localization and

planning. The sparse map (Sec. IV-A) is built from a state of

the art Simultaneous Localization and Mapping pipeline. It

defines the coordinate frames in which all other map data is

expressed and provides the geometric and appearance data

needed for vehicle localization. The dense map (Sec. IV-

B) encodes a ground plane and height map representing the

static structure of the scene. Finally, the road graph (Sec. IV-

C) represents the abstract graph of connected lanes, parking

spots, and other semantic annotations (Sec. IV-D).

A. Sparse map

The sparse map represents the world as a trajectory of

vehicle poses and a set of sparse 3D map points. The 3D

map points correspond to landmarks in the world, which

are observed as keypoints in the camera images taken from

its respective car poses. We generate the sparse map offline
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Fig. 5. The layered map concept used in the project. Top: Sparse
Map—a graph of vehicle poses with three-dimensional landmarks encode
the appearance and geometric information. The sparse map defines the
coordinate system for all further mapping data and contains all of the
geometric and appearance information needed for localization. Middle:

Dense Map—a single layer height map encoding the static structure of the
scene. Bottom: Road Network—an abstract graph of lanes used for mission
planning and semantic annotations.

from a sequence of images collected from the four fisheye

cameras during a drive through the environment. It is used

as a topometric map for online localization (Sec. V-A) and

as the input for creating a dense map (Sec. IV-B). We use

the OpenCV GPU implementation of SURF [12] to extract

keypoints and descriptors from every image. The keypoints

from each camera are tracked through the sequence of

images by matching the descriptors over consecutive frames

using K-nearest-neighbors matching to keep processing time

low. Mismatched keypoints from two consecutive frames

are rejected based on the essential matrices [13] computed

from the wheel odometry readings and extrinsic values of

the cameras. Remaining consistent keypoint correspondences

over two consecutive frames are triangulated to infer the

corresponding 3D map point’s coordinates. Finally, the es-

timations of the sparse 3D map points and the trajectory

of car poses are improved with a full Bundle Adjustment

[13] where the total reprojection errors are minimized. Fig. 5

shows an example of the 3D map points (white points) and

the trajectory of car poses (RGB color for the x, y and z

axis of each frame) from the sparse map after full bundle

adjustment.

B. Dense map

For path planning tasks such as the generation of the

road graph or parking spot detection, the sparse map does

not represent the world densely enough. Therefore our map

also contains a dense height map layer. In this way the

height profile in the areas where the car is moving can

be described accurately, while avoiding the computationally

expensive computation of a full dense 3D model.

As we do not have much overlap between the four fisheye

cameras, we perform motion stereo on three consecutive

Fig. 6. Depth map computation–perspective images (middle) are rendered
from the fisheye images (left) and plane sweep stereo matching is used
between three temporally consecutive images to produce a depth map (right)
for each camera at each time.

images for each of the four cameras, using the middle one

as reference (Fig 6). For now, we first extract perspective

images out of the fisheye images and subsequently run plane

sweep stereo matching [14] to get depth maps. As an output

we get four depth maps per vehicle pose which are used as

input to a fusion procedure.

For the fusion of these local noisy depth maps, we closely

follow the approach of [15], but instead of the two-layer

height map useful for indoor scenarios, so far we compute a

single layer height map of the environment.

The method consists of the following three steps. First,

depth maps are computed and entered into a volumetric grid.

Each voxel of the grid stores information about its occupancy

likelihood. As a next step a raw height map together with

information about the certainty of a given height are extracted

out of the grid. The extraction of the heights from the

grid happens point-wise, without looking at the neighboring

heights. As a last step, a global convex optimization is run

on the 2D height map to introduce spatial smoothness.

In [15] the total variation (TV) is used to penalize the

height differences between neighboring places in the height

map. To reduce the staircasing artifacts in the final height

map we replace the TV with the Huber-TV. In Fig. 5 the

final output of the fusion is depicted.

C. Road Network

The traffic infrastructure considered for local and global

path planning is represented by an efficient data structure

named RoadGraph [16], [17]. The RoadGraph is a directed

graph comprising nodes connecting adjacent edges. Conse-

quently, efficient graph search algorithms may be applied to

find topological paths from the current vehicle pose to any

final pose in the world.

Roads are represented by a set of edges subdivided accord-

ing to the driving direction. Edges in the graph are placed

at lane centers by assigning interpolation points consisting

of sparse map coordinates to each edge. It is important to

emphasize that a node in the RoadGraph is only a means to

connect consecutive edges logically. Thus, a node does not

constitute any place in the world. Intersections are modeled

as sets of edges as well. Here the edges constitute either

approaching lanes, lanes leaving the intersection, or lanes

located on the intersection.

An example is illustrated in Fig. 5. It shows a RoadGraph

of our test site at ETH Zürich. The yellow lines represent

the edges (lanes) while the gray lines constitute the road

borders. Parking spots are marked by the black rectangles.

Note that the edges of the RoadGraph are very sparse, i.e.
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Fig. 7. Left: Overhead image obtained from single images of an onboard
camera. Center: Parking spot detection results using template matching.
Right: Parking spot detection results applied to an overhead image from
Google Maps.

only very few interpolation points were used to model the

lanes. Consequently, the edges are not driveable for non-

holonomic vehicles and a global path planning operation

smoothing the edges is required (cf. Sec. VI-A).

D. Semantic layer

As an essential requirement for the navigation and path

planning process, a robust automated semantic annotation

module is developed, which operates both on raw sensor

input and on the dense map. The major aim of semantic

annotation is to provide information about parking spaces,

driveable areas, and obstacles such as curbs. To do this, we

first obtain an overhead image of the environment, where

the vehicle is deployed. This can be a satellite image from

the area, or a compound image consisting of image frames

taken previously from on-board cameras and projected onto

the ground plane obtained from the dense map. Then, we

apply template matching to find parking spots in the overhead

images. Fig. 7 shows example results of this detection.

We can see that the detection is in general very robust,

with some slight exceptions where the template matcher did

not find enough evidence for a parking spot. We plan to

address these issues using an approach based on probabilistic

graphical modals, which uses context information to improve

the detection, in a similar way as was done by Spinello

et al. [18]. Also, a classification method is currently under

investigation, which provides uncertainty estimates (see, e.g.

[19]). These can then be used to improve the classification

and to obtain more detailed information for navigation and

planning.

V. PERCEPTION

This section describes the V-Charge perception system,

which provides both localization within the sparse map

(Sec. V-A), and situational awareness (Sec. V-B) using only

close-to-market sensors.

A. Localization

The localization module provides the pose of the vehicle

within the coordinate frame defined by the sparse map

(Sec. IV-A). Fig. 8 shows the localization pipeline.

For robust data association between 2D points from the

images and 3D points from the map, SURF keypoints and
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Fig. 8. The pipeline used for online data-association with the sparse map
and localization.
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Fig. 9. The perception framework used to generate a detailed reconstruction
and consistent view of the scene

descriptors are extracted from each currently observed image.

Then, a pose predicted based on wheel odometry is used

to select keypoints from close-by topological nodes in the

sparse map. The chosen keypoints are projected into the

image plane, resulting in a second set of sparse image-

points. The two sets of points—from the current observation,

and from the projected map—are matched based on their

distance in image- and descriptor-space, providing a set of

correspondences between the image and the map. The pose

is estimated by minimizing the total reprojection error in all

images. A robust cost function is used to deal with outliers.

To initialize the system, we allow for more extensive data

associations between the sparse map and the observed frame

by using NP3P-fitting (the Non-Perspective 3-Point Problem)

combined with RANSAC [20], followed by a linear NPnP

step for refinement. Both problems are solved using the

gP3P/gPnP method presented by Kneip et al. [21].

B. Situational Awareness

For automated driving in rapidly changing and dynamic

environments, a robust and accurate scene reconstruction

and situation analysis is mandatory. Therefore a complete

360 degree sensor coverage is required and realized with the

sensor system shown in Fig. 2. Fig. 9 sketches the workflow

of the perception framework. In detail, each module provides

the following functionality:

Fig. 10. The Bosch stereo video camera detects objects’ height and distance
as well as capturing standard video images.
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1) Dense Stereo : With a 12-centimeter baseline distance,

the Bosch stereo camera may well be the smallest system

of its kind currently available in the field of automotive

solutions. Each of the two CMOS image sensors has a

resolution of 1.2 megapixels. Thanks to its high-quality lens

system, the camera is able to capture an angle of view of 25

degrees vertically and 45 degrees horizontally, and offers a

3D measurement range in excess of 50 meters. The highly

light-sensitive image sensors are capable of processing very

high contrasts and cover the full spectrum of light visible to

the human eye.

For V-Charge, internal distance data from the Bosch stereo

camera system is made available to the map fusion module.

The data is represented in a fashion similar to a laser scanner:

for each direction horizontally, distances to obstacles—if

any—are provided. Beyond the ability of a laser scanner, the

stereo camera is robust against changes in the vehicle’s pitch

angle or a rising road surface. In addition to their distance,

obstacles are associated with attributes like motion, height,

and visual appearance. Based on this information, static

obstacles can be aggregated in a map, dynamic obstacles

clustered and tracked, and their visual appearance used for

classification.

2) Temporal Stereo Matching : To extend the FOV of

the front and rear facing stereo camera we run temporal

stereo matching on the side-facing fisheye cameras. The

stereo matching is done the same way as in the offline

mapping phase (Sec. IV-B), using our GPU plane sweep

implementation. Camera poses are provided by the online

localization pipeline. We can currently compute depth maps

with a 129.8
� FOV horizontally and 106.3

� vertically with a

640× 400 resolution. For the final online system we plan to

preprocess the data to provide the extracted data in a similar

way as the stereo camera does.

3) Object Detection and Tracking : The obstacle de-

tection and tracking phase is focused on pedestrian and

vehicle recognition, through the application of vision based

algorithms. An AdaBoost classifier is applied on specific

region of the input images to determine the presence of

a vehicle or pedestrian: the areas on which to apply the

classifiers are determined according to typical objects sizes

and calibration parameters. Thus, for each input image, the

area that a specific obstacle at a specific distance occupied in

the image is determined. Obstacle tracking between images

is performed to determine static and dynamic elements.

Different AdaBoost classifiers has been trained and tested,

using samples directly obtained from the acquired images.

Thousands of samples of front and rear vehicle faces have

been collected and used to train the classifier. The obstacle

detector is based on the trained classifier and is able to

detect vehicles from frontal and rear faces. Some preliminary

results relative to rear and front vehicles detection are shown

in Fig. 11. The work has been performed using the Parma

GOLD framework using perspective images rendered from

the fisheye images.

The use of rendered perspective images introduces noise

and imprecision in vehicles detection (Fig. 11, right). Further

Fig. 11. Front and rear vehicles detection on the acquired images. In the
right example, the image distortion affects the recognition of a vehicle.

Fig. 12. Occupancy grid for a typical parking lot scene after vehicle has
passed several occupied spaces and positioned itself in front of an empty
one.

training sessions and tracking procedure are needed to im-

prove the reliability of the results and cope with the presence

of inaccurate detections.

4) Map Fusion and Dynamic Objects : In order to

reconstruct a consistent model of the environment, the pre-

processed sensor measurements are aggregated over time in

an ego-referenced occupancy grid. Such approaches go back

to the early works of e.g. [22]. In the current implementation,

each sensor output is first processed in an individual layer

to keep sensor specific details. For a computational efficient

fusion, cell and grid size of each layer are defined by a

factor of an abstract base layer. In addition, the Bayesian

logic is used with a logit representation with saturation

allowing faster processing of updates. Currently, the sonar

sensors and stereo camera are fused and binarized to provide

a single representation. Fig. 12 shows a visualization of a

reconstructed map of a parking scene using color intensities

for obstacle and free space probabilities. For dynamic objects

the perception framework includes a separate tracking and

object fusion module. For objects in the scene classified

as dynamic, obstacles in a sensor measurement associated

to these objects are not processed by the grid map update

logic which results in a consistent map of static obstacles

and list of dynamic objects. Finally both scene views—grid

map and object list—are provided to the mission control and

path planning modules.

VI. PATH PLANNING AND MOTION CONTROL

Path and motion planning is split in a hierarchical ap-

proach. A mission planner (Sec. VI-A) produces a sequence

of tasks through a graph-search on the topological Road-

Graph. It assigns these tasks to specific task processors. The

current implementation consists of specific processors for on-

lane driving (Sec. VI-B) and parking maneuvers (Section VI-

C). Trajectories from the task processors are sent to a motion

control module (Sec. VI-D).

A. Global Path Planning

A fundamental requirement for vehicle navigation is a

global driveable path on the parking lot from the drop-off
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Fig. 13. Set of trajectories produced by the reactive planner. Collision-free
trajectories in dark green are rated by their lateral offset to the reference path.
The closest collision-free trajectory in yellow is forwarded to the motion
controller.

zone to the target pose. The global path planning routine

does not exploit any dynamic obstacles but relies only on the

static information stored in the RoadGraph. The algorithm

employed for global planning exhibits three stages.

The first stage is a traditional A* search along the edges

of the RoadGraph. The result is a sequence of edges the

vehicle is supposed to pass during navigation. The edges

of the RoadGraph are not necessarily driveable. Instead the

graph may be only a very rough and sparse approximation

of the traffic infrastructure.

The second stage performs an edge smoothing operation

using a fourth-degree polar-polynomial function with con-

tinuous curvature as proposed by Nelson [23]. The path is

checked for its curvature maximum and if a threshold is ex-

ceeded a second smoothing step is triggered. This secondary

smoothing involves a conjugate gradient descent where the

error function is closely related to the one presented by

Dolgov et al. [24]. We combine both smoothing stages in

order to stabilize the final path output but in many standard

scenarios the application of either the first stage or the second

stage is sufficient to compute driveable paths.

B. Local on-lane Planning in Dynamic Environments

The local reactive planning stage has to safely navigate

the car on the path obtained by the topological planning on

the RoadGraph. The reactive planning layer has to generate

feasible trajectories for the underlying trajectory controller.

These trajectories have to maneuver around newly sensed

obstacles and have to be compliant with the kinodynamic

constraints of the platform.

We follow the idea presented in [25] and prefer trajectories

that are aligned with the reference path. This criterion

reduces situation in which we are unable to return to the

reference path because of infeasible heading offsets. It also

helps the visual localization system to detect the same

features seen in the offline mapping process. The reactive

planner is implemented in a receding horizon manner. Unlike

in [25], we directly include nonholonomic constraints of our

platform—which have a major influence at low speeds—

in the design process of our motions. A dense set of

trajectories is created by applying discrete Euler-integration

of the unicycle motion equations in conjunction with the

nonlinear feedback controller presented in [26]. The shape

of the trajectories is varied by applying a set of longitudinal

velocity profiles and lateral offsets as shown in Fig. 13.

To test a trajectory for collision, we apply a fast distance

transform on the binary occupancy grid. The rectangular

shape of our vehicle is approximated by a set of circles which

can be tested efficiently for collision by a single look-up

per circle on the distance map. Collision-free trajectories are

rated by their lateral offset to the reference path at their end

points. The offset is calculated with a fast distance transform

of the reference path.

Predictions of dynamic objects will be included in this

reactive planning approach in a later stage of the project.

C. Automated Parking

The automated parking module is activated by the mission

executive when the vehicle approaches the target parking

spot or the target charging station. It provides a collision-free

trajectory to reach the intended position. The trajectories are

evaluated if they cause collision with newly detected objects

and renewed if necessary until the vehicle reaches the target

pose.

Fig. 14. An example of forward (red) and backward (green) trajectories
while parking backwards

The path planning algorithm is a State Lattice Planner [27]

which executes the A⇤ path search on the discretized state

space. In order to reduce the processing time, the motion

primitives, the driving swath (grid point list passed over

by the vehicle), and a heuristic look-up table [28] are pre-

calculated. An example of the trajectories provided by the

automated parking module is shown in Fig. 14.

As the vehicle needs to park in a charging station with

high accuracy and also needs to react to the newly detected

objects or any dynamic objects, higher accuracy at the target

pose and shorter processing time are required. The possible

countermeasures are the multi fidelity state space [29] or a

geometric path planning algorithm focusing on the parking

maneuver. These possibilities will be analyzed as the next

step.

D. Motion Control

The control parameters for trajectory execution are steer-

ing angle and acceleration. To this end, the electric power

steering (EPS) interface as well as the ACC interface are

employed. The input of the controller is a local reference

trajectory. Lateral offset control is performed as follows:

given a certain point on the reference trajectory, electric

field lines of an electric dipole are simulated guiding the

vehicle back to the reference trajectory. The active steering

angle results from computing the difference of the vehicle

orientation and the direction of the current field line. An

example is depicted in Fig. 15.

The active desired velocity is given by considering the

the maximal velocity on the parking lot and some physical
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Fig. 15. The red lines indicate the simulated electric field lines. δ reflects
the difference angle between the vehicle heading and the slope of the field
line. ∆path is the current distance to the reference trajectory.

restrictions. A traditional P-controller is applied to control

the vehicle velocity via the ACC interface.

VII. CONCLUSIONS

After one year of development, the V-Charge consortium

is confident that all the bricks required for the successful

implementation of an automated valet-charging solution have

been laid out. Relying on a reliable and capable hardware

platform, the project partners have shown that vision-only

localization, mapping, navigation, and control of an auto-

mated car is possible.

Obviously, the project is just at its beginning and an

intense research effort is currently underway regarding per-

ception, situational awareness, localization, environment rep-

resentation, and planning among dynamic obstacles.

Additionally to these research objectives, the project will

keep a strong focus on deploying its system and evaluating

it in realistic environments and scenarios with the final goal

of fully automated driving in urban environments using only

close-to-market sensors.
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