
2327-4662 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/JIOT.2014.2377238, IEEE Internet of Things Journal

1

Towards Automatic Activity Classification and

Movement Assessment During a Sports Training

Session
Amin Ahmadi, Edmond Mitchell, Chris Richter, Francois Destelle, Marc Gowing, Noel E. O’Connor,

Kieran Moran

Abstract—Motion analysis technologies have been widely used
to monitor the potential for injury and enhance athlete perfor-
mance. However, most of these technologies are expensive, can
only be used in laboratory environments and examine only a
few trials of each movement action. In this paper, we present
a novel ambulatory motion analysis framework using wearable
inertial sensors to accurately assess all of an athlete’s activities
in real training environment. We firstly present a system that
automatically classifies a large range of training activities using
the Discrete Wavelet Transform (DWT) in conjunction with a
Random forest classifier. The classifier is capable of successfully
classifying various activities with up to 98% accuracy. Secondly,
a computationally efficient gradient descent algorithm is used to
estimate the relative orientations of the wearable inertial sensors
mounted on the shank, thigh and pelvis of a subject, from which
the flexion-extension knee and hip angles are calculated. These
angles, along with sacrum impact accelerations, are automatically
extracted for each stride during jogging. Finally, normative data
is generated and used to determine if a subject’s movement
technique differed to the normative data in order to identify
potential injury related factors. For the joint angle data this is
achieved using a curve-shift registration technique. It is envisaged
that the proposed framework could be utilized for accurate and
automatic sports activity classification and reliable movement
technique evaluation in various unconstrained environments for
both injury management and performance enhancement.

Index Terms—Activity classification; Wearable inertial sensor;
Technique assessment; Sensor fusion; Knee joint angle; Curve
shift registration; Biomechanics, Smart and connected health

I. INTRODUCTION

S
PORT and physical activity have important cardiovascu-

lar, musculoskeletal and mental health benefits and are

enjoyed by large numbers [1]. However, associated lower body

musculoskeletal injuries are very common [2], [3], [4]. Almost

all injuries are caused by relative excessive loading on the

tissues i.e. high loading relative to tissue strength. One factor

that significantly influences this loading is movement tech-

nique. Athletes can be biomechanically screened to determine

an athlete’s predisposition for injury [5] by recording and

quantifying both their movement technique (i.e. joint angle and
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angular velocity) and some measure1 of loading on their body

(e.g. impact accelerations)2during a series of actions common

to their sport and known to be related to injury (e.g. run-

ning [3], jumping and landing [6], agility cuts [9]). Generally,

the athlete completes 1 − 5 maximum effort trials of each

action [6] and their results are compared to normative values,

if available [10]. These tests are almost exclusively completed

in a laboratory since biomechanics based motion analysis

systems tend to be camera based (6+ cameras typically) which

must remain spatially fixed during the testing session and tend

to be negatively affected by changing lighting conditions. This

screening process creates several assessment and comparison

challenges, which significantly reduce its ecological validity

and usefulness. These include:

1. The athletes are generally highly focused on how they

complete the tasks, and therefore may not utilize a

movement technique that they would normally use in a

training session or match.

2. The controlled laboratory environment does not reflect the

conditions of the training environment (e.g. uneven/wet

ground, fatigued conditions).

3. The use of only 1 to 5 trials as representative of how an

athlete completes a movement technique is highly ques-

tionable. The low number of trials is common because of

the significant processing time (and cost) associated with

optical based systems.

4. There is a lack of normative data for many sports based

tasks because of the low number of tested athletes.

5. It is a very expensive process limiting its general appli-

cation.

A solution to the above assessment challenges would be to

use sensors that could be worn throughout a training session or

competitive event, detecting an athlete’s joint angular motion

and impact accelerations. Accelerometers mounted on the

body can be used to infer loading based on Newton’s second

law of motion (F = ma)[6], [7], [8] during every foot-

ground contact. We estimate that within a 45 minute training

session this could involve each foot striking the ground (more

than2000) times. By taking advantage of the advancement in

1Direct loading on individual tissues cannot be measured in a non-invasive
fashion but it is possible to determine aggregate loading on a region of tissues
or structures.

2Technically this should be referred to as deceleration, but the term
acceleration is used throughout this manuscript in line with the current
biomechanical literature [6], [7], [8]
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microelectronics and other micro technologies, it is possible

to build inexpensive, miniaturized, low-mass and non-invasive

instruments to monitor the movement and performance of

athletes, patients, etc. in sporting or more natural environments

and provide near real-time feedback to subjects. These new

technologies are sufficiently accurate when compared with

optical and video systems [11]. Micro electromechanical sys-

tems (MEMS) based inertial sensors including accelerometers

and gyroscopes are good examples of using micro technology

to monitor, classify and measure various human activities.

Wireless/Wearable Inertial Measurement Units (WIMUs) are

capable of tracking rotational and translational movements and

are gaining in popularity to monitor human movements in a

number of sport training [12], rehabilitation [13] and everyday

activities [14]. This allows a subject’s activities be to contin-

uously monitored and subsequently corrected outside clinical

environments. With the recent development of more accurate

and relatively cheap WIMUs, combined with improved algo-

rithms to more accurately determine sensor orientation [15],

[16] , it has become feasible to deploy wearable body sen-

sor networks in training sessions. Some commercially avail-

able systems include X-IMU (http://www.x-io.co.uk), Xsens

(www.xsens.com) and Shimmer (www.shimmersensing.com).

If WIMUs are to be used in this context, data processing

time must be very short and user involvement minimized. This

requires a system to automatically and accurately categorize

each foot-ground contact based on the type of movement of

the user (i.e. walk, jog, sprint, jump, land, agility cut). To

the best of the authors’ knowledge, such a system is not

currently available. Even with low trial numbers, there are a

number of challenges associated with comparing data (which

are amplified with the larger trial numbers potentially possible

with WIMUs):

1. Continuous data (e.g. joint angle) are usually reduced to a

single/few discrete measure(s) that purportedly represent

a joint’s movement technique (e.g. peak flexion), but in

reality comprises less than 2% of the available data [17],

[18].

2. Continuous data (e.g. angle-time data) contains phase

and amplitude variations both between individuals (inter-

subject) and within multiple trials by the same individual

(intra-subject).

Traditionally normative data is produced by time normaliz-

ing a trial to 101 data points and averaging across trials (e.g.

mean ±95% confidence intervals) [10]. However, this may

result in a distortion of the data as key events are not time

aligned across trials [18].

These last two challenges can potentially be addressed

using continuous data analysis techniques (e.g. functional data

analysis [19]), although only a small number of biomechanical

studies have attempted to do so [20], [17]. The aim of this

study is to utilize wearable inertial sensors and develop a

method to:

• Automatically and accurately categorize each foot-ground

contact based on the type of movement (i.e. walk, jog,

sprint, jump, land, agility cut);

• Extract joint angle and impact acceleration data automat-

ically for each foot contact cycle;

• Generate normative data; for joint angle data using a

functional data approach, for impact acceleration data

using a discrete data point3;

• Compare an individual to the normative data and identify

the phase over which they differ (if any).

This manuscript represents a substantive extension to previous

experimental work [1]. In particular, it extends this work by

examining hip joint angle and sacrum impact acceleration,

as well as comparing and contrasting different methods for

movement classification.

II. PROPOSED FRAMEWORK

The main components of our framework are illustrated

in Fig.1. It consists of three main components: (i) activity

classification, (ii) peak impact acceleration identification and

calculation of sensor orientation and flexion-extension knee

and hip angle, and (iii) technique analysis. We present results

only in relation to sacrum impact accelerations as well as

knee and hip flexion-extension angles in order to exemplify

the process and avoid unnecessary repetition in this paper,

but this method can be extended to other variables (e.g. knee

valgus-varus, tibia impact accelerations) and other measures

(e,g, joint angular velocity).

A. Activity Classification

Automatic activity classification is used to identify different

training activities as this would allow training sessions to be

more quickly evaluated by sporting and health professionals.

It would allow them to quickly segment an athlete’s training

session by activity and thus allow the desired data to be more

easily located. This approach also facilitates the creation of a

database containing the evolution of an athlete’s movements

within and across training sessions.

In this work four different classifiers were investigated in

order to create the most accurate classification system. The

classifiers employed were Lazy IBk, RBF Network, Naive

Bayes and Random Forest. Lazy IBk is a k nearest neighbour

(k-NN) classifier. k-NNs has been shown to perform well

in human activity problems [21], [22]. An RBF Network

is an Artificial Neural Network (ANN) classifier and this

family of classifiers has been very successful at discriminating

between different human activities [23], [24]. Naive Bayes is

a Bayesian classifier which has been used in a wide array of

classification problems since the 1990s [25], [26]. Finally, a

Random Forest is a relatively new decision tree classifier but

has strong theoretical foundations and has been successfully

used in recognizing human movements. [27], [27]. All four

classifiers are investigated in this work.

Much of the prior research in activity classification has dealt

with identifying mundane tasks such as eating, ascending and

descending stairs, sitting, brushing teeth as well as motion

activities such as being stationary, walking and running [28],

[29] and training exercises and sports activities [30], [31].

3Only a discrete data point (i.e. peak impact acceleration) was analysed
because there is currently no research relating the pattern of the whole
deceleration signal to injury.
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Fig. 1: The main components of the proposed motion analysis framework

Current research has shown that accelerometers can be used to

classify human activity for high energy actions such as sprint-

ing, jogging, jumping, etc [32]. In sports, accelerometers have

been used to monitor elite athletes in competition and training

environments. In swimming applications, accelerometers have

allowed the comparison of stroke characteristics for a variety

of training strokes and therefore have helped to improve

swimming technique [33]. In competitive rowing, they have

been used for the recovery of intra- and inter-stroke phases as

a means to assess technique [34]. Accelerometers have also

been utilized to identify the various phases of kinematic chain

during the serve action in tennis [35].

In developing our approach to activity classification, the

exercise routine performed by each athlete was first segmented

and annotated for all activities and used to create a training

set. A window length of three seconds was then chosen as this

was sufficient time for each of the selected training activities

to be completed. The Discrete Wavelet Transform (DWT)

has been used with much success in extracting discriminative

features from accelerometer data as the basis for classification.

The Wavelet transform works by decomposing a signal into

a number of time shifted and scaled versions of a selected

mother wavelet. These X,Y,Z vectors have been used to

assist in identifying sporting activities in soccer and field

hockey [36]. Daubechies 4 wavelet “db4” is a popular mother

wavelet choice in signal analysis problems due to its regularity

and fast computational time, and was chosen in this work. The

outputted coefficients produced by the DWT can be further

decomposed to further increase the frequency resolution. Each

additional decomposition increases the level i by one. The

total energy ET at level i of the DWT decomposition is given

by [28].

ET = AiA
T
i +

i
∑

j=1

DjD
T
j (1)

where Ai is the approximation coefficient at level i, AT
i is the

transpose of Ai and Di is the detailed coefficient at level i.

One feature proven to be useful in discrimination is the energy

Fig. 2: The overview of the DWT decomposition and classi-

fication process.

ratio in each type of coefficient [28]. EDRA represents the

energy ratio of the approximation coefficients while EDRDj

represents the energy ratio of the detail coefficients.

EDRA =
AiA

T
i

ET

(2)

EDRDj
=

DiD
T
j

ET

j = 1, . . . , i (3)

In [28], Ayrulu-Erdem and Barshan found that the nor-

malized variances of the DWT decomposition coefficients

and the EDRs provided the most informative features for a

different albeit similar problem. They contrasted their perfor-

mance to informational features such as normalized means,

minimums and maximums of the EDRs and obtained superior

performance. As such we adopt the same approach here. The

variances of the coefficients are calculated over each DWT

coefficient vector at the ith level. A random forest training

algorithm in conjunction with the DWT features was employed

to create an appropriate classifier. The overview of the DWT

decomposition and classification process is illustrated in Fig.2.

B. Sensor Orientation and Joint Angle Estimation

Measuring accurate orientation plays an important role in

sports activity applications as it enables coaches, biomecha-

nists and sports scientists to monitor and investigate athletes’
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movement technique in indoor and outdoor environments.

Although there are different technologies to monitor athletes’

technique and measure their body orientation, wearable inertial

sensors have the advantage of being self-contained in a way

that measurement is independent of motion, environment and

location. It is feasible to measure accurate orientation in

three-dimensional space by utilizing tri-axial accelerometers,

gyroscopes and a proper filter.

The Kalman filter has widely been utilized to measure

orientation for many applications and commercial inertial

orientation sensors, including Xsens and Intersense [37], [38].

However, it has some disadvantages including implementation

complexity [39], [40], high sampling rate due to linear re-

gression iteration (fundamental to the Kalman process) and

the requirement to deal with large scale vectors to describe

rotational kinematics in three-dimensions [38], [16]. There are

some other alternatives to address these issues including Fuzzy

processing [41] or frequency domain filters [42]. Although

these approaches are easy to implement, they are limited

to operating conditions. In this paper, we use an algorithm

which has been shown to provide effective performance at low

computational expense. Using such a technique, it is feasible to

have a lightweight, inexpensive system capable of functioning

over an extended period of time.

The algorithm employs a quaternion representation of

orientation and is not subject to the problematic singularities

associated with Euler angles. The estimated orientation rate

is defined in the following equations [15]:

{ S
Eqt =

S
E qt−1 +

S
E q̇t∆t

S
E q̇t =

S
E q̇ω,t − β ∇f

||∇f ||

(4)

where











∇f(SEq, Eg, Sa) = JT (SEq, Eg)f(
S
EqEg, Sa)

Sa = [0, ax, ay, az]

Eg = [0, 0, 0, 1]

(5)

In this formulation, S
Eqt and S

Eqt−1 are the orientation of

the Earth frame relative to the sensor frame at time t and

t − 1 respectively. S
E q̇ω,t is the rate of change of orientation

measured by the gyroscopes. Sa is the acceleration in the x, y

and z axes of the sensor frame, termed ax, ay , az respectively.

The algorithm calculates the orientation S
Eqt by integrating

the estimated rate of change of orientation measured by

the gyroscope. Then gyroscope measurement error, β, was

removed in a direction based on accelerometer measurements.

This algorithm uses a gradient descent optimization technique

to measure only one solution for the sensor orientation by

knowing the direction of the gravity in the Earth frame. f is

the objective function and J is its Jacobean (JT is transpose

of J) and they are defined by the following equations:

f(q, Sa) =





2(q2q4 − q1q3)− ax
2(q1q2 + q3q4)− ay
2(0.5− q22 − q23)− az



 (6)

J(q) =





−2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0



 (7)

It is common to quantify orientation sensor performance as

the static and dynamic RMS (Root-Mean-Square) errors [16].

The static RMS values of the pitch and roll components of

an orientation using the described technique are 0.594◦ and

0.497◦, respectively. The dynamic RMS values of the pitch

and roll components of an orientation are 0.623◦ and 0.628◦,

respectively [15]. Therefore, the algorithm achieves levels of

accuracy matching that of the Kalman based algorithm [15].

Typically a joint rotation is defined as the orientation of a

distal segment with respect to the proximal segment. In order

to measure flexion-extension joint angle, the orientation of the

two wearable inertial sensors attached on the distal segment

and the proximal segment were calculated using the described

fusion algorithm. The alignment of each sensor unit’s frame

with the body frame was done using a functional calibration

described in [43], [44]. A technique described in [45] was then

applied to the shank and thigh segments to measure flexion-

extension knee joint angle and to the thigh and pelvis segments

to measure flexion-extension hip joint angle. This is described

by the following equations:
{

qknee =
S
E q∗thigh ⊗S

E qshank

qhip =S
E q∗pelvis ⊗

S
E qthigh

(8)

where S
Eqpelvis, S

Eqthigh and S
Eqshank are the quaternion rep-

resentation of the orientation of the pelvis, thigh and shank

respectively. The ⊗ denotes the quaternion product and ∗

denotes the quaternion conjugate. The knee and hip joint

angles were measured during the entire training session. The

results are illustrated and discussed in section III-C.

C. Technique Analysis

The exercise reported in detail in this section is the jog-

ging task. This was selected because it incorporates three

activities that can make up most actions: an impact (with the

ground), a loading phase and a swing (unloaded) phase. The

jogging task was extracted based on the information given

by the classification approach reported above. Foot contact

cycles (heel strike to heel strike) were subsequently identified

using knee joint angles and tibia acceleration. Heel strike

was defined as the sudden change in acceleration after every

cyclic local maximum in knee joint angle data (i.e. the swing

phase). Subsequently, knee and hip joint angles were extracted.

The separated knee and hip joint angle curves demonstrated

similar patterns across trials and athletes, which as expected

differed in their temporal characteristics. To maintain all the

information of the curve shapes (magnitude and timing of local

maxima and minima) the normative (representative) curve was

created using two approaches: (a) averaging across the foot

contact cycle without registration (unregistered curve), which

is the most common approach in biomechanics [46], [47]

and (b) performing a phase shift registration approach before

averaging across the foot contact cycles as described by the

following equations [19]:
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x∗
i (t) = xi(t+ δi) (9)

SSE =
∑N

i=1

∫

τ
([xi(t+ δi)− µ̂(t)]2ds)

=
∑N

i=1

∫

τ
([x∗

i (t+ δi)− µ̂(t)]2ds) .
(10)

The phase shift registration alters the time domain by

δj for each waveform x within a foot contact cycle i for

multiple δj to find the δj where a registration criteria is at

its minimum [19].

The used criterion (squared standard error; SSE) was

calculated for each waveform relative to the overall mean µ̂(t)
over its specific time interval t. This process was applied

for every foot contact cycle to identify the optimal δj for

each foot contact cycle i. Subsequently, these curves were

registered using the optimal δj . After all waveforms were

registered, the overall mean was updated and the whole

process was iterated n times until no significant change

(SSEn−1 ≪ SSEn ≈ SSEn+1) in the registration criteria

occurred. This procedure of estimating a transformation by

transforming to an iteratively updated average is often referred

to as the Procrustes method [19]4. To examine if differences

exist between the mean curve and the registered mean curve,

we examined the curves using Analysis of Characterizing

Phases [17]. This approach offers a more comprehensive

comparison than discrete point analysis or functional principal

component analysis, as it identifies phases of variation of the

data that are subsequently used to generate subject scores.

To explore the ability of the proposed process to identify

individuals with abnormal movement biomechanics, an indi-

vidual with low back pain was also assessed. Clinical differ-

ences were explored both visually and statistically. Statistical

differences were identified by examining the boundaries of

the confidence intervals of the single athlete with the 95%
confidence intervals of the normal group data. Waveforms

were considered statistically different when the confidence

intervals did not overlap [48]).

III. EXPERIMENTS AND EVALUATION

A. Data Collection

To evaluate the proposed framework, actions of nine healthy

subjects and one injured subject with low back pain were

captured using six wearable inertial sensors. Subjects with

different levels of skill proficiency were chosen for this

study in order to provide a wide range of variations (i.e.

speeds, movement techniques, etc.) to examine the framework.

WIMUs were placed on the left/right shank, left/right thigh

and pelvis and sacrum of a subject as shown in Fig.3. The

location of the sensor on each body segment was chosen to

avoid large muscles; as soft tissue deformations due to muscle

contractions and foot-ground impacts may negatively affect

impact accelerations and the accuracy of joint orientation

estimates. The sensors were affixed to the subject with double

4The reader should note that for some biomechanical data (or waveforms)
phase shift registration might not lead to a representative curve shape. For
such cases a dynamical time warping approach can be applied, which uses
specific landmarks (global maxima and minima) to define a warping function
h to which the waveforms are evaluated (Equation x

∗

i
(t) = xi[hi(t)])

Fig. 3: Placement of three inertial sensor units on the pelvis,

thigh and shank as well as their local coordinate system in a

global coordinate system is illustrated.

sided tape and velcro straps with some elasticity in the fabric,

so as not to restrict the subject’s movement and performance.

Next, the subject was asked to perform a series of actions

as they normally do during outdoor training sessions. Each

subject performed a predefined exercise routine on a large

outdoor grass soccer pitch. The exercise routine consisted

of the following motions: agility cuts, walking, sprinting,

jogging, box jumps and football free kicks. Each motion lasted

approximately 60 seconds for a total of approximately 9− 10
minutes for the entire session.

The data from each sensor was recorded to an internal

SD card on board the device. As each sensor recorded data

independently, a physical event was required to synchronize all

devices together. This was achieved by instructing each subject

to perform five vertical jumps, ensuring large acceleration

spikes would occur simultaneously on each device, that would

be clearly visible in the accelerometer stream. In a post

processing step, peak alignment was automatically performed

and all data streams were cropped to two seconds before

the first vertical jump landing. Video footage of each data

capture session was also recorded and annotated, to be used as

ground truth for the automatic segmentation and recognition

of movement categories (i.e. jogging, agility cuts, sprinting

etc.).

B. Classification Evaluation

Table I shows the time taken to train and test different

classification models. Each classifier was very quick at testing

instances of data however the Multilayer Perceptron took al-

most 10 mins to train a single model. This creates a significant

bottleneck when wishing to compare different classification

parameters. The Random Forest allowed data to be classified

almost instantaneously which is extremely desirable in real

world scenarios. Each classifier’s ability to distinguish between

the different activities in the Dataset is shown in Fig.4.
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TABLE I: Time taken to train and test different classifiers is

illustrated. In this table RF, NB and MP stand for Random

Forest, Naiive Bayes and Multilayer Perceptron respectively

Classifiers RF NB Lazy iBK MP

Testing Time(s) 0.00 0.15 0.38 0.08

Training Time(s) 0.38 0.10 0.00 538.9

Fig. 4: Performance of different classifiers to classify various

activities is illustrated.

Overall the random forest classifier was the most accurate.

Walking is a very low energy activity and therefore each clas-

sifier was well able to distinguish it from the other activities.

Similarly, the agility cut while a high energy activity like

sprinting and kicking, was recognized by most classifiers as it

involved very distinct frequency and movement patterns. Every

activity had distinctive features that allow each classifier to

differentiate between them. Due to the efficiency of the DWT

a relatively small amount of features were inputted into each

classifier making the classification process very quick. Al-

though other classifiers were investigated, the Random Forest

achieved the highest classification accuracy within acceptable

computational limits. Using the approach described in section

II-A, we achieved a classification accuracy of 98.3% utilizing

the Random Forest classifier in conjunction with the DWT

technique. This value was computed using a ten-fold cross

validation leave one out method. The F-measure score, as a

harmonic mean of precision and recall that reaches its best

value at 1 and worst score at 0, was calculated. Precision

is calculated as the number of correct results divided by the

number of total results while recall is the number of correct

results divided by the number of results that should have been

returned positive. These metrics are often described in terms

of the metrics true positive (Tp), false positive (Fp) and false

negative (Fn). Since the classifier was trained with classes

which had different instance populations the F-measure scores

are given in table III. The F-measure score gives a better

indication of a models ability to correctly identify an activity

than standard classification accuracy alone.

Table II shows the confusion matrix from the classification

procedure. There is only one area of confusion using this

model which is kicking the football. This difficultly lies with

the variation in kicking styles from person to person. As can

TABLE II: Confusion matrix for the Random Forest classifier

Activity a b c d e f

a = Agility cut 180 0 0 0 0 0

b = Walking 0 399 0 0 0 0

c = Jumping on box 0 0 27 2 0 0

d = Jogging 0 0 0 205 0 0

e = Sprinting 0 0 0 0 28 0

f = Kicking 3 5 2 3 1 73

TABLE III: The precision, recall and F-measure from the

Random Forest classifier applied to the activities during train-

ing sessions.

Activity Precision Recall F-measure

Agility cut 0.984 1 0.992

Walking 0.988 1 0.994

Jumping on Box 0.931 0.931 0.931

Jogging 0.976 1 0.988

Sprinting 0.966 1 0.982

Kicking 1 0.839 0.913

be seen in Table III, F-measures vary between 0.913 to 0.992.

Walking and agility cut have the highest F-measures followed

by jogging, sprinting, jumping on the box and football kicks.

C. Technique Evaluation

In the simulated training intervention the subjects were

asked to jog for one minute where about 30 foot contact

cycles could be identified for each subject. It can be seen

in Fig.5 and Fig.7 that the generated knee angle curves

show the classic bimodal shape, with a small (0 − 35%
cycle) and large (35 − 90% cycle) sequencing of flexion-

extension. The statistical analysis of the knee angle curves

indicated significant differences between the unregistered and

the registered mean curves. The unregistered mean curve

demonstrated significantly higher (p = 0.002) and lower

magnitudes (p < 0.001), for (11 − 17&87 − 96%) and

(61 − 75%) of the foot contact cycle, respectively. For the

hip angle, Figures .6 and .8 show the classic extension-flexion

sequencing during the stance and early swing phases (0−75%)
followed by a smaller extension-flexion sequencing during the

later swing phases (75− 100%).
As shown in Fig.6, the statistical analysis for the hip

angle curves also indicated significant differences between the

unregistered and the registered mean curves. The unregistered

mean curve was significantly lower (p < 0.010) magnitudes,

for (14 − 22%) and (74 − 86%) of the foot contact cycle.

Differences are similarly evident at an intra-subject level, for

both the knee and hip joints.

For the knee angle, it can be seen that in the first phase

(1−40%) of the examined foot contact cycle the registered and

unregistered curves are very similar (except for the magnitudes

between 10 − 20%). However, for phases beyond 40%, both

mean curves start to show differences in magnitude, timing

characteristics and standard deviation. For the hip joint the

registered and unregistered curves show, as for the knee joint,

similarities for most phases but differ clearly for phases before
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and after local maximas. The magnitude and position of

the peak hip flexion (approx. 80%) demonstrates clearly the

effect of intra-subject variability of the movement cycle, which

affects the mean curve. By solely averaging the foot contact

cycles (unregistered approach), the generated mean curve is

altered by the intra- or/and inter-subject variability and can

lose very valuable information about the subject. This can be

extremely important in injury studies, where small differences

from normal healthy subjects or small intra-subject differences

over time may indicate a predisposition to injury or the early

stages of injury, requiring the implementation of an appropriate

training intervention. The more complicated or oscillating the

collected biomechanical data, the more important it is likely

to register the data, especially if derivatives are examined (i.e.

joint angular velocities).

It can be seen in Fig.7 and Fig.8 that the runner with low

back pain exhibited clear differences from the normative data,

for both the knee and hip joint angles. In normal subjects,

the knee generally flexes during initial loading (0− 10%) and

early mid stance (10 − 15%) while in the injured subject it

clearly extends. The initial loading response involves the bi-

articular hamstring muscle acting concentrically to extend the

hip to keep the trunk upright, Fig.8, and as a consequence

Fig. 5: Registered and unregistered mean knee curves of an

injured subject.

Fig. 6: Registered and unregistered mean hip curves of an

injured subject.

Fig. 7: Registered mean knee curves of an injured subject in

comparison to the overall registered mean of normal subjects.

Phases of statistically significant differences are indicated by

the vertical bands.

Fig. 8: Registered mean hip curves of an injured subject in

comparison to the overall registered mean of normal subjects.

Phases of statistically significant differences are indicated by

the vertical bands.

Fig. 9: Illustrates a typical sacrum acceleration curve and key

events: o initial ground contact and x peak impact acceleration

of the hamstring also being a knee flexor muscle, this results

in knee flexion. Therefore, the abnormal knee extension in

the injured subject appears to indicate either a compensatory
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Fig. 10: Boxplot (mean +/- 95% CI) of the peak impact

acceleration for the healthy (n = 9) and injured subject(s) (n

= 1)

or injury causing movement strategy indicative of the trunk

inappropriately flexing during the initial loading response. This

is supported by greater hip flexion angles at and post heel

strike Fig.8. From a compensatory perspective, this may be a

strategy to reduce lower back impact loading with the trunk

extensors acting eccentrically to cushion the action. Possibly

in response to the abnormal early knee extension, knee flexion

is initiated much earlier in the injured subject (at 15% of

the cycle) compared to normal (at 35%). The greater knee

flexion in the injured subject during the terminal swing phase

(85−100%) combination with greater hip flexion (68−100%)

may be indicative of a crouched (“Groucho”) running style

aimed at reducing impact loads and hence reducing back pain

and further injury [49], [50].However, in contrast to previously

reported crouched running strategies [49], [50], our injured

athlete did not increase their knee flexion during early/mid

stance, they actually extended their knee more than the unin-

jured athletes. Peak impact accelerations of the sacrum were

automatically extracted by identifying the smallest magnitude

within a 70 frames (0.28sec) after initial ground contact.

The sacrum impact accelerations (mean [upper to lower 95%

CI]; -4.6 [-4.5 to -4.7], Fig.9 and Fig.10) were comparable

with previous reported values [51]. The injured athletes values

(mean [upper to lower 95% CI]; -4.5 [-4.1 to -4.9], Fig.10) did

not differ from those of the unijured group. Given that these

impact accelerations represent spinal axial loading (level with

the sacram) would imply that the athletes injury is vertebrae

control based (i.e. muscle, tendon, ligament, neural) rather

than vertebrae (i.e. bone) or vertebrae support (i.e cartilage,

itervertabrae disc) based.

IV. CONCLUSION

In this paper, we described a novel body worn inertial

sensor framework capable of automatically segmenting and

classifying various actions in outdoor unconstrained environ-

ments, extracting sacrum peak impact accelerations, and cal-

culating extension-flexion knee and hip joint angles that uses

continuous data analysis to both generate accurate normative

data and compare individuals to this normative data. The

proposed novel framework employed a Random Forest train-

ing algorithm in conjunction with a DWT feature extraction

technique to successfully classify training session activities

with up to 98% overall accuracy. Using the body-worn inertial

sensors on the sacrum, thigh and shank of and applying the

gradient descent based filter, the local orientation of each

sensor and associated body segment orientation were estimated

and hence the extension-flexion knee and hip angles were

obtained. The calculated knee and hip joint angles, along with

the sacrum impact accelerations were input to a data analysis

tool at the end of the pipeline to provide accurate movement

technique assessment. In examining the continuous joint angle

data it is necessary to register the trials before averaging

them to ensure the true magnitude and shape of the data is

preserved for both group and individual based data. If this

is ensured, the presented framework has significant potential

for monitoring athletes throughout training and competition

to (a) identify injury and performance related determining

factors, (b) identify individuals early in an injury pathway

prior to extensive tissue damage, and (c) identify individuals

predisposed to injury because of their movement technique.
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