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Abstract

Purpose Guidance and quality control in orthopedic surgery increasingly rely on intra-operative fluoroscopy using a mobile 

C-arm. The accurate acquisition of standardized and anatomy-specific projections is essential in this process. The corre-

sponding iterative positioning of the C-arm is error prone and involves repeated manual acquisitions or even continuous 

fluoroscopy. To reduce time and radiation exposure for patients and clinical staff and to avoid errors in fracture reduction or 

implant placement, we aim at guiding—and in the long-run automating—this procedure.

Methods In contrast to the state of the art, we tackle this inherently ill-posed problem without requiring patient-individual 

prior information like preoperative computed tomography (CT) scans, without the need of registration and without requiring 

additional technical equipment besides the projection images themselves. We propose learning the necessary anatomical 

hints for efficient C-arm positioning from in silico simulations, leveraging masses of 3D CTs. Specifically, we propose a 

convolutional neural network regression model that predicts 5 degrees of freedom pose updates directly from a first X-ray 

image. The method is generalizable to different anatomical regions and standard projections.

Results Quantitative and qualitative validation was performed for two clinical applications involving two highly dissimilar 

anatomies, namely the lumbar spine and the proximal femur. Starting from one initial projection, the mean absolute pose 

error to the desired standard pose is iteratively reduced across different anatomy-specific standard projections. Acquisitions 

of both hip joints on 4 cadavers allowed for an evaluation on clinical data, demonstrating that the approach generalizes 

without retraining.

Conclusion Overall, the results suggest the feasibility of an efficient deep learning-based automated positioning procedure, 

which is trained on simulations. Our proposed 2-stage approach for C-arm positioning significantly improves accuracy on 

synthetic images. In addition, we demonstrated that learning based on simulations translates to acceptable performance on 

real X-rays.

Keywords Pose estimation · Fluoroscopic imaging · C-arm positioning · Standard projection

Introduction

Mobile fluoroscopic imaging is used to guide interventions 

in orthopedic and trauma surgery and to evaluate the suc-

cess of the fracture reduction and implant placement. An 

essential task in image-guided surgery is the generation of a 

correct standard projection of the anatomy for medical veri-

fication [1]. The correct projection corresponds to a specific 

pose of the C-arm relative to the patient’s positioning. It is 

challenging to obtain the desired view due to variabilities 

in patient placement and because the internal anatomy is 

not visible from outside. Incorrect projections can result in 

overlays of anatomical structures and ambiguities due to the 
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effects of projective simplification, thus increasing the risk 

of overlooked errors. Examples of critical errors include 

the malunion of fractures, leading to functional impairment 

and in the worst case, requiring a subsequent intervention at 

increased rates of complication.

In current practice, repeated or continuous fluoroscopy 

images are acquired for C-arm positioning, with the radio-

logical technician following a trial-and-error approach. 

Time consumption and radiation exposure for patients and 

personnel are largely dependent on the experience of the 

operator. In addition, due to lacking standards and common 

definitions, the resulting standard projections are highly sur-

geon dependent. Rikli et al. discovered in a retrospective 

assessment study that only 78.8% of the lateral post-implant 

projection images were classified as correct lateral stand-

ard projection, resulting in not assessable fracture reduction 

( 10.3% ) or not assessable implant position ( 7.4% ) [19].

In general, state of the art assistance systems either 

require external tracking hardware, preoperative CT scans 

or manual landmark selection, which so far limited broad 

clinical applicability.

In this work, we aim at tackling the problem of C-arm 

positioning for standard projections without additional tech-

nical burden, directly working on the 2D projection images 

just as the operator. This task is severely under-constrained 

in theory, as multiple shape configurations can produce the 

same image projections. We propose learning the neces-

sary anatomical hints for efficient C-arm positioning from 

in silico simulations, leveraging masses of 3D CTs. Spe-

cifically, as illustrated in Fig. 1, we propose a CNN regres-

sion model that predicts, directly from 2D projections, the 5 

degrees of freedom (DoF) system parameter updates toward 

the desired standard projection, thus assisting the current 

manual procedure. Training on simulated images uniquely 

provides ground truth pose labels, which are not available 

in real fluoroscopic data. In our analysis, we focused on two 

very dissimilar anatomies: the proximal femur and the spine 

(fourth vertebra). We considered two standard projections 

for each anatomical region, demonstrating the potential 

applicability of the approach to various scenarios. Finally, 

we demonstrate that the approach also generalizes to unseen 

cadaver X-rays without retraining.

Related work

Fluoroscopy simulation methods for pose guidance presented 

in the literature rely on a preoperative CT scan or an anatomi-

cal atlas. In addition, they require an external tracking system 

to estimate the pose of the patient relative to the C-arm [4, 9]. 

The integration of tracking systems in the clinical workflow 

is challenging, mainly due to the additional hardware setup 

and the related line-of-sight requirements. Consequently, the 

application of these approaches is currently focused on surgi-

cal training purposes. Recently, a 3D–2D registration between 

a preoperative CT scan and initially acquired radiographs was 

shown to allow the generation of virtual fluoroscopy images in 

real time [6, 7]. A preoperative scan is still required, though, 

and all the mentioned approaches are designed to support the 

surgeon, but not to directly deliver the optimal pose. Rodas 

et al. presented a Monte Carlo approach to optimize the pose of 

a C-arm in a defined neighborhood around the known standard 

direction while reducing the radiation exposure [20]. This so-

called standard direction, however, depends on the positioning 

of the patient relative to the C-arm and on the patient-specific 

anatomy, which is unknown in general. Recently, Haiderbhai 

et al. presented a user interface for automatic C-arm position-

ing [10]. The surgeon can define an optimal view based on 

simulated X-rays from a preoperative CT. This is converted to 

a C-arm position using inverse kinematics [16, 22]. It requires 

Fig. 1  Concept overview: For efficient C-arm positioning toward 

anatomy-specific standard projections, we propose a 2-stage deep 

learning-based regression approach. In subsequent stages, the 5 DoF 

relative pose update to reposition the C-arm toward the desired stand-

ard projection is predicted, directly from an initial 2D projection
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a registration of the preoperative CT and the patient each time 

either is moved. Maier et al. showed the potential of using iner-

tial measurement units for object motion correction in C-arm 

imaging [15].

Landmark-based registration is an alternative approach to 

image-guided positioning of C-arms [3]. It comes with the 

limitation of requiring two distinct projection images and 

visible corresponding landmarks, manually depicted by the 

surgeon during the intervention.

Deep learning-based C-arm localization methods, for-

mulated as 2D-3D registration task, which requires an 

available 3D volume, were presented by Miao et al. [17]. 

They formulate the task as a Markov decision process and 

propose a multi-agent system to handle various artifacts in 

2D X-ray images. Pose regression without a preoperative 

scan has been proposed for slice transformation prediction 

with respect to a canonical atlas coordinate frame by Hou 

et al. [11]. On digitally reconstructed radiographs (DRR) 

computed from preprocessed CTs (identical intensity ranges, 

spacing, translation), they achieved sufficiently accurate 

performance (average translation error of 106 mm and 5.6 ◦ 

plane rotation for healthy patients) for the task of robust 

initialization of X-ray to CT registration. On the contrary, 

in our application, we have to deal with the challenges of 

varying image contrast, due to patient anatomy or different 

acquisition doses and require higher accuracy in translation 

prediction to assure the region of interest is centered in the 

FoV. The closest related work is machine learning-based 

pose estimation for mobile X-ray imaging by Bui et al. [5]. 

They focus on 6 degrees of freedom modeling plus industrial 

applications where the existence of a precise 3D CAD model 

can be assumed as prior knowledge, serving as additional 

reprojection constraint. The experiments show that neural 

networks outperform other regression approaches in the pre-

diction of object poses from simulated X-ray projections, 

with high pose prediction accuracy for object-specific mod-

els and decreasing accuracy for more generic CNN models 

trained on sets of different objects.

The object-specific case is closely related to our approach, 

with the difference being the inter-subject anatomical varia-

tion that we have to deal with additionally.

The remaining part of the paper is organized as follows: 

“Materials and methods” section introduces the methodolog-

ical details of our proposed approach. Experimental results 

on in silico and real projections are presented and discussed 

in “Experimental results” section.

Materials and methods

For an efficient positioning of the C-arm toward an anatomy-

specific standard projection, we focus our analysis exem-

plarily on two different anatomical regions, the proximal 

femur (PF) and the fourth lumbar vertebra (LV4). With 

an appropriate amount of available training data and well-

defined standard projections, the proposed method in prin-

ciple can be directly applied to any other anatomical region. 

A proper evaluation of reduction and implant position and 

thus the success of surgical intervention requires acquisi-

tion of anatomy-specific standard projection. We focused our 

analysis on the AP projection (X-rays traveling from anterior 

to posterior) and the Lateral projection (X-rays from left to 

right side of the body or vice versa) since these are the most 

frequently acquired and the most relevant for hip and spine 

procedures (cf. Fig. 7, last row).

This section presents the mobile C-arm device and its 

DoFs (“Mobile C-arm device” section), the framework for 

generating a ground truth reference and in silico training 

data (“Generation of training data” section), and the pro-

posed approach for automatic C-arm positioning toward a 

specific standard projection (“Pose regression framework” 

section).

Mobile C‑arm device

The mobile C-arm is a C-shaped imaging system with an 

X-ray source and a flat panel detector at its ends. The C-arm 

has six DoF, three translational and three rotational. The 

translational parameters influence the image center and scale 

of the projection image. The rotational DoF is depicted in 

Fig. 2a: Firstly, the rotations within the plane of C-arm 

gantry are referred to as orbital rotation and denoted by � 

(LAO). Secondly, rotations perpendicular to the plane of 

the C-arm gantry are referred to as angular rotations and 

denoted by � (CRA). Thirdly, the image rotation in the detec-

tor plane is denoted by � . We consider the translation parallel 

to the detector plane and omit the translation along the beam 

direction, which only influences the scale of the projection, 

assuming that the structure of interest is initially located 

approximately midway between source and detector. The 

C-arm setup allows for acquiring images of a patient from 

any projection angle only limited by the patient anatomy.

Generation of training data

Due to the unavailability of annotated X-ray images, training 

data is synthetically generated from full-body CTs acquired 

at different institutions and scanners. Initially, the CTs were 

cropped to a region of interest (ROI) around the proximal 

femur and the fourth lumbar vertebra, respectively. This 

prevents other extremities from overlaying the projection 

image, which is also ensured in real C-arm acquisitions by 

the patient placement.

Definition of ground truth reference Two independent 

clinical experts defined the two reference standard projec-

tion planes for each of the anatomical regions. To increase 
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the amount of training data, for the proximal femur, both 

lateralities were included, one laterality was mirrored before 

training data generation. Furthermore, for the AP standard 

only CT volumes with a slice thickness and distance below 

3 mm were considered. This results in 81 cases for AP and 

109 cases for Lateral. For the lumbar spine, 47 patients were 

considered for both standards. An interactive tool for simu-

lating the DRR preview was implemented in MITK using 

interactive plane translation and rotation [18].

Simulation framework For generation of training data, the 

source and detector pose were varied around the reference 

C-arm pose (Fig. 2b), defined by the standard planes. For 

a realistic forward projection of the 3D CT anatomy, we 

use DeepDRR [21], which computes energy- and material-

dependent attenuation images that are converted to synthetic 

X-rays. The choice of DeepDRR simulation is motivated 

by its generalization capabilities toward clinically acquired 

X-rays as shown by [2, 8]. We defined the system parameters 

according to a Siemens Cios SpinⓇ robotized C-arm. It has a 

300 × 300 mm
2 detector at 1952 × 1952 pixel resolution and a 

source–detector distance of 1164 mm. The DRRs are simu-

lated for a reduced resolution of 512 × 512 pixels to allow 

faster computation and are labeled according to their pose 

distance to the standard beam direction.

Sampling strategies We sampled projections on two 

spherical segments for training the two networks (Figs. 1, 

3): For coarse positioning, we cover a broader range with 

�, � ∈ [−30, 30] ◦ in steps of 3 ◦ centered around the stand-

ard beam direction. The training set of uniformly sampled 

projections in � − � plane is denoted by X =

{

�
i

}

i
 with pro-

jections �
i
∈ ℝ

512×512 . The training set for subsequent fine 

positioning was simulated with rotational parameters sam-

pled from a Gaussian distribution so that the coarse angular 

region is covered with 99 % confidence and is denoted by X
′

.

Augmentation The in-plane rotation � was fixed dur-

ing the simulation and was augmented online during train-

ing on the simulated dataset, thereby limiting the num-

ber of simulations and hence computation time. For the 

coarse set X  , image rotation was augmented with rota-

tion angles randomly sampled from a uniform distribution 

� ∈ U(−180, 180) and for the fine set X
′

 , from a Gaussian 

distribution � ∈ N(� = 0, �2 = (30∕2.576)2) , respectively. 

The image rotation is followed by a center crop to elimi-

nate border interpolation effects due to image rotation. We 

assume that detector rotation can be approximated by image 

rotation at reduced image resolution. Non-isotropic radiation 

patterns due to collimation are neglected by this approxima-

tion. In practice, pure gantry rotation along this axis requires 

a C-arm base movement. We decided to model this rotation 

in addition to the orbital and angular C-arm rotations to gain 

Primary orbital rota-
tion (α).

Secondary angular
rotation (β).

A B

Fig. 2  Rotational DoF of the C-arm (a) and simulation of training data (b)

Fig. 3  Coarse and fine angular sampling strategies for data generation 

around the standard beam direction
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independence to variable initial C-arm to patient orientations, 

depending on the angle in which the C-arm is moved toward 

the patient table. Translation in the detector plane was simu-

lated by augmenting random crop transforms with translation 

of the image center t ∈ [−50, 50]2 mm
2 . Thus, the labeled 

training set is given by S = {(�1, �1),… , (�
N

, �
N
)}  with 

�i = [�i, �i, �i, tx, ty] ∈ ℝ
5 , with projections �

i
 rescaled to 

a final resolution of 256 × 256 pixel. Additional online aug-

mentations were applied during training to increase the vari-

ety of training data: We used image scaling s ∈ [0.8, 1] which 

approximates variation of the source-to-isocenter distance 

or bone sizes. We excluded larger scale coefficients resem-

bling moving the source closer to the anatomy, because this 

results in a smaller field-of-view and a higher patient dose, 

which is not clinical practice. Moreover, contrast augmenta-

tion was performed by modifying each pixel p according to 

p = (p − �) ∗ c + � for image-wide c ∈ [0.75, 1.25] , where 

� denotes the mean of the image [13].

Pose regression framework

For positioning the C-arm relative to a specific standard 

projection, we propose a 2-stage sequential model based 

on CNN regression (Fig.  1), estimating the pose update 

�̂ = [�̂, �̂, �̂ , t̂x, t̂y] for a given initial projection. Both stages 

use the same network architecture shown in Fig. 5, which is a 

modified version of PoseNet [5] with a larger input size, batch 

normalization after each convolutional layer and additional 

ReLU activation after each 2nd convolutional layer, which 

showed to improve the convergence during training. The net-

works are trained separately on different sampled training sets 

X  for coarse and X
′

 for fine positioning, respectively. Before 

training, the input data is range normalized to the [0, 1] inter-

val and preprocessed by a negative Log transform that converts 

the data from intensity to line integral domain, decreasing the 

dynamic range. The output is again range normalized to the 

[−1, 1] interval. While for the out-of-plane rotations the radial 

Euler angles are predicted directly, for the coarse in-plane 

rotation the target rotation is converted to sin/cos-space and 

two values are regressed, which results in a continuous Loss 

function, which can handle the circularity. Thus, the coarse 

network has one additional output neuron and is optimized 

employing a weighted L2 Loss function given by

Lcoarse(�i)

= Lout−of−plane(�i) + Lin−plane(�i) + wLdetector−t(�i)

= ‖ �̂ − �
⏟⏟⏟
∶=d�

‖2 + ‖ �̂ − �
⏟⏟⏟
∶=d�

‖2 + ‖ĉ� − cos �‖2 + ‖ŝ� − sin �‖2

+ w2(‖ t̂x − tx
⏟⏟⏟
∶=dtx

‖2 + ‖ t̂y − ty
⏟⏟⏟
∶=dty

‖2),

where w = � ⋅ (180)−1 is a weighting factor to equally 

penalize orientation ( ◦ ) and translation (mm) error and 

�̂, �̂, ĉ� , ŝ� , t̂x, t̂y are outputs of the coarse network. 

The predicted in-plane rotation can be recovered by 

�̂ = atan2 (ŝ� ⋅ (ŝ
2

�
+ ĉ

2

�
)
−

1

2 , ĉ� ⋅ (ŝ
2

�
+ ĉ

2

�
)
−

1

2 ) . The fine posi-

tioning network is trained accordingly with a weighted L1 

Loss, which penalizes pose errors linearly. One individual 

network is trained for each of the anatomy-specific standard 

projections.

The models were implemented using PyTorch and trained 

with a 6GB GeForce GTX 1060 graphics card. The networks 

were optimized using the Adam optimizer [12] with a learning 

rate of � = 10
−4 and batch size 64 for 1500 iterations each with 

50 batches. The average time of pose prediction for a single 

image was around 3.8 ms.

Real X‑rays

For evaluation of our proposed method, we performed a study 

on real X-rays of both hips of 4 cadavers. This dataset was 

acquired with a Siemens Cios SpinⓇ mobile C-arm system 

during surgical courses for physicians and was available ret-

rospectively. It serves as test dataset for the first stage of the 

proximal femur application which can be evaluated offline. 

The datasets consist of manually acquired standard projections 

(AP, Lateral), an X-ray projection sequence and a correspond-

ing reconstructed 3D volume of each hip. One dataset was 

excluded due to a metal implant.

Experimental results

The proposed pose regression framework was evaluated on 

datasets that were previously not seen by the model, thus vali-

dating the ability to handle intra-class anatomical variation. 

For accuracy evaluation, we report the angle between the 

principal rays � of the ground truth standard beam direction 

� ∶= [sin �,− cos � ⋅ sin �, cos � ⋅ cos �]T and the predicted 

beam direction �̂ ∶= [sin �̂,− cos �̂ ⋅ sin �̂, cos �̂ ⋅ cos �̂]T  , 

given by d� ∶= arccos (cos � ⋅ cos �̂) , the absolute error of 

rotation d� , d� , d� ∶= min {|�̂ − �|, 360 − |�̂ − �|} and the 

Euclidean distance of image translations dc ∶= ‖[dtx, dty]
T‖.

This section evaluates the precision of our underlying 

ground truth (“Precision of reference standard projections” 

section) and presents experiments for C-arm positioning con-

ducted on synthetic (“Pose estimation for standard projections 

on synthetic x-rays” section) and real X-rays (“Pose estimation 

for standard projections on real x-rays” section).

Precision of reference standard projections

To measure the quality of our reference data, we first evalu-

ated the inter-rater variance of the two clinical experts, who 
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independently defined the standard planes in 3D CT vol-

umes. Inter-rater variations were particularly high for the 

PF-AP standard, where multiple beam directions can result 

in similar projections. Optimally, the standard projections 

are assumed to be pairwise orthogonal. Hence, to assure 

optimal ground truth standards, the surgeons defined the two 

standard directions simultaneously under consideration of 

pre-defined common guidelines and of the additional prior 

of pairwise plane orthogonality, resulting in an average inter-

rater variance of up to 6.3
◦ in beam direction (Fig. 4) and up 

to 9.3 mm average isocenter translation for all considered 

standard projections (Fig. 5). It is important to state that the 

derived inter-rater variances are by no means representative 

for the precision achieved in real clinical scenarios, where 

the variance is much higher (cp.“Pose estimation for stand-

ard projections on real x-rays” section).

Pose estimation for standard projections 
on synthetic X‑rays

The main objective of this paper is to demonstrate the 

feasibility of predicting relative pose updates for a C-arm 

given one initial projection of a yet unseen patient. The pro-

posed sequential approach (cp. Fig. 1), where the C-arm 

is iteratively guided toward the desired standard pose, was 

evaluated on simulated data. The CT data used for simula-

tion was randomly divided into 60% training, 20% validation 

and 20% test. Figure 6 shows quantitative results on datasets 

previously not seen by the model: The angular and transla-

tional error distribution of the initial projections is shown 

on the left. Next to that, the distribution of the pose error 

across the 2 stages separately for all considered standard 

projections is depicted. Starting from one initial projection, 

the mean absolute pose error to the desired standard pose is 

iteratively reduced across different anatomy-specific stand-

ard projections. The 2-stage sequential approach with coarse 

and fine positioning outperforms a baseline approach with 

a single prediction step. Also, our 2-stage approach showed 

superior performance compared to iteratively applying one 

prediction network, confirming the hypothesis that the sub-

division in coarse and fine positioning is crucial for the itera-

tive accuracy gain. While the coarse network complies with 

the task of rough initialization toward the desired standard, 

the fine network is specialized in small pose adjustments. 

Our method was able to iteratively improve the projection 

results toward the desired standard projection as shown visu-

ally in Fig. 7.

Pose variance in clinical practice

In a first step, we analyzed the performance of the surgeon 

in positioning the C-arm, and thus in acquiring the standard 

projections manually. To this end, we computed the pose 

variance of the manually acquired standard projections to a 

reference plane retrospectively defined in the corresponding 

3D scan.

The pose variance in clinical practice was evaluated for 

the AP and Lateral projection of the proximal femur, based 

on the real X-ray data, described in “Real x-rays” section. 

A surgeon defined the reference standard planes in the 3D 

scans, similar to the reference CT datasets. The variance 

between the defined reference standard and the acquired 

manual standard serves as a measure for precision achieved 

in real clinical scenarios.

As a result, we determined an average angle between the 

principal rays of 25.3 ± 9.3◦ (AP) and 15.3 ± 9.2◦ (Lateral) 

and 22.2 ± 12.6 mm isocenter offset. It is important to state 

that the manual and reference standard projections in spite 

Fig. 4  Inter-rater variance of standard beam direction across two 

independent expert definitions for different patients under the addi-

tional prior of pairwise plane orthogonality

Fig. 5  CNN architecture f (⋅, ⋅) : Four convolutional blocks followed by three fully connected layers, inspired by [5]
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of the orientation variance look visually very similar (Fig. 8, 

last two rows of each block) and both projections are gener-

ally accepted as standards by clinical experts. The increased 

variance compared to the reference standard is mainly due to 

two factors: Firstly, while the standard projections in clinical 

practice are acquired independently, the reference standards 

were defined using coupled planes to assure lower inter-rater 

variance and thus higher quality of the reference. Secondly, 

in clinical practice of proximal femur applications, the sur-

geons only vary the orbital rotation for the acquisition of 

proximal femur standard planes. The angular rotation is not 

altered, but is implied by the initial positioning of the C-arm 

relative to the patient which is not standardized and not guar-

anteed to be optimal.

Pose estimation for standard projections on real 
X‑rays

The pose regression framework for standard projections was 

qualitatively evaluated on datasets containing real X-rays, 

described in “Real x-rays” section. For evaluation of our 

proposed pose estimation for C-arm positioning, we chose 

a random initial projection from the raw orbital projec-

tion series of the C-arm. Thereby, it was assured that the 

initial projection lies inside the capture range of the CNN 

regressor. After applying image scaling, mirroring (dealing 

with the different lateralities) and preprocessing according 

to  “Pose regression framework” section, the resultant image 

was fed into the coarse pose regressor. The X-ray simulator 

can be positioned according to the initial projection, and the 

predicted pose updates were used to reposition the C-arm 

to the predicted standard pose. During repositioning, first 

the detector translation was converted to a source transla-

tion, using the initial C-arm orientation and then, the angular 

parameters are inversely applied to the current C-arm pose 

(and inverted, respecting the laterality). Then, the predicted 

output can be simulated (Fig. 8, prediction). The second 

stage prediction cannot be evaluated retrospectively, because 

it lacks the real intermediate projection images. Figure 8 

shows a visual comparison of the predicted standards and 

the associated reference standards, which were defined in 

the C-arm volume. For the AP standard (Fig. 8, top rows), 

the proposed method robustly predicts projections that are 

visually comparable to the reference standard. Also, for the 

Lateral standard (Fig. 8, bottom rows), the prediction results 

look promising and an iterative predicting procedure can 

potentially further refine the prediction result, as shown on 

the simulated dataset (Fig. 7). One example (Fig. 8, left) 

falls out due to low bone to tissue contrast, the femoral head 

is hardly visible. A comparison of the prediction results 

to the manually acquired standard projection illustrates an 

additional benefit of the proposed approach, which allows 

to automatically correct the in-plane rotation.

Discussion

We have presented a deep learning-based sequential 2-stage 

framework for iteratively adjusting the C-arm pose to the 

desired standard projection. In contrast to the state of the 

art, the approach does not rely on any patient-individual 

prior information like preoperative CTs, instead we obtain 

the differential pose change for the C-arm directly from a 

first X-ray.

Fig. 6  Quantitative evaluation 

of the sequential pose regres-

sion accuracy. The angular error 

distribution of the principal 

rays � is shown together with 

the angular error distribution 

d�, d�, d� and the Euclidean 

distance of translation in the 

detector plane dc 
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We demonstrated that an iterative 2-step approach for 

pose estimation significantly improves accuracy on synthetic 

images. The first stage regressor covers a broader capture 

range, which makes the approach more robust toward higher 

initial deviations, and complies the task of coarse alignment. 

The second stage fine-tunes the prediction and thereby 

improves accuracy. In clinical practice, this would reduce 

the continuous radiation to only two necessary acquisitions. 

Visually, predicted results are very similar to the reference 

X-ray images, which is most important for the surgeon. 

Furthermore, we analyzed the test images with a high pose 

variance after prediction and discovered that they mostly 

can be related to specific test patients. The corresponding 

reference standard projection is shown in Fig. 9 verifying 

that high pose errors are influenced by pathologies (arthro-

sis, obese) and artifacts (due to necessary volume cropping 

to prevent the projection of other extremities) not suffi-

ciently represented in the training set. We think that further 

increasing the number of CT volumes in the training data 

has the potential to improve accuracy by representing more 

anatomical variations. Also random pixel or region dropout 

can improve the robustness of the pose regressor against 

projection artifacts.

Furthermore, we demonstrated that the regressor trained 

on in silico simulated DRRs also generalizes to unseen 

unfractured cadaver X-rays. The datasets of cadavers were 
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Fig. 7  Qualitative evaluation of the sequential pose prediction on synthetic X-rays. For comparison, the last row shows the reference standard 

defined by the expert
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Fig. 8  Qualitative evaluation of the pose regressor on real X-rays 

(first block: AP standard, second block: Lateral standard). For com-

parison, the last two rows show the reference standard defined by the 

expert in the C-arm volume and the manual standard acquired with 

the C-arm (image rotation implicitly defined by detector orientation)

Fig. 9  Standard projections of specific test patients that are related to the pose regression failure cases for different anatomies and standard pro-

jections
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available retrospectively; hence, the second stage prediction 

could not be evaluated on real X-rays because it lacks the 

real intermediate projection images. In the future, we plan 

to evaluate the complete 2-stage pipeline in a cadaver study. 

The high variance between accepted standard C-arm poses, 

observed in our trial on cadaver data, indicates that the quali-

tative measure does not allow for a direct assessment of the 

quality of the predicted standard projections. In addition, it 

confirms the usefulness of our method to help in standard-

izing the quality of good projections, especially in a highly 

dynamic clinical environment.

In our pose regression framework, we decided to model 

the C-arm orientation and the translation parallel to the 

C-arm detector plane and omit the translation along the 

C-arm beam direction and trained our pose regression model 

invariant toward image scaling. This is done for two rea-

sons: (1) Translation along the beam direction is not relevant 

since it does not influence the projection plane. In clinical 

practice, the image intensifier is positioned as close to the 

patient as practical, which can be constrained due to patient 

anatomy or patient positioning. (2) The scale is influenced 

by patient size and can only be measured with respect to 

a reference when a preop CT is available. In our scenario, 

the availability of a 3D scan cannot always be assumed. In 

consequence, for our application, prediction of orientation 

and translation parallel to the detector plane is sufficient. 

The additional single degree of freedom can be altered freely 

while respecting constraints of the clinical environment and 

thus can facilitate handling anatomical restrictions in auto-

matic C-arm positioning.

To translate the proposed method to the operating room 

will require addressing additional challenges related to 

pathologies, fractured bone and metal or instruments in the 

projections. For pathologies such as scoliosis, the method 

could be adapted to be trained and applied in a patch-based 

approach, where the field-of-view of the input patch is 

restricted to the region of one specific vertebra. Then, the 

method would only depend on the neighboring vertebra 

arrangements and could handle sideways curvature of the 

spine. In general, pose estimation on fractured bone is prob-

lematic because the regressor relies on the bone structure. 

But standard projections are used to monitor the implant/

wire position. This means that bone fragments are already 

relocated to their initial position by inserting wires or 

implants. Thus, the fragment locations of the bone are very 

similar to healthy bone. In our future work, we will concen-

trate on the metal itself, that can partially overlay the anat-

omy. We plan to model this in our training data using metal 

simulation techniques [8, 14]. Moreover, path planning and 

handling obstacles in the operating room is an additional 

challenge that needs to be considered in the future work.

In conclusion, we have presented a deep learning-based 

sequential 2-stage framework for iteratively adjusting the 

C-arm pose to the desired standard projection directly from 

a first X-ray, without the need for prior CT scans to derive a 

pose model. The fully automatic approach generalizes well 

to different anatomies and standard projections and has the 

potential to seamlessly integrate into the clinical workflow, 

helping to standardize the quality of good projections, hence 

improving the quality of interventions while reducing time 

and dose.
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