Toward Automating the Discovery of
Decreasing Measures

Robert S. Boyer Wilfred J. Legatband Victor W. Marek

Abstract

An often neglected part of proof automation is simply admitting recur-
sive function definitions into a constructive logic. Since function termination
in general is undecidable, current generation theorem provers are quick to
involve the human. There is, however, a substantial subset of the class of
recursive functions for which termination arguments can be provided auto-
matically. In particular, when the ordinal measure used to justify termination
is less thanu®, we provide algorithms and proofs that guarantee optimum
results, given the capability of existing proof libraries on the theorem prov-
ing system.

1 Introduction and motivation

There are at least two applications within the context of automated theorem prov-
ing for an algorithm that constructs well-founded decreasing measures. The first
arises when admitting recursive functions into constructive logic provers such as
NQTHM [RB79, RB98] or ACL2 [KMMO00a, KMMOOb]. The second arises when
justifying an induction heuristic within an experimental theorem prover [Leg05]
currently under development. These measures are often difficult to find, especially
if the recursive function or inductive instances are mechanically generated. We

*Department of Computer Sciences, University of Texas, Austin, TX 78712
"National Security Agency, 9800 Savage Rd., Ft. Meade, MD, 20755
iDepartment of Computer Science, University of Kentucky, Lexington, KY 40506

1

present here an algorithmic approach to constructing suitable ordinal measures.
The method is not general, in that it only makes explicit use of ordinals less than
w“. Such ordinals are expressible as lists of natural numbers that are compared
lexicographically. We shall see in the concluding section that our methods can be
applied more broadly to in effect employ ordinals uggdi.e. w +w® +w*” .. .).

Below we first introduce a statement of a formal problem (Section 1.1) and then
look at the motivation of this problem in terms of automated theorem proving
(Section 1.2). We then formulate (Section 1.3) our problem as a combinatorial
problem. Then, in Section 2 we introduce an algorithm that finds a solution to
our problem if one exists. The correctness of our solution is shown by means of
a series of statements, culminating in Corollary 2.4. A sufficient condition for
existence of a solution is given in Section 3. In Section 4 we provide yet another
algorithm also solving the original problem but one that uses data structures more
practical for programming. In the Appendix a Lisp implementation for both algo-
rithms is provided. Section 5 contains conclusions and further research directions.

1.1 Formal Statement of the Problem

Given a set of variable&” = {x;, z,, ...x,,} and elements of the power set.tf
S(j,i)fori=1,2,...,n,andj = 1,2,..., m, determine whether an ordering of
x1, T, ..., €Xists such that for all, j if S(j,4) is nonempty then there exists

in S(j,7) such thatr;, precedes; in that ordering.

1.2 Background of the Problem

The constructive logic theorem provers NQTHM and ACL2 allow users to define
a broad class of functions that include the primitive recursive functions. Both the-
orem provers guarantee that all functions admitted under their respective defini-
tional principles terminate, and thus are well defined. Although many termination
proofs are automatically derived, there are simple definitions such as the following
where the user must identify a decreasing measure function.

if x =0then
if y=0thenOelsef(y — 1,y — 1)
elsel + f(z —1,y)
When z or y is not a natural number, we defingz,y) = 0. Although this
function is fabricated to illustrate a point, one can easily imagine it arising as the
recursive function [Mc63] for a doubly nested program loop. Such functions are

commonplace when formally modeling low level programs [Leg02], and may in
fact include large numbers of variables representing state components.

The correspondence between this function and the formal problem statement is

X = {z,y}
S ,1):53/}

The algorithms in this paper will identify the following ordinal measure function

wz,y) =v(y) w+v(z)
wherer is a well-founded measure on the naturals.

More generally, the recursive definition ¢fz) within NQTHM and ACL2 gen-
erates the following proof obligations (among others).

hj(x) = p(ri(z)) < ple)

wherex represents the tuple of argumenis, ., ... z,,), andh;(x) is the pred-
icate governingwhether the recursive cafi(r;(z)) is made. r;(z) may in fact
involve the function being defined, as is the case with the Ackermann function.
The algorithms in this paper will, if successful, determine a measure funegtion
of the following form

where; is an ordinal valued function aof, andx is a permutation reflecting
the ordering ofry, x5, ...z, in a solution to the formal problem statement. In
practicev;(x) typically will depend only onz; and will likely be a function (e.g.
COUNT within NQTHM or ACL2-COUNT within ACL2) that simply counts the
number of constructors applied in generating an inductively defined object.

Given the capabilities of the theorem prover and its proof libraries

hi(z) = vi(rj(z)) < vi(z)

can be proved automatically for some values.ofet G; be the set of variables

x; for which this is true. Other; can be shown to remain unchanged under the
transformationr;, and the remaining are treated as if they increased. For each
“increasing”y; setS(j,i) = G,. Setthe remaining(j, k) = 0. If G; = 0, there

is no solution. If a solution to the formal problem statement

Trn)s Ta(n—1)5- - - Lx(1)

exists, it definesr and indirectly the measure. We observe that the formal
problem statement guarantees thatlecreases on each recursive call, because
any non decreasing is preceded in the order by a decreasing one. In this fase
terminates on all inputs.

The definitional principles for both NQTHM and ACL2 will on occasion use

that are in fact weaker than the actual predicate governing‘thecursive call.

So there will be situations where an otherwise admissible function fails to be
admitted, regardless of the strength of the theorem prover, its proof libraries, or
whether the techniques proposed in this paper are used.

We describe now the second application of our techniques. Rather than pattern an
induction after recursive function definitions as is done in NQTHM and ACL2, the
experimental theorem prover [Leg05] takes a novel approach toward induction.
When presented with a clause

Li(z)V Ly(z) V...V L(x)

to be proved, it augments the set of rewrite rules witdlditionalmeasuredules
constructed as follows. The universally quantified variablese replaced by

4

pattern variables. Then for each literal;(z) a rewrite rule is created whose hy-
pothesis is the conjunction of the negations of the remaining literals in the clause.
L;(z) is converted to an equality (if not already so) and this equality is oriented
into a replacement rule using a term ordering function compatible with the exist-
ing set of rewrite rules. When a measured rule is applied, in addition to relieving
its hypothesis there is the further obligation of showing that the substitution
generated by the pattern match for tffe application of a measured rule derived
from this clause satisfies

hi(x) = plo;(2)) < p(x)

whereh; represents the context in which the measured rule is applieg:asd
defined as before. Depending on the capabilities of the theorem prover and its
proof libraries

hj(a) = vi(o;(2)) < vilz)

can automatically be proved for soméNe collect all variables; for which this

is true into the sef;. If G; = 0, the rule application fails. For those variables

that possibly increase, we sgj.i) = G;. We set the remaining(j,:) = 0. If

the resulting measure problem can be solved, then the rule is applied. We do not
need to identify the ordering. Its existence is sufficient to justify the induction.

We observe that the measure functjoevolves with each application of a mea-
sured rule derived from the same clause, since the measure must be consistent over
all applications. Thus the measure problem is solved repeatedly as new rows are
added to the array(7,). Itis this application that motivates the need for efficient
solutions to the combinatorial problem, since the algorithm will be applied many
times on measured rules derived from clauses possibly containing large numbers
of state variables.

1.3 The combinatorial problem

By an assignment of sets to elements (or sing@irassignmehptve mean a func-
tion S from a setX to its power seP(X). WhenX is finite, X = {xy,...,z,}

we write suchS as
ry Lo ... Tp
S1 Sy ... S,
A set-multiassignment is a natural generalization of an assignment. Namely, we

havem set-assignmentS,, 1 < k£ < m. We will store all these assignments in a
single matrix:

W5t T e Tn

5171 5172 e Sl,n
Sk,l Sk72 Ce Sk,n
Smi Sm2 - Smn

and call that matrix anultiassignment

Let S be such a set-multiassignment on a finite et {z4,...,z,}. The ques-
tion we want to decide is:

(%) Is there an ordering< of the setX such that for every, 1 < k <
m and for everyi, 1 < i < n, whenevers;,; is not empty then there
isz; € Sy, such thatr; < x;?

ThusS is an instance, ang (if it exists) is asolutionof the problem(x) for the
instances.

The problem(x), for a given instance, can of course, be solved by exhaustion
on all n! orderings of{zy,...,z,}. Our algorithm solves this problem for set-
multiassignments in orded(n? - m). It either returns an ordering, or a string
impossible if no such ordering exists.

Before we write the algorithm, first in English and then in pseudocode, we need
some definitions.

In the text below{z,...,z,} is a fixed finite set. A (total) ordering of the set
{z1,...,z,}isanirreflexive, connected, transitive relation, on thgsef. . ., x,, }.

Formally, we say that an ordering of {z;,...,z,} is asolutionfor the set-
multiassignmens if < satisfieqx).

We use the termrefixto denote an ordering of a subset{of, ..., =, }. We will

use a symbot to denote prefixes. The reason for this terminology is that we can
think about an ordering ofz4, ..., x, } as a string over the alphabgt,, . .., z,}

with no repeated symbols. Anitial segmentof an ordering< is a subsetD of
{z1,...,x,} such that whenevey € D, andz < y thenz € D. The initial
segments of the ordering can be identified with prefixes - those are just listings of
the elements of the initial segmebhtaccording to the ordering|p.

WhenC is a prefix, we denote b§- its domain. ThatisD. is the set of elements
occurring inC. Next, whenC is a prefix, we say that is extensibldo a solution
if there is an ordering of the entire{z4, ..., z, } such that is a prefix of< and
< is a solution.

Finally, letC be a prefix. We say that an elemenof {z1,...,z,} \ Dr isready
for Cifforall k£, 1 < k < m, eitherSy; = 0 or D= N Si; # 0.

2 Algorithm 1 and its pseudocode

Algorithm 1 belongs to the family of greedy algorithms. After initialization it
selects as the shortest prefix arnysuch that for alk, 1 < £ < m, Sy, = 0. If
there is no such; it returns the stringmpossible.

Next, at each step, it attempts to find a new element, not in the current prefix,
that is ready for this prefix. If it cannot find any but there are elements not in
the prefix it returns the stringnpossible. If there are elements that are not in the
prefix and which are ready for that prefix, it selects one and appends it at the end
of the current prefix. Finally, when it exhausts the entire{set. . ., x,, } without
producing the stringmpossible it returns the prefix (which is then, of course, a
solution).

Here is the pseudocode for this algorithm. The symboais interpreted ason-
catenationof strings, anda) is a string consisting of a single symhol

Algorithm 1.
Input: A set-multiassignment on a finite sgty, ..., z,}

Output: An ordering of{z1, ..., z,} satisfying(x), or a stringimpossible

/* Initialization * /
Q) C:= 0,

/* Basic loop * /
(2) while ({z1,...,z,} \ Dz # 0)

3){

4) if (there is nar; ready for")

(5) {returnimpossible)};

(6) else

(7) {

(8) selectr; such thats; is ready forcC;

9) C:=C" (my);

(10) }

(11) };

(12) return ©);

Lemma 2.1 LetS be a set-multiassignment dmy, . . ., z,,} and < be an order-
ing of {z1,...,z,} which solves the problertx) for the set-multiassignmest.

Let us write the ordering as

Y1 <Yz < ... < Yp.

Then for every, 0 < j < n, y; is ready for the prefix_; defined as< |(,, .4, .}
The proof follows directly from the definition of solution. O

Theorem 2.2 Assume thaf is a set-multiassignment anlis a solution for the
problem(x) for S. Next, assume that is an initial segment ok and thaty ¢ D,
andy is ready for. Then there exists a solution of the problén) for S, </,
such that_" (y) is a prefix of<’.

Proof: Let us define the relatior’ as follows:

1. Ifx,2’ € D-thenx <" 2/ iff =<2

2. Ifx € Dr, 2" ¢ D thenx <’ 2/
3. Ifx ¢ D, x #y, theny <"z
4. Ifx,2' ¢ Do, x £y # 2 thenx <" 2 iff =<2

Itis easy to check that’ is, in fact, a total ordering ofzy, . .., =, }. Now consider
the ordering<. If y is the immediate successor () of the last element 0D,

we do nothing. Otherwise, we takefrom its current position in< and “slide”
it back to the position immediately following the last elementof Calling the
resulting ordering<’, we see that the order withib- and within({z1, ..., z,}\

D)\ {y} is maintained as we pass frornto <’. The only change is thathas
been moved to follow—. We observe that, by constructian;™ (y) is a prefix of
<.

All we need to show is thak’ is a solution for the problerfi) for the set-multi-
assignment (i.e. an instancg) To this end, let belong to{x, ..., z,}. Several
cases need to be considered.

1. z € D-. Letz = z;. Then, since< is a solution, forallk, 1 < &k < mi it
is the case that eithé&;, ; is empty, or some element 6}, ; <-precedes.
Say this element is. Then, by the definition ok’, case (1)s <’ z. Thus
the condition for a solution is satisfied in this case.

2. z =y. Lety = x;. Then becausgis ready forD, for eachk, 1 < k < m,
Si.i is empty, orSy; N D= # (). By clause (2) of the definition ok’, all
elements of)- <’-precedg,. Thus the condition for the solution is satisfied
in this case too.

3. 2 ¢ D, z # y. We now have two subcases:

(@) z < y. In this case the set of elements-precedingz is actually
bigger than the set of the predecessors of <. Namely, in addition
to all the<-predecessors afit now also containg. Now, letz = z;.
Then, because: was a solution, whenever< k£ < m, eitherSy; is
empty, or the set ok-predecessors af has a nonempty intersection
with S ;. But then, since the set of’-predecessors of is bigger,
wheneverS,.; # 0, then the intersection of; with the set of<’-
predecessors aof is nonempty. Thus the condition for the solution is
satisfied in this case.

Figure 1. Movingy immediately after—, Case 3(a)

(b) ¥y < z. In this case the set 6¥’-predecessors of and the set ok-
predecessors coincide (the orderirggsand< do not coincide on that
set, but the set is the same!). Thus, sircEs a solution, the condition
for the solution is satisfied in this case.

Figure 2: Movingy immediately after_, Case 3(b)

This completes the argument. O

Theorem 2.2 entails the correctness of AlgorithnSpecifically we have:
Theorem 2.3 Algorithm 1 finds a solution if there is one.

Proof. Assume that is a set-multiassignment, ardis a solution for the problem
(x) for S. By induction onj < n we show that aftey iterations of the basic loop
(2), the content of the variable is a prefix of a solution.

This is certainly true at the initialization; the contentrofis the empty sequence
which is a prefix of<. Now, assume that aftgriterationsC holds a prefix of a
solution. Assuming that # n, since there is a solutior’ such thatC is a prefix
of </, the first element oK’ that follows, sayy is by Lemma 2.1 ready for
. Therefore, the set of elements{in,, ..., z,} that are ready for_ and do not
belong toD is nonempty. Therefore line (4) will selesbmeelementy. But by
Theorem 2.2 there is a solutiefl” such that_—~ (y) is a prefix of<”. Thus the

10

inductive step is proved. But now, whegn= n, the prefixc must coincide with a
solution, which is returned by line (12). O

Corollary 2.4 Algorithm 1 finds the solution to the proble(s) for a set-multi-
assignmens if and only if a solution exists.

Proof: We proved that if a solution exists, one will be found by the algorithm
But it is easy to see from the definition of ready elements that if a sequéote
lengthn is returned by the algorithrhthen it is a solution. O

Let us look at the complexity of algorithth The test at line (4) is run at most

times and within each run for at mastsets each of size we testm-times either

the emptiness or nonemptiness of its intersection with a set consisting of at most
n elements. This can be done in ti&n?), and hence algorithrh runs in time

at mostO(n? - m).

A further inspection shows, however, that we can do better, if we maintain the
setsS; . sorted and, additionally, we maintain a separate variable containing all
elements of the prefix in sorted order. Namely, by a version of the farmkage-

sort algorithm, we can test if two such sets have non-empty intersection in linear
time. This implies that the algorithm runs in at méxtn? - m).

Theorem 2.2 used the fact that given a solutioand an elemeng € {z4, ...,
x,}, we could slide a given elementcloser to the front, t@ny positionas long
asy is ready for the prefix ok determining this position. This implies that given
a solution< we can define thendicator function— a function which assigns, to
a given elemeny, the first place wherg can be moved. Then we can may¢o
any position between this indicator and its current position in the solutiand
the resulting ordering will still be a solution. Formally, given an instafiGnd a
solution< = (yi,...,y,) and an elemenj = y;, theindicator of y in < is the
least: such that(yy, ..., vi 1,9, Yi, - Yk—1,Ykt1, - - -, Yn) IS @lSO @ solution. We
denote this value bynds <(y). It is easy to see that becauses a solution, the
function\(y)inds <(y) is well defined.

If S is a multiassignment arfl arises fromS by elimination of some of its rows,
then any solution< to S is a solution to7 . It turns out that given such a situation
there is a relationship between the corresponding indicator functiodsdod7 .

Specifically, we have the following property.

11

Proposition 2.5 If S, 7 are two set-multiassignments afd arises fromS by
elimination of some rows, and is a solution of{x) for the instanceS, then< is
a solution of(x) for the instanceZ” and the indicator function fof” is pointwise
smaller or equal than that faf. That is, for ally, ind7 <(y) < inds <(y).

Proposition 2.5 tells us that if the requirements for the instdhaee less stringent
than those foS then we can slide elements further backZirand maintain the
property of being a solution.

3 A sufficient condition for the casem =1

r1 T2 ... Tp
S1 Sy ... S,
We say that the set-assignmehsatisfies conditiofxx)

if

LetS = be a set assignment on the sét= {xy,...,z,}.

whenever:; € S; thenS; C S,.

Let us note that the requirement is the strict inclusion.

If n > 0 then the conditior{xx) implies that there must b&; such thatS; = 0.
For if S; # () then there isz; € S; such thatS; C S;. Then eitherS; =) or
there isz;, € S; such thatS, C S;. If S; # () we could continue. Since all sets
S;,i < n are finite, we eventually have to reach the empty set.

Proposition 3.1 If S is an assignment of sets to elementsXof= {zy,...,z,}
satisfying(xx) then there is a positive solution to the problér) for S.

Proof: AssumeS satisfies the conditiofkx). Define a graplizs = (X, E) on the
setX by defining the edges as follows:

(x;,z;) € E ifandonlyif S; CS;.

We claim that the graplkX, F) is acyclic. Indeed, ifH = (z;,...,z;) is a
simple cycle in{X, E), then we have

S;, €S, C...CS;, CS;,

12

which is an obvious contradiction.

Now, knowing thatG = (X, F) is an acyclic graph we can topologically s6it.
We claim that every topological sok of G = (X, E') has the propertyxx).

To this end, let:; be an element ok . If S; = (), there is nothing to prove.

Thus assumé; # (). Selectr; € S;. Then, by conditior{xx), S; C S}, and by
the definition(z;, z;) € E. Since< is the topological sort of{z1,...,z,}, E),
x; < x; as desired. O

Proposition 3.2 The condition(xx) can be tested in time polynomial in the size
of S. Once the condition is met, the orderirgcan be found in the time linear in
the size ofS.

Proof: Assuming that the familyg is implemented as a double linked list, it is
easy to test thaf assigns an empty set to at least one elemenif .ot his testing
can be done in time linear in the size®f Then, for each paifi, j), the inclusion
of S; C S; can be tested in time linear in the sizeX¥f There are at mogtX |
such tests to be performed.

Finally, once the conditiofkx) has been checked, the gra@h can be computed
in time linear in the size of, and since the topological sort can be performed in
time linear in the size of7s, we are done. O

4 Algorithm 2 and its pseudocode

In this section we study an alternative algorithm in which the information is stored
in two binary matricedD andU. The matrixD describes where the substitutions
“go down”. That isD;,; = 1 if substitution; provably goes down on variabie
andD;; = 0, otherwise. Likewisel/;; = 1 if substitution;j possibly goes up

on variablei, andU;; = 0, otherwise. We also adopt the convention that the
variables are indexed starting with We setD;, = U, = 1 for all j. If we
represent the'" rows of the arrayd andU by D; andU; then these bit vectors
may be represented as integers using the formulas

13

and
Uj — ZUjvi . 2Z

The following algorithm decides whether there exists a measure that provably de-
creases over ajl. If so, a measure can be constructed by successively appending
the variables indexed by non-zero bits\df(see the algorithm below) to a grow-

ing prefix. Failure to find a decreasing measure, does not rule out the possibility
of later finding such a measure after adding more non-zero valuesattd more

zero values td/. Here is the alternative algorithm.

Algorithm 2.

Input: Binary matricesD andU

Output: trueif an ordering of{z4, ..., x,} exists that satisfies the requirements
of a decreasing ordinal measure, otherwase

/* Main Loop */

WD :=V,;D;,U:=V,;U;, M :=D AU,

2)if M =0

() then{if (DVvU)=0

(4) then return (true)
(5) else return (false)};
(6) else

/* Inner loop */

(7) A{forall 5

8) if(MAD;)#0

(9) then

(20) {D; =0
(11) U; :=0};
(12) }
(13)gotol.

4.1 Analysis of Algorithm 2

A variable ordering(z;, x, . . ., z,,) gives rise to a decreasing measure provided
for eachj if U(j,7) = 1 then there exists, precedingr; such thatD(j, k) = 1.
We make use of the following lemma.

14

Lemma 4.1 Suppose the variable ordering specified by listingys, . . ., v, gives
rise to a decreasing measure. Supposées a variable for which the correspond-
ing column in the matriXJ is all 0’s and the corresponding column i has at
least onel. Suppose that; = y, for somek > 1. Then the variable ordering
Tis Y1, - Y1, Yril, - - -, Yn AISO gives rise to a decreasing measure.

This follows directly from the criteria defining a decreasing measure and is quite
similar to the previous argument. The case:fois trivial, since noU (j,1) is 1.

The cases foy, s, ..., yr_1 follow because we have increased the number of
variables preceding them. The casesyiar, .. ., ¥, remain unchanged, because
they have the same sets of variables preceding them.

It is clear that the above algorithm will give rise to a decreasing measure if it
terminates with no non-zero rows, since at each stage it zeroizes rows known to
decrease under the partial measure constructed. It remains to be shown that if the
above algorithm halts without eliminating all rows, then no decreasing measure
exists. Equivalently, if a solution exists then the above algorithm will eliminate all
rows. We use strong induction on the number of non-zero rows. Assume that for
fewer thanm non-zero rows the above algorithm finds a solution when one exists.
Suppose the system, U with m non-zero rows has a solution. Then the mask
computed at step 1 is non-zero, otherwise every variable that goes down in some
substitution goes up in another and consequently no variable can be placed at the
beginning of a substitution. Construct a prefix to a variable ordering by placing
all variables corresponding to a 1 withii at the beginning (in some arbitrary
order). From Lemma 4.1, we know that moving the variables identified/by

one at a time to the beginning gives rise to a solution if one exists. Since each row
containing al in the prefix is guaranteed to decrease under any measure beginning
with the prefix, we need no longer consider them. Zeroizing their rows simulta-
neously, eliminates the columns within the prefix. By the induction hypothesis,
since the reduced system has a solution, continuation of the algorithm will result
in all rows being zeroized.

The run time of this algorithm is proportional to the product of the number of
variables times the number of substitutions. If counting each bit vector opera-
tion as separate operations on each bit, the run time is linear in the number of
substitutions and quadratic in the number of variables.

15

5 Conclusions and further research

In this paper we have shown how to automatically derive ordinal measures to
prove function termination or justify an induction heuristic. It should be noticed
that our methods may in fact be applied in a more general setting. Rather than
associating each with a variabley; could in fact be an arbitrary ordinal valued
function ofz. In an extreme case, there need only be grepresenting the com-
plete measurg. In less extreme cases, variables could be grouped in very natural
ways (for example components of a multiple precision integer) into a single

By supplying such functions it is possible to derive ordinal measures gp to

It should also be noticed that several recursive functions used in classical work,
for instance those appearing in [Ge36, Go44], require the use of ordinals beyond

w®.

Our algorithm is fast (works in polynomial time), but perhaps a less efficient but
more general algorithm would better suit the application. For example, it is possi-
ble to strengthen the hypotheses under which we prove that a variable decreases by
assuming that those variables in the current prefix neither increase nor decrease.
Such strengthening obviously entails a computational cost, either up front or as
part of the measure determining algorithm. We hope that stronger results (i.e.
more general, but still easily checkable conditions) will be found, and even more
importantly, introduced into automated theorem proving systems.

References

[RB79] R. S. Boyer and J. S. Mooréd Computational Logic Academic
Press, 1979.

[RB98] R. S. Boyerand J. S. Moor&.Computational Logic HandboopRca-
demic Press, 1998.

[Ge36] Gentzen, G. Die Widerspruchsfreiheit der reinen Zahlentheorie
Mathematisches Annaleir1 2:493-565, 1936.

[Go44] Goodstein, R.L. On the Restricted Ordinal Theorémaynal of Sym-
bolic Logic9:33-41, 1944.

16

[KMMO0Oa] M. Kaufmann, P. Manolis and J. S. Moo@omputer-Aided Reason-

ing, An ApproachKluwer, 2000.

[KMMOOb] M. Kaufmann, P. Manolis and J. S. Moore, (editor€omputer-

[Leg02]

[Leg05]

[Mc63]

Aided Reasoning, ACL2 Case Studi€kiwer, 2000.

W. J. Legato, A Weakest Precondition Model for Assembly Lan-
guage Programs, unpublished, February 2002. Availabldtpat
Ilwww.cs.uky.edu/~marek

W. J. Legato, Experimental Theorem Prover, software available from
the author, 2005.

J. McCarthy, Towards a Mathematical Science of Computation,
in Information Processing 1962: Proceedings of IFIP Congress
1962 (C. M. Popplewell, ed.), (Amsterdam), pages 21-28, North
Holland, 1963, available dittp://www-formal.stanford.

edu/jmc .

17

Appendix

We include here Lisp implementations for Algorithms 1 and 2, together with some
testing code, available attp://www.cs.uky.edu/~marek

;. We represent each of the sets S(j,i) as an integer bit vector
s k

oo s@,i) = sum 2

X in S(j,i)

1 k

o Let s = ((s(1,1) s(1,2) ... s(1.n)

" (s(2,1) s(2,2) ... s(2,n))

(s(m,1) s'('r-n,2) ... s(m,n)))

;y Algorithm 1

(defun measure-ok (s)
(do ; loop until the prefix p is stable
((p 1 ; initially p is empty

(pp 0)) : the old value of p
((equal p pp) ; when p is stable, return true iff all xi
(equal (1+ (length (car s))) (logcount p))) ; are assigned
(setq pp p)
(do ; intersect the "ready" sets over all |

((sj s (cdr sj))

(pmask -1)) ; prepare to intersect ready vars over all j
((null sj) (setq p (logior p pmask))) ; extend prefix

(do ; compute the "ready" set for the jth substitution
(i 2 (+ i) ; advance i over powers of 2

(ready 0)

(si (car sj) (cdr si)) ; si = (S(,1) S(,2), ... S(@,n))
((null' si)

(setg pmask (logand pmask ready))) ; must be ready for j
(and (zerop (logand p i)) ; if xi is not assigned and S(j,i)
(or (zerop (logand p (car si))) ; holds an assigned var
(setq ready (logior i ready)))))))) ; xi is ready

18

;1 Generate the s(j,i), where the kth element of the list sub
;;; represents whether variable xk went up, down or remained the
;;; same under the jth substitution.

(defun predecessor (sub)
(let ((down
(do ; generate the set Gj of the paper
(2 (+i1)
(pmask 0)
(sub sub (cdr sub)))
((null sub) pmask)
(and (equal (car sub) 'down)
(setg pmask (logior pmask i))))))
(do
((sub sub (cdr sub))
(s nil)) ; generate sj
((null sub) (reverse s))
(push (case (car sub)
(equal (if (zerop down) 0 1)) ; unconstrained
(down 1) ; unconstrained
(Cup down); must follow a decreasing variable
(t 1)) ; this should never happen

s))))

;;» Create the list of sj's.

(defun s-gen (subs)
(mapcar #'predecessor subs))

;.1 Generate the mask of positions within sub with value key.

(defun gen-mask (sub key)
(do ((sub sub (cdr sub))
i 2+ ii)
(d 1)
((null sub) d)
(and (equal (car sub) key)

(setq d (+ d 1))

19

;1; Algorithm 2

()
;UG

1 if substitution j provably goes down on variable i
1 if substitution j possibly goes up on variable i

;;; Variables are indexed starting with 1. D(j,0) = U(,0) = 1

. D()

i u()

sum D(j,)*2, ds = (D(1) D(2) ... D(m))

sum U(,i)*2", us (U@) UE) ... um))

: due is destructive on the lists ds and us.
iy Use (due (copy-list ds) (copy-list us))

;;; to preserve original values.

(defun due (ds us)

(loop
(setq d (reduce #logior ds)

(let (d u m)

u (reduce #logior us)
m (logand d (lognot u)))

(or (not (zerop m))

(return (if (zerop (logior d u))
t

nil)))

(do ((ds ds (cdr ds))

(us us (cdr us)))

((null ds))

(or (zerop (logand m (car ds)))
(setf (car ds) O

(car us) 0))))))

20

;;; Compare algorithms 1 and 2 on ntries randomly generated
;;; tests of nvars variables and nsubs substitutions.

(defun tess (nvars nsubs ntries)
(let ((flg 1))
(dotimes (k ntries flg)
(let* ((test
(do (G O (1+)
(subs nil (cons
(do ((i O (2+ i)
(sub nil (cons
(case (random 3)

(O 'up)
(1 'down)
(2 ’equal))
sub)))
((<= nvars i) sub))

subs)))
((<= nsubs j) subs)))
(masks (s-gen test))
(ds (mapcar #(lambda (x) (gen-mask x ’'down)) test))
(us (mapcar #(lambda (x) (gen-mask X ’'up)) test))
(t1 (measure-ok masks))
(t2 (due ds us)))
(format t "test=~A due=~A~%" test t2)
(format t "Algorithms agree? = ~A~%" (equal tl t2))
(setq flg (and flg (equal t1 t2)))))))

21

