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Materials exploration and development for three-dimensional (3D) printing technologies is slow 

and labor-intensive. Each 3D printing material developed requires unique print parameters 

be learned for successful part fabrication, and sub-optimal settings often result in defects or 

fabrication failure. To address this, we developed the Additive Manufacturing Autonomous 

Research System (AM ARES). As a preliminary test, we tasked AM ARES with autonomously 

modulating four print parameters to direct-write single-layer print features that matched target 

speci�cations. AM ARES employed automated image analysis as closed-loop feedback to an 

online Bayesian optimizer and learned to print target features in fewer than 100 experiments. In 

due course, this �rst-of-its-kind research robot will be tasked with autonomous multi-dimensional 

optimization of print parameters to accelerate materials discovery and development in the 

�eld of AM. The combining of open-source ARES OS software with low-cost hardware makes 

autonomous AM highly accessible, promoting mainstream adoption and rapid technological 

advancement.

Introduction
Additive manufacturing (AM) (i.e, three-

dimensional (3D) printing) has transformed 

manufacturing, making custom production 

of parts and prototypes accessible to the 

broad community, from everyday hobby-

ists to aerospace engineers. Unfortunately, 

printing processes are tightly linked to 

feedstock materials. Each time a feedstock 

formulation is changed, the exact printing 

conditions must be re-learned through time-

consuming and labor-intensive trial-and-

error work. Moreover, because of the large 

number of adjustable parameters for AM,1–3 

deep optimization by traditional brute-force 

methods is nearly impossible. To acceler-

ate the process of learning optimal printing 

conditions, we look to autonomous systems, 

referred to as research robots.4

We developed the Autonomous Research 

System (ARES), the first fully autonomous 
research robot for materials development, 

which designs, executes, and analyzes its 

own experiments using iterative, closed-

loop artificial intelligence (AI) planners.5 

The AI approach that the research robot uses 

can range from high-level reasoning to more 

statistical approaches, such as machine learn-

ing (ML). The unique factor distinguishing 

autonomous research robots lies in their 
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The discovery and development of new 

materials and processes for three-

dimensional (3D) printing is hindered by 

slow and labor-intensive trial-and-error 

optimization processes. Coupled with a 

pervasive lack of feedback mechanisms 

in 3D printers, this has inhibited the 

advancement and adoption of additive 

manufacturing (AM) technologies as a 

mainstream manufacturing approach. To 

accelerate new materials development and 

streamline the print optimization process 

for AM, we have developed a low-cost and 

accessible research robot that employs 

online machine learning planners, together 

with our ARES OS software, which we will 

release to the community as open-source, 

to rapidly and effectively optimize the 

complex, high-dimensional parameter sets 

associated with 3D printing. In preliminary 

trials, the first-of-its-kind research robot, 

the Additive Manufacturing Autonomous 

Research System (AM ARES), learned 

to print single-layer material extrusion 

specimens that closely matched targeted 

feature specifications in under 100 

iterations. Delegating repetitive and high-

dimensional cognitive labor to research 

robots such as AM ARES frees researchers 

to focus on more creative, insightful, and 

fundamental scientific work and reduces 

the cost and time required to develop new 

AM materials and processes. The teaming 

of human and robot researchers begets 

a synergy that will exponentially propel 

technological progress in AM.
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ability to iteratively learn from prior experiments and their abil-

ity to autonomously design and implement new experiments.

Many groups have begun to implement ML techniques in 

an open-loop capacity to facilitate an increase in quality and 

throughput, and to bolster overall adoption of AM technolo-

gies in the manufacturing industry. For example, there are sev-

eral groups working on establishing laser powder bed fusion 

defect detection systems using ML,6–8 wherein different types of 

defects can be detected and classified in situ. In these cases, ML 

algorithms are used in real or near real time to predict final prod-

uct characteristics based on correlated ex situ training data sets; 

however, there is no autonomous closed-loop iterative improve-

ment. In another important example of ML in AM, researchers 

are implementing ML-based algorithms in a predictive manner 

to accelerate composite materials selection and design processes 

for AM.9 ML is even being applied to assist AM production 

lines in quickly estimating the pecuniary costs associated with 

part fabrication.10 While these types of ML efforts are a crucial 

component for the advancement of AM, we distinguish them 

from autonomous closed-loop systems, such as research robots, 

wherein ML planners use integrated sensor feedback to autono-

mously (and efficiently) learn the optimal process parameters 
required for producing a part that meets target specifications.

The viability of research robots has emerged in recent 

years.4,11 Recently, we developed the carbon nanotube (CNT) 

ARES, a research robot that we tasked with learning to 

grow carbon nanotubes at controlled rates using our custom 

ARES OS software and ML algorithms.5 In perhaps the earli-

est implementation, King et al. developed a research robot 

to autonomously identify the function of genes in the yeast 

Saccharomyces cerevisiae.12,13 Other, more recent examples 

include the employment of research robots in continuous flow 
chemistry to optimize reaction  conditions14,15 and the produc-

tion of Bose–Einstein condensates.16

Despite their applicability, there is a marked scarcity of 

research robots being employed directly in the field of AM. 
Research robots seem ideally suited for optimizing the sun-

dry parameters critical for realizing targeted part specifica-

tions, yet their application toward 3D printing remains largely 

underexploited. To the best of our knowledge, at the time of 

this work, there were only a few examples of AM research 

robots in literature. In one example, Wang et al. demonstrated 

a research robot that uses in-line atomic force microscopy to 

provide microscale topographical feedback to an ML planner 

to autonomously fabricate complex micro-patterns using e-jet 

printing.17 By applying a Spatial Iterative Learning Control 

algorithm to a 2D framework, the system is able to compare a 

digitized height-map of a printed sample to a desired structure 

and correctively modulate the material ejection stimulus. More 

recently, Gongora et al. developed an autonomous system for 

mechanically testing parametric 3D-printed ‘crossed-barrel’ 

structures.18 In their innovative work, they integrated a six-

axis robotic arm with five fused deposition modeling (FDM) 
3D printers, a digital scale, and a universal testing machine 

(UTM). As 3D-printed specimens are fabricated, the robotic 

arm is used to measure their mass and mount them in the UTM 

for compression testing. The testing results are then fed back 

to the ML software, where they are used to produce updated 

models to establish crossed-barrel parameters (number of 

struts, strut angle) for subsequent prints. Theirs is a body of 

work that demonstrates the efficacy of ML in AM; in only 64 
experiments, their ML system outperformed a 1800-experi-

ment grid search. While these groundbreaking examples 

may involve very specialized and expensive equipment, they 

exemplify the application of ML in overcoming the challenges 

associated with tuning highly complex AM systems that are 

exceedingly sensitive to materials variations and uncontrolled 

environmental conditions.

Despite recent advances, AM technologies are still hin-

dered by the painstaking and time-consuming trial-and-error 

processes required to establish the specific parameters needed 
to reliably and effectively utilize each material on a given 

AM platform. Generally, optimization remains a manual and 

intuitive process, as there is a pervasive absence of actionable 

feedback mechanisms to provide (near) real-time information 

about the state of the fabricated product to the machine per-

forming the work; it goes about performing its prescribed tasks 

without knowledge of whether it is generating the desired 

product. To make matters worse, additive processes are inher-

ently complex and typically involve an unwieldy number of 

sometimes-conflicting parameters.1–3

We applied an ML approach to material extrusion-type 

printers first, based not only on their accessibility and popu-

larity in the maker community in the form of FDM printers, 

but also based on the ease with which they can be converted 

to closed-loop systems. For typical FDM systems (FDM is a 

subset of material extrusion), Sheoran et al. have outlined 13 

primary parameters used to direct a 3D print.19 However, as 

slicing software (software that converts a 3D model to spe-

cific print instructions) continues to evolve, myriad secondary 
parameters have emerged that allow even greater control over 

part quality. For instance, the widely used, open-source 3D 

printing software package Ultimaker Cura provides users with 

more than 300 adjustable parameters for optimizing a print.20 

Optimization of these many parameters using traditional non-

iterative systematic methods (i.e., Design of Experiments) 

is impractical, as the number of required print experiments 

would be enormous. As an example, if we consider a full fac-

torial experiment design using only the 13 basic parameters 

with five levels (parameter increments) each, more than one 
billion  (513) experiments would need to be conducted to obtain 

results for all possible combinations. Moreover, once optimal 

parameters are realized for producing a specific part, the large 
number of uncontrolled parameters (e.g., ambient temperature 

and humidity, batch-to-batch material variance, and system 

attrition) could lead to the formation of defects, poor qual-

ity, and reduced yield, requiring parameter optimization to 

be repeated.

To address these shortcomings in the AM technology field, 
we introduced our prototype research robot, AM ARES, which 
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uses in-line automated image capture and analysis as direct 

feedback to a closed-loop ML planner to accelerate the opti-

mization of extrusion-based printing on a customized commer-

cial 3D printer (Figure 1, Figure 5). We are not aware of any 

AM system that employs this relatively low-cost and easily 

integrated feedback mechanism. Moreover, we have designed 

the AM ARES system with accessibility in mind in order to 

promote widespread collaboration and unhindered exploration: 

First, AM ARES is accessible online via the web. This permits 

an AM ARES system to remotely access numerous existing 

web-based ML planners in order to facilitate collaboration 

and expedite scientific discovery. This also lowers the barrier 
for computer scientists and autonomy researchers who need 

a platform to test their algorithms in real-world experimental 

settings. It is important to recognize the advantage of materials 

science as a problem space for testing AI algorithms because 

of their ground truth in materials science, physics, and chem-

istry. Second, we are making the ARES OS software and AM 

ARES-specific software and hardware designs available as 
open-source.21 We believe that the increased access afforded 

via remote access and open-source assets will unleash the 

power of crowd-sourcing toward rapid technological advance-

ment. To the best of our knowledge, AM ARES is currently 

the only autonomous AM system to adopt these approaches 

(Figure 1).

In this preliminary work, we chose to demonstrate the effi-

cacy of AM ARES by tasking it with optimizing the geom-

etry of the leading segment of printed lines (Figure 2) using 

syringe extrusion-based printing and a remote ML planner 

made available via an online cloud server. The goals of this 

work were twofold: First, we needed to validate our proto-

type AM ARES system as a functioning research robot that is 

able to effectively employ ML techniques to optimize mate-

rial extrusion processes. Second, since materials extrusion-

based 3D printing creates parts by building up hundreds or 

even thousands of individual layers, it is imperative that each 

layer be deposited with precision. Given that each layer is con-

structed serially by depositing discrete lines until the required 

pattern is achieved, the precise placement and geometry of 

the printed lines are critical. Indeed, cumulative errors in the 

deposition of each layer in a 3D print can result in undesirable 

print defects (e.g., gaps, oozing, rough corners) in the finished 
part or could result in complete part fabrication failure. Hence, 

from a hierarchical perspective, it made sense for us to begin 

the autonomous optimization process by focusing on some 

of the most elementary single-layer features that comprise a 

complete 3D-printed object. This bottom-up approach is even 

more crucial when performing optimization on novel and 

experimental materials that may have never before been used 

for AM processes.

Results
As stated previously, many parameters can be tuned to opti-

mize a specific print. Here, we focused solely on four fun-

damental syringe extrusion parameters that influence easily 
distinguished geometric aspects of the leading segment of a 

printed line. These parameters are ‘prime delay,’ ‘print speed,’ 

‘x-position,’ and ‘y-position’ and are explained in detail later 

in the text.

In keeping with a systematic and hierarchical approach, 

we began by delegating AM ARES with control of a single 

parameter, the ‘prime delay,’ and tasked it with determin-

ing the best value for printing a line whose leading seg-

ment most closely matched our target geometry (Figure 2b). 

An appropriate prime delay value is 

key to ensuring that deposition com-

mences at precisely the correct time 

(and, as a result, location). If set 

too low, motion will begin before 

enough material has extruded onto 

the substrate and the initial deposi-

tion will be insufficient (Figure 2c). 

If set too high, too much material 

will be deposited prior to the com-

mencement of motion resulting in 

a large bulbous leading segment 

(Figure 2d).

In each experiment, AM ARES 

printed a 12 mm line and captured 

an image of the leading segment. 

An image analysis module returned 

a single ‘objective score’ based on 

the two-dimensional size, shape, and 

location of the printed feature. Here, 

the target shape for the leading seg-

ment of printed lines was defined as a 
combined rectangle and semi-circle, 

AI
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MACHINE LEARNING
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TARGET
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Figure 1.  A simpli�ed �owchart is provided as an overview to the prototype Additive 

Manufacturing Autonomous Research System (AM ARES) closed-loop autonomous printing 

process. The process begins when the user selects the material, the parameters, the �xed 

parameter values, and the parametric toolpath for the syringe extrusion deposition process. 

For each cycle, the current parameter values are used by the toolpath to create a set of spe-

ci�c printing instructions, and the specimen is deposited (‘PRINT’). Next, AM ARES’ machine 

vision system captures an image of the specimen’s user-de�ned region of interest (‘IMAGE’). 

The captured image is sent to the user-selected image analyzer (‘ANALYZE’), which evalu-

ates the specimen and returns a corresponding score. Finally, the planned parameter values 

and associated specimen score are sent to the user-selected planner (‘PLAN’), where the 

values are appended to the previous dataset, a new model is generated, and new planned 

parameter values are again passed to the toolpath. FDM: fused deposition modeling
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as shown in Figure 2b. To elucidate the effectiveness of the 

optimization process, we intentionally set the conditions so as 

to be relatively challenging: We selected a 0.42 mm dispensing 

tip, and the target shape for the leading segment was almost 

three times wider at w = 1.2 mm.

We formulated an objective-scoring algorithm that returned 

the quotient of the effective specimen area divided by the 

desired region’s area (Equation 1). In this work, the desired 

region, Adesired, is indicated in Figure 2b by the diagonal fill 
lines. The effective area is defined as the area of the specimen 
internal to the desired region (Ainside) less the area of the speci-

men external to the desired region (Aoutside, Figure 2e). Nega-

tive values for effective area are set to zero. An ideal print, 

wherein the outline is completely filled without any specimen 
external to the outline, would achieve a maximal objective 

score of 1.0 (Equation 2).

(1)Adesired = w ×

(

h−
w

2

)

+
1

2
π

(

w

2

)2

(2)Objectivescore =
Ainside − Aoutside

Adesired

=

Aeffective

Adesired

The results of the one-parameter campaign are shown in 

Figure 3a, where initial objective scores are near 0.6. After 

trying values along the single parameter, AM ARES quickly 

identifies a promising region, and stays in a narrow range 
through the remainder of the campaign, reaching a maximum 

objective score of ~ 0.77 in iteration No. 81. Ultimately, AM 

ARES achieves convergence at a prime delay value of ~ 0.18 s.

Given the results of the initial single-parameter cam-

paign, the next logical step was to run a subsequent campaign 

wherein we delegated AM ARES with control of an additional 

parameter. For this case, AM ARES optimized both ‘prime 

delay’ and ‘print speed,’ and the results are shown in Figure 3c. 

The planner searches the space of both parameters over the 

first ~ 50 trials, finding an optimal combination and remaining 
with these low values (prime delay and print speed values of 

~ 0.36 s and ~ 1.34 mm/s, respectively) for the remainder of 

the campaign. Here, a maximum objective score of ~ 0.91 was 

achieved in iteration No. 97.

For the one and two-parameter campaigns, we calibrated 

the offset vectors between the dispensing tip and analysis cam-

era with reasonable accuracy, as illustrated by the alignment 

of the specimens in the target out-

line in Figure 3b and d. To introduce 

greater complexity, we chose to run 

a third campaign where the x- and 

y-components of the offset vector 

were deliberately set to misalign 

the leading segment with the desired 

region’s outline (Figure S1), and we 

assigned AM ARES control over 

two additional parameters, ‘x-offset 

correction’ and ‘y-offset correction.’ 

The results of this four-parameter 

campaign are shown in Figure 3e. 

Here, the objective scores in the 

early iterations are low at ~ 0.34, 

but over the course of the first 60 
iterations, the planner explores the 

parameter space until ultimately 

choosing to converge around a com-

bination of parameter values yield-

ing an objective score of around 

0.75. For the remainder of the 

campaign, the Bayesian optimizer 

(BO) primarily adjusts print speed 

to reach a near-optimal combination 

of controlled parameter values with 

an impressive maximum objective 

score of ~ 0.94 (iteration No. 99), 

with prime delay, print speed, and x- 

and y-offset corrections having final 
values of 0.0 s, 1.6 mm/s, − 0.35 
mm, and − 0.33 mm, respectively. 
The analyzed image for this result 

is shown in Figure 3f.

a

c d e

b

Specimen

Lead-in

W

h
Adesired

Aoutside

Ainside

1 mm

Figure 2.  (a) A close-up photograph of the AM ARES system as it runs autonomous cam-

paigns to optimize the leading segment of printed lines. The desired region is shown in green 

(b) and has a user-de�ned width ‘w’ and height ‘h.’ Examples of under- and over-extruded 

leading segments are shown in (c) and (d), respectively. The scoring algorithm (Equation 2) 

calculates the quotient of the ‘effective’ specimen area divided by the desired region’s area 

(Adesired). The various regions used to calculate the score are shown in (e). The effective area 

(Equation 1) is de�ned as the area of the specimen internal to the desired region’s outline 

(Ainside, green mask) less the area of the specimen external to the desired region’s outline 

(Aoutside, red mask). The scale bar shown in (c) is the same for (b–e).
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Discussion
AM ARES succeeded in learning to accurately print the 

desired feature. It converged in its iterative search over one, 

two, and four adjustable printing parameters, achieving near-

ideal production of the user-defined structure in less than 100 
iterations. Here, we delve into the details of the autonomous 

research process, planning, and implications. A simplified 
flowchart is provided in Figure 1 as an overview to AM ARES’ 

prototype closed-loop autonomous printing process. Autono-

mous experimentation begins with the user pre-configuring 
the campaign of print experiments. Here, the user defines, 
among other things, the controlled or ‘planned’ parameters 

(e.g., print speed), fixed parameter values (e.g., working 

distance = 0.3 mm), parameter 

limits, seed conditions, toolpath 

(a user-generated set of parametric 

printing instructions), termination 

condition(s) (e.g., the minimum 

number of experimental iterations), 

target or threshold objective value, 

planner to be employed (e.g., gra-

dient descent, BO), image analyzer, 

and relative imaging coordinates. 

The toolpath, image analyzer, and 

planner are all modular in that new 

embodiments can be added to the 

system as needed to suit the experi-

ments being carried out. Depending 

on the choice of planner, the user 

may be required to enter a specific 
number of seed values for each of 

the controlled parameters, and these 

will be used in place of the planner 

for the initial experiments to estab-

lish a preliminary model.

To effectively manage the print-

ing space available for a print cam-

paign, AM ARES uses the geomet-

ric toolpath extents to divide the 

substrate into a grid of cells and 

manages print campaigns such 

that any unused cell can be allo-

cated for a print experiment. In this 

way, hundreds of experiments can 

be run on a given substrate on our 

prototype system without human 

intervention. After each specimen 

is printed, AM ARES performs a 

simple automated dispensing tip-

cleaning step (Figure S2). This is 

important to prevent material from 

drying and accumulating at the end 

of the dispensing tip, which would 

likely have cumulative detrimental 

effects on subsequent experiments. 

Additionally, the system may dwell for a preset time to allow 

rheological recovery for thixotropic materials.

The next step in the process is to capture one or more 

images of the most recent print result. AM ARES performs 

image capture, as prescribed, and feeds the image(s) to the 

user-selected image analysis routine(s), where appropriate 

metrics are measured and compared against a target geom-

etry. The resulting metric (‘objective score’ in this case) and 

corresponding values for the controlled process parameters 

(‘prime delay’) are then appended to the data from all previous 

experiments in the campaign. This complete and up-to-date 

dataset is sent in JavaScript Object Notation (JSON) format 

to the planner. Also included in the JSON file are the upper 

Objective Score

Prime Delay

x-Offset Correction

Target Score

Print Speed

y-Offset Correction

1.0

0.8

0.6

0.4

0.2

0.0

O
b
je

ct
iv

e 
S

co
re

P
ar

am
et

er
 V

al
u
e

P
ar

am
et

er
 V

al
u
e

P
ar

am
et

er
 V

al
u
e

1.0

0.8

0.6

0.4

0.2

0.0

O
b
je

ct
iv

e 
S

co
re

1.0

0.8

0.6

0.4

0.2

0.0

O
b
je

ct
iv

e 
S

co
re

0 20 40 60 80 100

0.94

0.91

0.77

1 mm

Iteration Number

–2

2

4

6

8

10

2

0

4

6

8

10

0

0

2

4

5

a b

c d

e f

Figure 3.  Plots showing AM ARES print optimization using one, two, and four print 

parameters are shown in (a), (c), and (e), respectively (red arrows indicate maxima). For the 

one-parameter case (a), AM ARES modulates the prime delay value and converges on an 

objective score of ~ 0.77. An image of the optimized print using prime delay only is shown in 

(b). For the two-parameter case (c), AM ARES is able to modulate both prime delay and print 

speed values to converge on an objective score of ~ 0.92, and the optimized print is shown 

in (d). For both of these cases, the specimens were initially well aligned with their target out-

lines. For the four-parameter case, we intentionally misaligned the specimens with the target 

outline and gave AM ARES control of two additional parameters, the x-offset correction and 

y-offset correction. After running a campaign of 100 experiments, AM ARES converged on an 

objective score of ~ 0.94 (e, f).
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and lower limits for all applicable parameters, as defined by 
the user. The planner receives these data, updates its model, 

and chooses the controlled process parameter values for the 

next iteration based on the ML planner’s policies. The entire 

process repeats until user-defined termination conditions have 
been satisfied.

We implemented the AM ARES system in a manner that 

allows for modular employment of any suitable ML plan-

ner. For the work presented here, the system was resourced 

with a BO, which resided on a cloud-based server in order 

to evaluate and substantiate AM ARES’ ease of access. BO 

is an all-purpose global optimization algorithm that is well-

suited for problems in which little is known about the char-

acteristics of the objective function to be optimized and data 

are limited (e.g., slow or expensive to collect, small existing 

database). BO’s systematic search process ensures that optimi-

zation is achieved efficiently and reliably. The algorithm has 
been applied in a wide array of disciplines, including materi-

als sciences, where some of its applications include material 

 synthesis22,23 and materials discovery.24–27

BO comprises two complementary components that work 

in unison: (1) a surrogate model (i.e., a ‘best guess’ function 

fit to the observed data), and (2) an acquisition function that 
decides which parameter values to interrogate next in order 

to improve the surrogate model. BO typically employs a 

Gaussian Process (GP) to generate a function fit to the cur-
rent dataset. This fitting function, f(x), can employ any num-

ber of parameters and is generated using a multi-dimensional 

Gaussian probability distribution to determine the mean (μ) 
and standard deviation (σ) for all x.28 The σ values, in turn, are 

used to calculate the confidence of each mean value for all x 

(Equation 3). In this work, since we are performing a maximi-

zation of the objective score, the acquisition function chooses 

the point where the sum of the mean and confidence is high-

est as the subsequent sampling point (Figure 4, red dashed 

line). The mean values and confidence values are represented 
in Figure 4 as the blue line and light blue area, respectively.

To determine the best sampling values, the acquisition 

function inherently employs a balanced exploitation versus 

exploration approach, wherein it chooses to either sample 

from a region known to produce good results (exploitation) or 

explore a relatively under-sampled region (exploration). The 

abrupt yet brief drops in the objective score with correspond-

ing changes in parameter values (e.g., experiments 24, 48, and 

85 in Figure 3a) demonstrate the characteristics of the acquisi-

tion function. The BO planner is never content with its current 

optimal value, and will from time to time seek out a superior 

one in a relatively under-sampled region (exploration). If the 

results of the under-sampled region are poor, the local upper 

confidence bound will decrease such that the algorithm returns 
to sampling in a region known to yield better results (exploita-

tion). This is visible in all three graphs.

(3)

BO is an adaptive search process in that the GP model is 

updated as new observations are made. Each time the dataset 

is updated with new observations, the model fitting process 
is repeated. The acquisition function is then used to provide 

parameters for the next experiment, and its result is added to 

the database, at which point the search process repeats. An 

illustration of this fitting-proposing cycle is shown in Figure 4. 

For a more in-depth and technical tutorial of BO and GPs, we 

direct readers to Reference 29.

The effects of background noise are also manifested in the 

data. Here, significant shifts in objective score without cor-

responding changes in parameter values are observed (e.g., 

experiments 60–61 in Figure 3a). These shifts are artifacts of 

material inhomogeneity, environment fluctuations, and sub-

strate defects (Figure S3). To effectively extract global optima 

from these types of real-world experimental data, noise-tol-

erant algorithms such as BO are essential.30 This being said, 

the optimization process can be improved by reducing system 

noise, and we will be exploring this in future work. The back-

ground noise of these experiments was empirically quantified 
by printing and evaluating 100 trials using fixed, near-optimal 
parameter values. The objective score mean, standard devia-

tion, and relative standard deviation were found to be 0.90, 

0.027, and 3.0%, respectively (Figure S4).

Despite its popularity, there are limitations and challenges 

associated with applying BO in practice. The algorithm comes 

with a set of ‘hyperparameters’ that require tuning and can 

heavily influence performance. While tuning all hyperparam-

eters can be fully automated (high computational cost), it is 

often more efficient and practically feasible to tune only a 
subset of them manually.31 Additionally, BO becomes signifi-

cantly more challenging in high dimensions as more data are 

required for accurate estimation. Concretely, the performance 

of BO may suffer when the dimensionality of the data exceeds 

10 to 20 dimensions.32 Selection of appropriate ML techniques 

depends on the application, and future work may require that 

alternative techniques be adopted.

Successful syringe extrusion-based printing requires care-

ful tuning of numerous intricate print parameters, many of 

which may not be obvious to the general community. Imme-

diately prior to deposition, the syringe extruder requires prim-

ing, wherein the syringe plunger is depressed by a prescribed 

distance, at a prescribed rate, and with a prescribed delay 

between the time when the priming occurs and when motion 

commences. The optimal prime settings will be related to the 

geometry of the dispensing tip, the rheology of the material 

being extruded (e.g., yield stress and viscosity), and the desired 

shape of the printed feature. If these parameters are not ade-

quately tuned, the leading segment can suffer over-extrusion 

(Figure 2d) or under-extrusion (Figure 2c) relative to the tar-

get geometry (Figure 2b). Once motion begins, many other 

parameters, including the extrusion rate, the print speed, and 

the precise transverse location where printing takes place, are 

crucial in achieving the desired line width and alignment.

Confidence = Acquisition parameter · σ
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For the one-parameter, ‘prime delay’ case, AM ARES 

achieves an objective score of 0.77 after 81 iterations. It 

is important to note that this result is unique to the single-

parameter case; this prime delay value may not be optimal for 

campaigns where AM ARES can vary additional controlled 

parameter values. In this scenario, the optimization process is 

limited to what can be accomplished through modulation of 

the ‘prime delay’ value only, and the system arrives at the opti-

mal balance of ‘over-filling’ and ‘under-filling’ of the idealized 
outline, wherein the net penalties are minimized (Figure 3b). 

Modulation of prime delay alone is insufficient to achieve an 
objective score near 1.0 given the conditions of this experi-

ment. Control of additional parameters (e.g., print speed) is 

required to rectify the observed under-filling of the desired 
outline. When provided with control over two parameters, the 

‘prime delay’ and ‘print speed,’ AM ARES yields an improved 

objective score of ~ 0.91. Evidently, this is achieved through a 

reduction in print speed from the fixed value of 5.0 mm/s in the 
one-parameter case to 1.34 mm/s in the two-parameter case. 

We surmise that at higher print speeds, the print material’s 

flow rate is viscosity-limited, resulting in an inadequate vol-
ume of material dispensing from the tip in the time it takes for 

the printer to complete the respective motion. A reduced print 

speed then is required to provide sufficient time for the mate-

rial to deposit at the desired quantity. Hence, at 1.34 mm/s, a 

larger volume of material is dispensed, and a larger proportion 

of the target outline is filled.
Finally, when given control of two additional parameters, 

‘x-offset correction’ and ‘y-offset correction’ (a total of four 

parameters), AM ARES achieves an impressive optimized objec-

tive score of ~ 0.94. Interestingly, the optimized ‘prime delay’ 

value in this case is zero. This suggests that when provided with 

control over the ‘print speed’ and the x- and y-location of the lead-

ing segment, there is no longer a need for the planner to establish 

a non-zero value for ‘prime delay’ for this specific scenario; AM 

ARES has learned to shift the print 

location in order to accurately fill the 
target outline. Individually plotted 

data for this campaign are shown in 

Figure S5 to elucidate the progres-

sion of each parameter. Additional 

four-parameter campaigns are shown 

in Figure S6, where variations on the 

nozzle size and ‘prime distance’ are 

explored.

Conclusion
In this preliminary work, we have 

demonstrated the successful optimi-

zation of an elementary single-layer 

print feature via online cloud-based 

planning of up to four parameters 

with virtually continual parameter 

levels in under 100 iterations (<3 h).  

In contrast, a similar factorial design 

of experiments to optimize four parameters at only 10 levels 

each would have required  104 = 10,000 iterations—a difference 

of two orders of magnitude. Arguably, the intuition of a human 

expert in the field may have performed comparatively well for 
the simplified scenario presented herein as a proof-of-concept; 
however, this work showcases the fundamental applicability 

and utility of ARES for material extrusion processes and is a 

stepping-off point for a host of future autonomous research 

applications in the field of AM.
AM ARES is aptly poised for rapid advancement to address 

much more complex and high- dimensional printing chal-

lenges. In the near term, AM ARES will undergo software 

upgrades to enable targeting of multiple  objectives33–35 and 

image capture at multiple locations using either or both of 

the installed cameras. A second-generation custom syringe 

extruder will be installed that is capable of higher resolution 

dispensing and incorporates a load cell for real-time pressure 

feedback of the syringe. These enhancements will accelerate 

optimization by vastly reducing the system noise and system 

drift that results from inconsistent and residual pressure in the 

syringe. New analysis routines will continue to be developed 

to suit the requirements of increasingly complex additively 

manufactured specimens; it is our goal to advance these analy-

ses beyond 2D.

In time, analytical models will utilize our ever-expand-

ing database as learning sets for more predictive and adap-

tive hypotheses based on a broader parameter space. New 

feedback mechanisms, such as live streaming video, can be 

incorporated into this or future incarnations of the AM ARES 

system, improving its performance and increasing its respon-

siveness toward real-time feedback. The prototype AM ARES 

system has been (and continues to be) designed to promote 

widespread accessibility and adoptability throughout the AM 

community and academia. To that end, we will soon begin 

incorporating AM ARES into inexpensive (<US$250) FDM 
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Figure 4.  An illustration of the components of the Bayesian optimization planner from two 

trials of the one-parameter campaign. The best-�t model is represented by a mean function 

(blue line, µ) and the associated con�dence (blue area). After completion of iteration 18, the 

planner generates a best-�t model based on the current dataset (a) and the maximum value 

of the acquisition function is used to select the next parameter value to evaluate (red dashed 

line). Here, the acquisition function is the upper boundary of the con�dence region, de�ned as 

µx + 3σx (acq. param. = 3). The planner uses the prime delay value returned by the acquisition 

function to perform the next experiment (b) that produces the new data point (red dot), and 

the process repeats.
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printers with integrated vision feedback systems. Ultimately, 

we hope to see adoption of AM ARES across all AM platforms 

toward accelerated technological advancement.

To our knowledge, AM ARES is the first implementation 
of a research robot performing fully closed-loop and remote 

autonomous material extrusion printing, wherein print param-

eters are optimized using relatively low-cost image analysis 

techniques and online cloud-based ML algorithms. AM ARES 

efficiently performs traditionally tedious and repetitive tasks, 
replacing human manual labor, while also using ML tech-

niques to perform high-dimensional search over printing con-

ditions that supports human cognitive work. Ultimately, the 

teaming of human and robot researchers is expected to greatly 

multiply the speed of AM technological progress.24 While 

ARES is certainly not limited to materials extrusion processes, 

we believe that the widely available materials extrusion class 

of 3D printers (e.g., MakerBots) makes it highly accessible to 

a broad community. In addition, the modular online planner 

opens AM ARES up to the entire range of ML planners which 

need not be resident on the AM ARES system. Finally, we 

are making our ARES OS autonomous research software and 

AM ARES hardware designs open-source to increase access 

to autonomous research systems to materials scientists, AI 

researchers, and citizen scientists. This strategy will encour-

age rapid advancement in the field of AM in both the scientific 
and maker communities.

Materials and methods
The prototype AM ARES extrusion-type printer is shown in 

Figure 5a (also see Figure S7). We designed AM ARES to 

be relatively simple and low-cost to facilitate reproduction 

and to better emulate commercial-grade systems. To that end, 

we procured and repurposed a Lulzbot TAZ6 FDM system 

(Aleph Objects, Inc., Loveland, CO, USA) for its motion sys-

tem and basic motion calibration functions (e.g., mesh bed 

leveling). We replaced the stock FDM print head with a low-

cost, custom-designed syringe extruder to enable exploration 

of diverse sets of materials, with the ultimate goal of autono-

mous print optimization of new and 

novel materials.

We fabricated the custom syringe 

extruder (Figure 5b) using a com-

bination of 3D-printed and com-

mercial off-the-shelf components. 

The custom extruder accepts dispos-

able 10 mL polypropylene syringes 

(Norm-Ject Manuf. #4100.X00V0), 

and for this work, we employed 

0.42 mm (0.017 in.) dispensing tips 

(McMaster-Carr, Cat. #75165A684). 

As shown in Figure 5b, a car-

riage mounted to a motor-driven 

lead screw advances or retracts the 

syringe plunger, as directed by the 

software. We also incorporated an 

integrated vision system into the 

custom print head using two machine 

vision cameras (IDS Imaging Devel-

opment Systems Inc., Stoneham, 

MA, USA, Figure 5c), one mounted 

at an angle to observe the deposition 

process in real time (the ‘process’ 

camera), and one mounted normal 

to the substrate at a fixed offset with 
respect to the deposition tip for in-

line analysis (the ‘analysis’ camera). 

For these initial experiments, we 

opted to deposit Alex Plus Acrylic 

Latex Caulk Plus Silicone. This 

commercially available material was 

chosen based upon its suitable rheol-

ogy, affordability, homogeneity, and 

low toxicity. Furthermore, we chose 

a

b

c

Figure 5.  (a) The prototype AM ARES test platform. A commercially available and open-

source 3D printer (LulzBot, TAZ 6) was purchased and converted from a fused deposition 

modeling motif to syringe-based materials extrusion to enable materials exploration. To do 

this, we removed the original print head and replaced it with a custom syringe extruder using 

off-the-shelf and 3D-printed components (b). The extruder depresses or retracts a syringe 

plunger via a carriage (B) that is raised or lowered by a stepper motor-driven lead screw (A). 

(c) In order to enable closed-loop autonomous printing, we integrated two cameras into the 

syringe extruder to provide real-time process views (C) and in-line analysis normal to the 

substrate (D).
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white caulk because it provided high contrast against a black 

substrate, which facilitated image processing (Figure 2).

When setting up a print campaign, the user was required 

to provide AM ARES with a ‘toolpath.’ Toolpaths are text 

files that contain the coordinated motion instructions 

needed for printing a desired specimen. For our prototype 

system, these instructions can control motion in four axes: 

X, Y, Z, and E (‘Extruder’). To establish a quasi-equilib-

rium rheology, we provided the system with a toolpath that 

directed the printer to deposit a serpentine ‘lead-in’ line 

immediately prior to depositing a single 12 mm ‘speci-

men’ line for analysis (Figure 2a). The user pre-selected 

all print parameters that were not explicitly controlled by 

AM ARES, and the system held these fixed for the duration 

of the autonomous print campaign. Each iteration required 

1–2 min to print the specimen, clean the dispensing tip, 

capture an image, perform image analysis, record the data, 

and remotely plan the parameters for the subsequent itera-

tion, resulting in a throughput of 30–60 complete iterations 

per hour.

After depositing each specimen, the system carried out a 

25 s dwell to provide opportunity for rheological recovery of 

the ink prior to performing the dispensing tip-cleaning rou-

tine (Figure S1). After cleaning the dispensing tip, the system 

captured an image of the leading segment of the deposited 

line and processed it using the pre-selected image analyzer 

module. The analysis procedure and scoring algorithm are 

described in the Results section. As mentioned previously, we 

employed a BO algorithm to plan experiments, which supplied 

new input conditions for the AM ARES printer toward the 

campaign objective. After the completion of each iteration, 

AM ARES sent the aggregate objective scores, parameter val-

ues, and parameter limits (i.e., the most up-to-date campaign 

database) in JSON format to the BO planner. After creating the 

updated model, the planner generated a new set of parameters 

that were returned to AM ARES and used for the subsequent 

iteration. We opted to provide three user-seeded experiments 

to establish an initial model at the outset of each campaign. 

The seed values were 0.0 s, 2.5 s, and 5.0 s for ‘prime delay;’ 

1.0 mm/s, 3.0 mm/s, and 5.0 mm/s for ‘print speed;’ and 0.0 

mm, 0.1 mm, and − 0.1 mm for both ‘x-offset correction’ and 

‘y-offset correction.’
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