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Towards Autonomous Driving in Arctic Areas

Laura Ruotsalainen, Valerie Renaudin, Ling Pei, Marco Piras, Juliette Marais, Emerson Cavalheri

and Sanna Kaasalainen

This review article provides an overview of the use of inertial and visual sensors and discusses their prospects in arctic navigation of
autonomous vehicles. We also review the fusion algorithms used so far for integrating vehicle localization measurements as well as the
map matching algorithms relating position coordinates with the road infrastructure. The review reveals that the conventional fusion
and map matching methods are not enough for navigation in challenging environments, like urban areas and Arctic environment.
We also provide new results from testing inertial and optical sensors in vehicle positioning in snowy conditions. We find that the
fusion of Global Navigation Satellite Systems (GNSS) and Inertial Navigation System (INS) does not provide the accuracy required
for automated driving, and the use of optical sensors is challenged by snow covering the road markings. While extensive further
research is needed to solve these problems, fusion of GNSS, INS and optical sensors seems to be the best option due to their
complementary nature.

Index Terms—Arctic navigation, autonomous driving, fusion algorithms, optical positioning

I. INTRODUCTION

A
UTONOMOUS driving is already here, and replacing

human drivers by self-driving vehicles is expected to be

reality in the next 10 years [35]. The evolution of autonomous

driving can be seen as a continuation of technology develop-

ment started out from driver assistance systems [6]. Extensive

research carried out for intelligent transport and self-driving

vehicles has been carried out from different viewpoints over

the years, such as sensor systems, robotics, artificial intelli-

gence, and socioeconomic modeling [7], [9], [83]. Numerous

research organizations and car manufacturers have developed

prototypes, and an increasing number of tests are already

taking place in public roads (e.g., [1], and refs. therein).

Automated vehicles set much higher demands for positioning

accuracy and especially integrity. While meter level accuray

is enough for personal vehicle navigation, automated vehicle

require centimetre accuracy and very high integrity [61].

Global Navigation Satellite Systems (GNSS), provide good

performance in open outdoor environments. However, various

error sources affect the accuracy and reliability of the position

solutions computed using the GNSS signals and especially in

urban canyons GNSS is significantly degraded or unavailable.

For overcoming the aforementioned navigation challenges,

research has been very active for decades for developing novel

improved signal processing techniques [75], [27] and finding a

suitable set of other methods for augmenting or replacing the

use of GNSS. The size, price and power consumption require-

ments set for the system complicate the method development

further, and therefore the set of equipment, error modelling and
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algorithms used for integrating measurements from different

sources, has to be considered carefully.

Due to the GNSS limitations in harsh environments hy-

bridization with other sensors, in particular with Inertial Nav-

igation Systems (INS) has been used in positioning for the

road environment since decades. However, competitive and

complementary positioning technologies are fast developing

and opening new frontiers for hybridized and cooperative

positioning. The scope of such integration is not only to

improve accuracy and precision of the solution, but also to

provide means to increase robustness and reliability of the

procedure to threats typical of the urban environment, such as

signal obscuring, multipath and radio-frequency interference.

Positioning based on utilization of wireless networks has

become popular in recent years especially in dense urban and

indoor environments. These terrestrial positioning technologies

are being consolidated and several works for the hybridization

with GNSS core positioning is being studied, following to

a certain extent the integration process of GNSS and INS.

However, research is still needed to define proper error models,

tailored integration algorithms and other topics to fully exploit

the diverse source of information.

Cameras are increasingly used for positioning for a wide

field of applications at all levels of accuracy. The success

of optical methods originates from miniaturization and ad-

vancement in the technology of detectors (e.g. charge-coupled

device CCD sensors). In parallel there has been an increase

in data transmission rates and computational capabilities of

processing equipment as well as profound development of al-

gorithms in image processing. On intelligent vehicles, cameras

are of high interest to be used independently or, preferably,

hybridized with GNSS, since they are equipping more and

more frequently the new vehicles and therefore can provide

valuable information at a very low additional cost. Last but not

least light detection and ranging (LiDAR) can be an attractive

technology for positioning due to its high accuracy in ranging,

wide area view and low data processing requirements [60].

An important aspect to autonomous driving is the tech-

nology to be used in sensing the environment. Use of laser

scanners and radars have been studied for years as means
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of object detection, even for harsh weather conditions [37]

[38]. However, laser scanners are still expensive and therefore

more cost effective means should be considered. Sensors are

not only important for the perception of the environment, i.e.,

detecting obstacles, traffic and lane markers, road conditions,

and other road users, but also for mapping and localization,

since the limitations of GNSS for this purpose are well

understood, especially in dense urban areas [9].

Most of the testing of sensor and localization systems so far

has been carried out in summer conditions: either on public

highways [1] [78] or test platforms, such as the Mcity by the

University of Michigan [48] [69]. Testing self-driving cars in

arctic conditions has started only recently, with a few projects

ongoing. One of these has been started by the Google’s self-

driving car, Waymo [78]. VTT Technical Research Centre

of Finland made the first self-driving tests in Finland on

snowy conditions [79]. Their vehicle is relying on forward

sensing laser scanners and radar, as well as cameras. The

winter tests were carried out in the E8 Aurora intelligent road,

which is a public test ecosystem in the Finnish Lapland for

testing autonomous vehicles in all conditions, especially in

winter with snow and ice present [4]. As yet, there is not

enough information on the performance of the localization

and navigation systems in snow conditions for autonomous

vehicles. Little or no test results have been published so far.

These conditions are challenging, since snow often covers

distinctive features, such as lane markings, and weather con-

ditions restrict or even obstruct the visibility. More research

and testing is necessary to find the optimum combination and

settings of sensors, and to make autonomous cars reliable in

all conditions.

In this paper, we review the methods related to autonomous

vehicle navigation and discuss their challenges at the arctic

environments concentrating especially on optical sensors. We

have tested the use of inertial sensors and a camera in arctic

winter to emphasize challenges related to their use in snowy

conditions. To our knowledge, this is one of the first research

efforts to summarize and assess the feasibility of inertial and

camera sensors for this purpose.

This paper is structured as follows. In Section II, we discuss

the state-of-the-art technologies for autonomous vehicles and

their challenges in arctic environment. In Section III we

first review the different optical positioning methods and

their challenges in snowy conditions, and provide new results

from testing the feature detection capabilities of two widely

used detectors. Section IV discusses the different estimation

algorithms feasible for fusing the different measurements into

an accurate and reliable position solution. Finally, conclusions

and discussion of areas of future work are in Section VI.

II. TECHNOLOGIES ENABLING AUTONOMOUS DRIVING

Arctic areas set special challenges for GNSS positioning.

The nominal accuracy of GNSS positioning, 5-10 meters in

open areas, is not sufficient for autonomous vehicles. There-

fore, augmentation systems both ground and satellite based

are used for improving the accuracy down to sub-meter level.

Arctic areas are often sparsely populated and therefore the

infrastructure enabling ground based augmentation does not

exist. Also, due to the constellation characteristics of for ex-

ample the European Geostationary Overlay Service (EGNOS)

Space Based Augmentation Systems (SBAS) do not provide

sufficient augmentation performance [8]. Therefore, fusion of

GNSS and other positioning means carried by the vehicle

by itself is the only feasible solution for Arctic autonomous

driving.

Fusion of GNSS and inertial sensors is an attractive setup

for positioning due to their complementary characteristics and

prevalence in automated vehicles. Inertial sensors are used to

provide or improve navigation solution when GNSS is not

available or degraded. Inertial sensors do not provide abso-

lute position, but speed and direction measurements, which

may then be used for extrapolating the last known absolute

position. This process is called Dead Reckoning (DR) [31].

However, snow conditions cause slipping of the vehicle that

is difficult to estimate using low-cost inertial sensors. The bias

in position estimate caused by slipping is smaller with inertial

sensors than with the wheel speedometers usually used for

estimating the speed of the vehicle. In addition to sliding

effects, multipath and fading effects deteriorate the satellite

based positioning solution in challenging environments, even

in forests covering large parts of the Arctic region.

Initial testing of low-cost commercial navigation system

fusing GNSS and inertial sensors was conducted in Finland in

snowy arctic conditions in March. The data collection lasted

for 25 minutes and the route consisted of large highways

(Fig 1) as well as smaller forest roads (Fig 2). A MTi-G-700

GNSS/INS hybrid receiver from XSens provided the fused

position solution. Novatel SPAN system, providing centimetre

level accuracy, was used as a reference. The hybrid receiver

and the span reference system were rigidly attached together

located behind the passenger seat. The same GNSS antenna,

located on the top of the car roof, was used by both systems.

Fig 3 shows the system configuration inside the vehicle. The

setup also included a GoPro camera installed behind the wind

shield. Analysis of the effect of snow into optical positioning

will be discussed in Section III-D.

The GNSS and INS measurements were fused using a

tightly-coupled Extended Kalman filter. The obtained navi-

gation solution is degraded in snowy conditions. The 50%

cumulative horizontal position error in our test was 5.14 m

and 95% 14.96 m. With the high accuracy demands set by

autonomous driving, it is evident that the fused GNSS/INS

solutions is not accurate enough. However, navigation using a

fused GNSS and INS solution alone does not provide enough

accuracy for autonomous driving with centimetre level accu-

racy requirements [14] even in non-arctic conditions. More

sensors are needed for providing all information required to

provide sufficiently accurate and reliable solution.

Technologies enabling autonomous driving may be roughly

divided into hardware (different sensors) and algorithms (for

fusing sensor measurements and for maturing position in-

formation into navigation, routing and decision information).

McGehee et al. [49] have defined the state-of-the-art au-

tonomous vehicle technologies to be radar, ultrasonic sen-

sor, GNSS, dedicated short range communication, cameras,
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Fig. 1: Test environment 1, highway

Fig. 2: Test environment 2, forest

LiDAR, sensor fusion, mapping technologies, route planning

and navigation algorithms and localization, object detection

and mapping. Table I gives a short review of the functionalities

the hardware technologies provide and what kind of challenges

they experience at the Arctic environment.

The autonomous vehicle technologies listed contributing to

the position computation are LiDAR, GNSS and cameras. At

arctic areas especially ice sets challenges for LiDAR, because

the shiny ice causes the laser pulses to careen around and

therefore does not provide an accurate solution. Later sections

provide more detailed evaluation of the use of cameras in

the arctic environment and discusses how sensor fusion and

map matching should be implemented to provide a viable end

solution.

III. OPTICAL POSITIONING

The use of cameras in positioning is facilitated by the

decrease of their size and costs and their advantage is that they

provide accurate motion measurements and relative position-

ing means. There are two different approaches to camera-based

positioning. The first one uses a camera as a means to detect

visual features in a close surrounding environment and obtains

relative positioning information by detecting the motion of the

features in images [24]. This approach is also called vision-

aiding. The motion of the features enables computation of

attitude and translation of the camera between consecutive

images. This motion information may be further integrated

with e.g. GNSS or other sensor measurements to obtain

complementary information for positioning. The information

Fig. 3: Test equipment. Left up: GoPro camera on the wind

shield, left down: antennas on the vehicle’s roof. The hybrid

receiver and the SPAN reference system were rigidly attached

together (right) and located behind the passenger seat (middle)

TABLE I: Autonomous Vehicle Technologies

Technology Used for Arctic–specific challenges

Radar Ranging for park assis-
tance, collision warning

Does not work if covered
with snow or ice

Ultrasonic sen-
sors

Distance to objects for
backing, parking and
lane keeping

Does not work if covered
with snow or ice

GNSS Absolute position solu-
tion and velocity

Poor coverage of augmen-
tation systems, both ground
based and satellite based

Dedicated
Short Range
Communica-
tions (DSRC)

For communication be-
tween vehicles (V2V),
and vehicle to infrastruc-
ture (V2I)

No arctic specific challenges.
Temperature, humidity, and
wind are not correlated to
radio frequency (RF) propa-
gation loss at a statistically
valid level of significance
[46]

Cameras Optical positioning, ob-
ject recognition

Snow and ice distort or pre-
vent feature and object detec-
tion

LiDAR Distance and angle to
object surrounding the
vehicle, used for posi-
tioning and mapping

Reflections caused by ice

provided by the images does not suffer from accumulating

measurement errors typical for inertial sensors, or signal

obstruction disturbing GNSS processing. Related theory and

relevant applications will be discussed in Section III-B.

The second approach uses image processing in order to help

the GNSS receiver to mitigate the degradation of the position

solution due to inclusion of Non-line-of-Sight (NLOS) signals.

Exclusion of NLOS signals improves GNSS performance in

environments where surrounding objects obstruct the signals,

for example buildings in urban areas. Some of such methods

compare 3D databases to the recorded image [12] or inputs

extracted from images such as skyline [59]. The first NLOS

mitigation methods relied on classical linear cameras [45],

while the more recent ones rely on a fish-eye lens pointed

up over the roof of the vehicle [44], [20]. NLOS mitigation

using optics will be discussed in Section III-C

The drawbacks of cameras is that, a calibration process

is required for applications that need very accurate mea-
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surements. There is also a need for the lenses to be clean

and sensitive to light variations that make generic processing

algorithm difficult especially during the night and in rain or

snowfall. The use of cameras will benefit in the near future

from both technological improvements in hardware as well as

the development of more robust, fast and efficient processing

solutions. However, the mitigation methods for the effects of

snow on road and snowfall are to be assessed.

A. BASICS OF OPTICAL POSITIONING

Photogrammetry allows to generate 2D or 3D model of a

scene using images or frames, to recover the exact positions

of surface points. Photogrammetry is based on collinearity

equations [55], where the distance between two points that

lie on a plane parallel to the photographic image plane, can

be determined by measuring their distance on the image, if the

scale (s) of the image is known. Traditionally, photogrammetry

is based on a pair of images, which could be collected in two

different ways: 1) using two or more simultaneous cameras or

2) using only one camera but collecting images from different

points, with a specific relative distances, in order to respect the

scale factor and the overlapping (at least 60% on longitudinal

direction and 40% on transversal one). These approaches are

adopted both in aerial and terrestrial applications, the selection

is made considering the object, the additional tools (e.g.

ground control points) and instruments used for navigating.

In Visual Based Navigation (VBN), the boundary conditions

are completely different because ground control points are

not available in an unknown environment or VBN is used

for augmenting or replacing other navigation systems. Also,

low quality of cost-effective cameras used on vehicles and

lack of distinctive features in images representing a large

portion of the road and sky complicate the photogrammetric

observations. In fact, all digital cameras introduce several

deformations into images due to the lens and the sensor.

Considering the optical lens, there are two main types of

distortion: radial and tangential.

Traditionally, the device used for VBN in a vehicle is

an integrated non-metric camera. Calibration is required

through analytical procedures to study the characteristics of

the mechanical-digital system, to evaluate the distortion pa-

rameters and other errors. In particular, the calibration aims to

evaluate the effects of radial, tangential and affine distortion

of the sensor [25]. Most mass market cameras use the self-

calibration procedure, which is based on the determination of

the calibration parameters carried out independently by pho-

togrammetric survey. This is usually performed by preparing

a calibration grid, specifically made, in which the coordinates

of the target are known with high precision.

The vocabulary related to optical perception in navigation

is manifold. Computer vision deals with the algorithms used

also for close range photogrammetry, whereas the term ma-

chine vision is concerned with the use of computer vision in

industrial or practical processes [21]. Structure From Motion

(SFM) recovers relative camera poses and three-dimensional

(3-D) structure from a set of camera images (calibrated or non-

calibrated) [41], [24]. Visual odometry is a particular case of

SFM concentrating on resolving the camera 3D ego-motion

sequentially in real–time, when SFM additionally reconstructs

the structure of the scene [72]. Bundle adjustment [19] can

be used to refine the local estimate of the trajectory. Here we

use the term optical positioning for the process of obtaining

relevant information from images and visual based navigation

to compute the navigation solution while using the optical po-

sitioning information alone or fused with other measurements.

B. solutions for OPTICAL POSITIONING challenges

[70] gives an extensive review of the history and relevant

technologies for estimating vehicle’s motion from visual input

alone. This research started already in the early 1980s [53].

The first methods used stereo cameras, where the relative 3-D

position of the features was directly measured by triangulation

to derive the relative motion. However, camera’s size sets

constraints for the use of stereo perception. When the baseline,

namely the distance between two cameras in the stereo setup,

is much smaller than the distance between the camera pair

and the object in the scene, the resulting triangulation does

not provide correct measurements. Therefore, it is attractive

to use monocular cameras in VBN. The disadvantage is that

they can provide the motion only up to a scale factor. Different

approaches have been developed for determining the absolute

scale, for example using constrained configuration of the

camera, fusing inertial or range sensors in VBN system or

using known characteristics of the navigation environment,

namely sizes of elements in the scene.

The early stereo camera solutions did not provide the

required accuracy. The first real-time method with a ro-

bust outlier rejection scheme RANdom SAmple Consensus

(RANSAC) was presented 2004 [55]. Ultra-tightly coupled

GNSS /INS and optical positioning providing good accuracy

and reliability for vehicle positioning also in urban areas was

presented in [3]. In monocular VBN the absolute scale is

unknown and traditionally the distance between the first two

camera poses has been initialized to one. As a new image

arrives, the relative scale and camera pose with respect to the

first two frames are determined using either the knowledge of

scene dimensions or the trifocal tensor. Trifocal tensor resolves

the scale using the three images by comparing all projective

geometric relationships among three views depending only on

the relative motion of the camera among the views [24].

Optical methods used for positioning can be divided into

three categories: feature-based methods, appearance-based

methods, and hybrid methods. Feature-based methods are

based on salient and repeatable features that are tracked over

the frames. Appearance-based methods [22], [52] use the

intensity information of all the pixels in the image or its

subregions, and hybrid methods use a combination of the pre-

vious two [71]. However, appearance-based approaches are not

robust to occlusion. This is a major disadvantage especially for

vehicle applications, where other vehicles occlude the scene

frequently. A sophisticated hybrid solution was presented in

[72], where appearance was used to estimate the rotation of

the car and features from the ground plane to estimate the

translation and the absolute scale. Recently, [77] has used the
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camera for lane detection intended especially for autonomous

vehicles.

Motion of the vehicle is constrained and the knowledge

of the motion constrains enables methods with decreased

computation time and improved accuracy. The most used

motion constrain is the knowledge of the static camera height

and attitude. This allows to use a camera facing the road

surface. Then, a method called homography provides motion

estimates with an absolute scale [39], [32], [84]. A method for

mitigating the motion constraint requirements was developed

in [66]. It was aimed mainly for pedestrian navigation, but it

was also applicable for vehicles in urban areas.

C. NON-LINE-OF-SIGHT MITIGATION USING OPTICS

When included into GNSS position computations, NLOS

signals degrade the obtained accuracy. [10] classifies the

assessment of NLOS problem into four different levels; NLOS

can be ignored, mitigated, identified or avoided. In land

transportation, ignoring or avoiding the NLOS will not pro-

vide required performance. Optical methods can help identify

the presence of NLOS by detecting environmental obstacles

around the receiver antenna but also to identify the satellites

concerned thanks to the comparison of their position and of

the obstacle positions.

A direct signal is received when the path between the

satellite and the antenna is above a visibility line, also called

optical horizon line. Optics was used first in telecommunica-

tion studies to detect satellite visibility [64]. In the first imple-

mentations of NLOS mitigation methods two video cameras

were looking left and right of a vehicle path [45]. State-of-

the-art methods use fish-eye lens cameras capable of showing

the complete horizon above the receiver antenna [44] [20] as

illustrated in Fig 4. A similar approach was proposed by [50]

with an infrared (IR) camera.

Fig. 4: Fish-eye image acquired on the top of a road vehicle

and processed in order to detect masking and sky areas [43]

Once identified, NLOS mitigation can rely on different

strategies : the first one relies on excluding the reflected signal

from the position estimator as tested by [73]. However, in some

conditions, the image-based exclusion can been too severe and

degrade accuracy because of a poor resulting geometry of the

satellites [44]. [68] proposed the use of a camera to detect

and exclude NLOS in a GNSS/INS/Fish-eye camera integrated

system.

The second strategy aims to adapt the solution computation

in order to benefit from the measurement but minimizing the

error which is in this case inclusion of NLOS signals. In [76]

and [43], NLOS optical results were inputs for a weighting

schemes. The main idea is that detected NLOS signals will

be represented with lower weights than LOS signals in the

least square estimator and therefore the measurements ob-

tained using LOS signals contribute more into the position

computation resulting in better position accuracy. With the

dataset used in [43], the mean error was 3.28 m with the

NLOS detection based on images, but 10.58 m with a classical

least square or 6.5 m with an extended Kalman Filter. Most of

the papers addressing the NLOS mitigation have been based

on optics used in dense urban environments where the GNSS

signal is most degraded. However, snowfall will cause major

challenges for obtaining relevant information with upward

facing cameras.

D. STUDYING THE EFFECT OF SNOW ON OPTICAL

POSITIONING

Feature based optical positioning is based on tracking fea-

tures of static objects and thereby computing vehicle’s motion.

In order to find reliably static objects they should be extracted

close to the road surface. Many of the car manufacturers

pioneering on automated vehicle development compute the

motion using lane marks as features [77]. However, snow

conceals most of the features on the road surface. As stated

above, there are no studies published about the challenge snow

causes for optical positioning.

To underline the importance of considering the effect of

snow on optical positioning we collected images during the

data collection campaign described in section II. We studied

the feature detection capabilities of two widely used feature

detectors; Hough Transformation [26] for detecting lines from

images and Features from accelerated segment test (FAST)

algortihm [15] for detecting point features. All images were

processed using Matlab. Fig. 5 shows the situation for detect-

ing FAST features in a good road condition, namely there were

hardly any snow on the road surface. The figure overlays two

consecutive images (thereby the color of the image is distorted

at some points and positions of objects in the first image are

shown with turqoise) and shows the detected and matched fea-

tures using a red cross (first image) and yellow circle (second

image). Outlier were discarded using the RANSAC algorithm

[16]. The figure shows an adequate number of reliable matched

features, which allows for accurate optical vehicle positioning.

Fig. 6 shows the result for line detection at the same location.

Lane markings are well found from the road surface. However,

when the road surface is even slightly covered by snow and ice,

the situation is completely different, as can be seen from Fig. 7.

There are no matching features found from consecutive images

close to the road surface. Also, lane markings are not detected

by Hough Transformation. Hough Transformation is a feasible

line detector in most environments, but based on our tests it

is clear that more sophisticated means for feature detection,

for example based on Convolutional Neural Networks (CNN)

[82] in arctic conditions is required.

Snowfall and rain set additional challenge for optical po-

sitioning. In the case of light snowfall or rain the challenge
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is to avoid tracking dynamic flakes or drops. Light snowfall

was experienced during our data collection campaign. Fig 8

shows the result of detecting and matching FAST features

from the image when the vehicle was static. All crosses, i.e.

features detected from the second, are in the middle of the red

circle, i.e. features detected from the first image. This means

that only static features are tracked between the two images.

Therefore, it is shown that no flakes in the air or rain drops on

the windshield are detected by the detector. Therefore, light

snowfall or rain do not disturb the process. However, when a

snowstorm or heavy rain is experienced the situation changes.

A lot of research has been done to identify and remove the

flakes and drops from the image keeping the background, e.g.

[58] [57]. However, when the snow or rain cover most parts

of the scene or gather to the camera lens, optical positioning

becomed impossible. Similarly, LiDAR processing becomes

impossible due to the reflections caused by snow and rain.

The solution for assuring safe autonomous driving in most

hars conditions, in snow storm or very heavy rain does not yet

exist. When snowflakes or heavy rain dominate the view of

cameras and LiDARs, their performance will be too degraded

for providing positioning. Although novel sensor technologies

are continuosly developed, like a radar able to scan below

snow cover and road, it is forecasted that the emerge of

technologies able to cope with these most demanding weather

conditions will take at least until 2020 [11].

Fig. 5: Matching FAST features detected from consecutive

images in good weather condition. Features shown using a

red circle for the first image and yellow cross for the second.

Fig. 6: Lines detected (blue) from the image using Hough

Transform

IV. FUSION ALGORITHMS

It is self-evident that due to the characteristic challenges

faced by different positioning technologies, no individual

Fig. 7: Matching FAST features detected from consecutive

images from snowy and icy road. Features shown using a red

circle for the first image and yellow cross for the second.

Fig. 8: FAST features detected and matched from two images

taken in snowfall (the contrast has been increased to get the

snowfall and water on the wind shield visible in the image)

technology can provide the accuracy and reliability required

for positioning of autonomous vehicles. Therefore, the fusion

of measurements with often very different nature and error

characteristics is needed. This section provides the reader

with a review on the fusion algorithms suitable for vehicle

positioning.

A. WEIGHTED FUSION ALGORITHM

The weighted fusion algorithm is the simplest and most

intuitive fusion algorithm. In the weighted fusion algorithm,

position information provided by multiple fusion sources is

given weights to obtain the final fusion results as shown in

Fig 9. f1(x), f2(x), ..., fn(x) are the position results computed

by each sensor involved, w1, w2, ..., wn are the corresponding

weights and F (x) is the resulting fused position solution.

Weights are tuned via experimental testing and result analysis

for each sensor. Although implementation of the weighted fu-

sion algorithm is simple, accuracy of the fusion result depends

on the goodness of the selected weight factors. Therefore, the

process of weight tuning based on large number of tests is the

most important part of the algorithm implementation.

B. KALMAN FILTERING

Kalman Filter (KF) algorithm uses a state space equation

and measurement model recursion to derive the optimal fu-

sion data state estimate. Statistical estimation and the known
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Fig. 9: Diagram of the weighted fusion algorithm

mathematical system model are used [30]. The main five key

elements of KF are the state estimate, state covariance matrix,

system model, measurement vector, and measurement model.

When fusing GNSS and INS, INS error model is used as

the system model. In the easiest form of Kalman filtering

(loosely-coupled), the data is fused in the position domain

and the measurement vector is the position difference between

observations of INS and GNSS.

The system model is dependent on the system’s motion

states and environment’s characteristics. For example, au-

tonomous vehicles operating at the polar region have poor

GNSS satellite geometry, presented using a measure called

Geometric Dilution of Precision (GDOP) [31], resulting in

large measurement error. Kalman filtering is intended for

estimating linear processes, however autonomous driving is a

nonlinear problem. Typically, extensions of Kalman filtering,

namely Extended Kalman Filter (EKF) and Unscented Kalman

Filter (UKF) are applied to deal with problems of nonlinear

systems [28]. Motion model of an autonomous vehicle has

many constraints such as little changes along the vertical

axis. Therefore, constrained Kalman Filter (CKF) [23] can be

utilized for improved performance over the non-optimal lin-

earization solutions obtained using EKF and UKF. In addition

to data fusion, Kalman Filtering has been widely used for

example for calibrating INS [34] and GNSS signal processing

[5].

In a complex system, such as an autonomous vehicle pro-

cessing heterogeneous and asynchronous data from multiple

sensors, a centralized Kalman filter is not robust enough. As

shown in Fig 10, Federal Kalman filter is a decentralized

filter usually applied for complicated systems. It can solve

the challenge of estimating the state with high dimensional

computation, good fault tolerance and flexible design [81].

C. PARTICLE FILTERING

The idea of particle filtering is derived from the Monte Carlo

method [2]. Particle filtering extracts random state particles

(also called samples) from the posterior probability, using a

method called Sequential Importance Sampling (SIS). The

state-space model can be non-linear and the initial state and

noise distributions can take any form required. The method

can transform complicated integral operations into summation

operations of finite sample points and provides improved

Fig. 10: Federal Kalman filter for sensor fusion in a complex

navigation system

performance for non-linear estimation. Particle filtering is

widely used in state-of-the-art navigation fusion methods, but

due to its computing time restrictions its use should be justified

based on the non-linearity of the system.

D. FACTOR GRAPHS

The theory of belief functions (BFT), also known as

Dempster-Shafer or Evidence theory [67] is an effective theo-

retical framework for e.g. fusing noisy data. Belief propagation

algorithms are normally presented as message update equa-

tions on a Factor Graph. Factor Graph is a model combining

nonlinear optimization with graph theory. It provides smooth

growth and global optimization for estimation. Factor Graph

consists of two kinds of nodes, the factor node and the state

variable node. If there is an association between two nodes, an

edge is built between them. In factor graphs used for fusion, an

edge represents both the system model and the measurement

model. A famous library based on the Factor Graph theory is

G2o [36].

As shown in Fig 11, the X,v,b are the position, velocity

and bias state variables and Z is the vector containing sensor

measurements. The optimal state is computed by minimizing

the residual error between the estimated state and the state

computed using the sensor measurements. An optimization

algorithm, such as iSAM2 [29] can be used to deal with

minimization problem.

Fig. 11: Factor Graph structure for multi-sensor fusion.

A multi-sensor fusion filter may be implemented as an

algorithm finding the minimal residual error using a Factor

graph and global optimization. All navigation sensors can be

divided into two types of factors as shown in Table II, and

can be dynamically inserted into an existing factor graph.
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TABLE II: Sensor Classification

Sensor Factor type Measurement Respective state

INS binary angular velocity attitude, position
acceleration speed

GNSS unary location position, speed
sometimes
attitude

Optical binary / unary distance and angle
rate / location

attitude, position

LiDAR binary / unary distance and angle
rate / location

attitude, position

This enables a plug-and-play capability of a sensor fusion

framework.

Inertial Measurement Unit (IMU), a sensor providing mea-

surements for INS, operate at much higher rate than other

sensor types. Thereupon, fusion can only update the navigation

state at the times when non-IMU, such as GNSS data, are

available, or when IMU measurements arrive after a certain

interval. In the latter case the INS factor is built to connect

two sequential navigation states by integrating IMU over the

time between the time epochs of the two states.

Compared with IMU measurements, namely angular veloc-

ity and acceleration, GNSS is an unary operator involving

only one state, position. Cameras and LiDAR could be either

binary or unary. If the translation and direction between two

frames are used in a graph, the factor is binary. Otherwise, if

the location computed by propagating the optical or LiDAR

measurements (DR) is used in the framework, the factor is

unary. In Fig 11 , the framework considers LiDAR and optical

(Vision) as unary factors which can provide navigation states

directly.

E. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are characterized by complex

linear or non-linear mapping between input and output with

arbitrary precision. Artificial neural networks are complex

and composed of a large number of simple components

connected to each other. The computation process includes

off-line learning and on-line evaluation phases. In the learn-

ing process, each neuron conducts regular learning, weight

parameter adjustment, and non-linear mapping to achieve

training accuracy. Multi-sensor fusion requires mapping of the

redundant information with multi-source uncertainty with the

fusion result.

V. MAP MATCHING METHODS

After resolving vehicle’s position coordinates they have to

be related with a map to make a useful representation. The

process is called Map Matching (MM). [62] define MM as

a process using road network data to determine the spatial

reference of the vehicle’s location. It can also be considered

as a technique combining electronic map with location infor-

mation to obtain the real positions of vehicles. Good sources

for futher reading are [7], and [62].

The main purpose of a map matching algorithm is to identify

the correct road segment a vehicle is travelling and its correct

position on that segment [62]. MM algorithms use as an input

TABLE III: Fusion algorithm comparison

Fusion algo-
rithm

Strengths Weaknesses

Kalman filter 1. Moderate computation re-
quirements, high efficiency

1. Requires prior probability
and probability independent
hypothesis

2. Optimal estimation for lin-
ear, Gaussian systems

2. Poor performance for non-
linear, non-Gaussian systems

Particle filter 1. Handling of multiple types
of system states

1. Particle degradation

2. Robustness 2. Needs large number of par-
ticles

Factor graph 1. Smooth growth and easy to
expand

1. Algorithm structure is
complex

2. Global optimization 2. High computation require-
ments

3. Low time synchronization
requirements

Artificial
Neural
Network

1. Strong adaptiveness, fea-
ture classification and map-
ping ability

1. Computationally intensive

2. Possibility for parallel pro-
cessing, efficient

2. Global optimal solution
difficult to find

Weighted
fusion
algorithm

1. Intuitive, easy to under-
stand

1. Affected by the quality of
the location source informa-
tion

2. Low computation require-
ments, easy implementation

2. Weight parameters need to
be estimated via exhaustive
experimenting
3. Weight parameters are case
dependent

vehicle’s positions and data from high resolution spatial road

network maps [63]. These algorithms can be used not only

to provide the vehicle’s position in the correct segment but

also can improve the positioning accuracy if good spatial road

network data are available [56].

Here, basic MM methods are briefly discussed, followed

by a discussion of their current performance in some relevant

scenarios, especially in urban areas.

A. Map Matching methods

Map matching algorithms range from simple searching

techniques to complexes ones using fuzzy logic, Extended

Kalman Filter (EKF), and Belief Theory [63]. Approaches can

be categorized into four groups:

• Geometrics: those algorithms that make use of geometric

information of the spatial road network data considering

only the shapes of the links, regardless how they were

connected.

• Topological: topological MM algorithms look into the

relationship of the entities (points, lines and polygons),

as adjacency, connectivity and containment.

• Probabilistic: with the error of the positioning solution,

acquired from the sensors (GPS and/or INS and/or DR),

elliptical or rectangular confidence regions are built using

the error variances of positions. The identification of

the roads is made by selecting the segments within this

confidence regions.

• Advanced MM algorithms: the advanced algorithms make

use of other refined mathematical approaches such as

KF or an EKF, Dempster-Shafer’s mathematical theory

of evidence, a flexible state-space model and a particle

filter and interacting multiple model, a fuzzy logic model.
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[63] have reviewed the accuracy obtained using different

map matching techniques. The best accuracy obtained at urban

and suburban areas among the reviewed methods is around

5.5 m (95 % cumulative horizontal error) and the correct link

identification at over 95%. Map scale, or quality of the map,

plays a big role in the MM performances as demonstrated

in [83]. MM algorithms matches the positions exactly on the

road centreline. Although using the centreline may be desirable

situation for many ITS applications, these algorithms introduce

large errors in the location estimation, specifically the case of

low resolution road network data and therefore is not a good

approach for automated vehicles.

B. Map Matching in urban areas

Digital road maps can be fused with position information for

constricting the solution and thereby improving the accuracy

[56]. Some algorithms may perform well within suburban

areas but not in urban areas and vice versa. Usually, in dense

urban areas, map matching algorithms are not capable of

reaching positioning requirements for all ITS applications [63]

and research on the methods is still required.

[80] developed a MM algorithm based on Dempster-

Shafer’s theory of evidence using rule based logical inference

system. They matched smoothed GPS positions using a poin-

to-curve concept. The results suggested a 96% correct road

identification. However, such geometrical method may not

behave well in urban areas due to not consideration of the

road network topology [63]. [13] proposed a constrained

probabilistic interacting multiple model (IMM) to tackle the

issue of urban environments. They assumed that the path of

the vehicle is known, this way fewer satellites are needed to fix

positions. The algorithm uses multiple hypothesis to identify

the correct road link. The availability of positions increases

in urban areas but the algorithm fails if there is none or

only one satellite available. [56] developed a probabilistic MM

algorithm and tested the approach integrating a low cost DR

sensors and GPS in a EKF. Tests showed that in complex urban

roadways and traffic scenarios the algorithm achieved correct

matching 100% of the time. The algorithm also improved the

uncertainty of the matched positions from an average of 13m

(GPS/DR) down to 4 to 5 m with high-resolution digital map

of the road. To overcome noisy navigation positions obtained

from GPS in urban canyons, [74] developed a map matching

technique based on fuzzy logic. The algorithms showed a high

percentage of correct matches and zero percentage of false

matches. However, the algorithm took about 30 seconds to fix

the first position and also did not consider the map and sensor

errors.

MM approaches were developed in the last few years.

However, for some ITS applications, these algorithms are

not yet capable of supporting the navigation requirements.

[63] pointed out the main limitations; initial identification of

vehicle positions, matching positioning fixes in complex road

lay-out (such as Y-junctions and fly-overs), and performance

evaluation in dense urban areas. Although the main purpose

of MM algorithms is to accurately display vehicle location

on a GIS-based digital map, accurate road map information

integrated with other sensors such as cameras, LiDAR, INS,

and GNSS can improve positioning accuracy. To fully develop

a reliable and robust navigation system, improvements in the

algorithms and integration of sensors are still needed to allow

safe and continuous navigation in urban and, consequently, in

any other type of environment.

VI. CONCLUSION

This paper reviews the techniques and algorithms needed

for developing an accurate and reliable navigation system

for autonomous driving. GNSS does not offer the required

centimetre level accuracy in most scenarios, especially in

urban areas, and definitely not the integrity required from

this safety-critical application. Inertial sensors provide mea-

surements that augment the position solution obtained using

GNSS, but their weaknesses degraded the fused solution too

much to be enough for navigation using GNSS/INS alone.

Optical systems provide invaluable information for automated

vehicles, also for its navigation. However, optical systems

suffer from poor light conditions and other aspects challenging

for imaging, especially arctic snow conditions.

We strongly think that the best solution for automated

vehicle navigation in Arctic environment is based on multi-

sensor fusion, containing at least a GNSS receiver, INS and

optical systems. We think that the optical system are of

essential importance for autonomous applications for their

accuracy and infrastructure-free nature, however, development

of sophisticated computer vision methods for feature and error

detection are required. Other critical part in the development is

the selection and implementation of the fusion algorithm, in

order to obtain a good quality solution. In order to develop

a functional traffic ecosystem for the automated vehicles,

individual coordinates obtained via positioning have to be

related to map information, and therefore the state-of-the-art

map matching algorithms were reviewed.

Navigation at the Arctic areas is not addressed enough in the

current research. In this paper we underline the open research

question to be further addressed in order to obtain a navigation

solution with a sufficient performance for autonomous vehi-

cles. To support our conclusions we present some test results

obtained using data collected in snowy Arctic environments.
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