
Toward Better Computation

Models for Modern Machines

Dissertation

zur Erlangung des Grades des

Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

vorgelegt von

Tomasz Jurkiewicz

Saarbrücken

2013



2

Tag des Kolloquiums:
30. Oktober 2013

Dekan der Naturwissenschaftlich-Technischen Fakultät I:
Univ.-Prof. Dr. Mark Groves

Saarland University, Saarbrücken, Germany

Prüfungsausschuss:
Prof. Dr. Dr. h.c. Wolfgang J. Paul (Vorsitzender des Prüfungsausschusses)

Saarland University, Saarbrücken, Germany
Prof. Dr. Dr. h.c. mult. Kurt Mehlhorn

Max Planck Institute for Informatics, Saarbrücken, Germany
Prof. Dr. Ulrich Meyer

Institute for Computer Science
Goethe University Frankfurt am Main, Germany

Dr. Martin Hoefer (Akademischer Beisitzer)
Max Planck Institute for Informatics, Saarbrücken, Germany

Berichterstatter:
Prof. Dr. Dr. h.c. mult. Kurt Mehlhorn

Max Planck Institute for Informatics, Saarbrücken, Germany
Prof. Dr. Ulrich Meyer

Institute for Computer Science
Goethe University Frankfurt am Main, Germany

Prof. Dr. Sandeep Sen
Department of Computer Science & Engineering
Indian Institute of Technology, Delhi, India



3

In theory there is no difference between theory and practice;

In practice there is.

Jan L. A. van de Snepscheut



4



5

Abstract

Modern computers are not random access machines (RAMs). They have a memory
hierarchy, multiple cores, and a virtual memory. We address the computational
cost of the address translation in the virtual memory and difficulties in design of
parallel algorithms on modern many-core machines.

Starting point for our work on virtual memory is the observation that the
analysis of some simple algorithms (random scan of an array, binary search,
heapsort) in either the RAM model or the EM model (external memory model)
does not correctly predict growth rates of actual running times. We propose
the VAT model (virtual address translation) to account for the cost of address
translations and analyze the algorithms mentioned above and others in the model.
The predictions agree with the measurements. We also analyze the VAT-cost of
cache-oblivious algorithms.

In the second part of the paper we present a case study of the design of
an efficient 2D convex hull algorithm for GPUs. The algorithm is based on the
ultimate planar convex hull algorithm of Kirkpatrick and Seidel, and it has been
referred to as the first successful implementation of the QuickHull algorithm on
the GPU by Gao et al. in their 2012 paper on the 3D convex hull. Our motivation
for work on modern many-core machines is the general belief of the engineering
community that the theory does not produce applicable results, and that the
theoretical researchers are not aware of the difficulties that arise while adapting
algorithms for practical use. We concentrate on showing how the high degree of
parallelism available on GPUs can be applied to problems that do not readily
decompose into many independent tasks.



6

Zusammenfassung

Moderne Computer sind keine Random Access Machines (RAMs), da ihr Speicher
hierarchisch ist und sie sowohl mehrere Rechenkerne als auch virtuellen Speicher
benutzen. Wir betrachten die Kosten von Adressübersetzungen in virtuellem
Speicher und die Schwierigkeiten beim Entwurf nebenläufiger Algorithmen für
moderne Mehrkernprozessoren.

Am Anfang unserer Arbeit über virtuellen Speicher steht die Beobachtung,
dass die Analyse einiger einfacher Algorithmen (zufällige Zugriffe in einem Array,
Binärsuche, Heapsort) sowohl im RAM Modell als auch im EM (Modell für
externen Speicher) die tatsächlichen asymptotischen Laufzeiten nicht korrekt
wiedergibt. Um auch die Kosten der Adressübersetzung mit in die Analyse aufzu-
nehmen, definieren wir das sogenannte VAT Modell (virtual address translation)
und benutzen es, um die oben genannten Algorithmen zu analysieren. In diesem
Modell stimmen die theoretischen Laufzeiten mit den Messungen aus der Praxis
überein. Zudem werden die Kosten von Cache-oblivious Algorithmen im VAT
Modell untersucht.

Der zweite Teil der Arbeit behandelt eine Fallstudie zur Implementierung
eines effizienten Algorithmus zur Berechnung von konvexen Hüllen in 2D auf
GPUs (Graphics Processing Units). Der Algorithmus basiert auf dem ultimate
planar convex hull algorithm von Kirkpatrick und Seidel und wurde 2012 von
Gao et al. in ihrer Veröffentlichung über konvexe Hüllen in 3D als die erste
erfolgreiche Implementierung des QuickHull-Algorithmus auf GPUs bezeichnet.

Motiviert wird diese Arbeit durch den generellen Glauben der IT-Welt, dass
Resultate aus der theoretischen Informatik nicht immer auf Probleme in der
Praxis anwendbar sind und dass oft nicht auf die speziellen Anforderungen und
Probleme eingegangen wird, die mit einer Implementierung eines Algorithmus
einhergehen.

Wir zeigen, wie der hohe Grad an Parallelität, der auf GPUs verfügbar ist, für
Probleme nutzbar gemacht werden kann, für die eine Zerlegung in unabhängige
Teilprobleme nicht offensichtlich ist.

Diese Arbeit ist in englischer Sprache verfasst.



7

Acknowledgments

First, I would like to thank Kurt Mehlhorn who not only supervised me, but
also let me make all the mistakes that needed to be made and then suggested
how to fix them. Second, I thank all of you who in one way or another inspired
me to pursue the subject of this thesis.

I am obliged to all the staff members of the Max Planck Institute for Infor-
matics for maintaining a homely atmosphere. I am especially grateful to Krista
Ames for proofreading the next couple dozen pages and making many, many
useful comments.

Special thanks go to all the board game geeks around and to the people who
take care of the trees growing inside the institute building.



8



9

Contents

1. Introduction 11

1.1. The Random Access Machine and the External Memory Machine 12

I Virtual Memory Translation 13

2. The Cost of Address Translation 15

2.1. Some Puzzling Experiments . . . . . . . . . . . . . . . . . . . . 16

2.2. Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3. VAT, The Virtual Address Translation Model . . . . . . . . . . 26

2.4. Analysis of Algorithms . . . . . . . . . . . . . . . . . . . . . . . 36

2.5. Cache-Oblivious Algorithms . . . . . . . . . . . . . . . . . . . . 41

2.6. Commentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

II Massive Multicore Parallel 49

3. Parallel Convex Hull 51

3.1. Sequential Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2. Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3. Marriage Before Conquest and Good Distribution . . . . . . . . 58

3.4. Algorithmic Details . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7. Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4. Parallel Sorting 79

4.1. Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2. Sorting by Sorting in Registers . . . . . . . . . . . . . . . . . . . 82



10

III Other Contributions 87

5. Minimum Cycle Bases 89

Bibliography 91



11

1
Introduction

The role of models of computation in algorithmics is to provide abstractions of
real machines for algorithm analysis. Models should be mathematically pleasing
and have a predictive value. Both aspects are essential. If the analysis has no
predictive value, it is merely a mathematical exercise. If a model is not clean and
simple, researchers will not use it. The standard models for algorithm analysis
are the RAM (random access machine) model [Shepherdson and Sturgis, 1963]
and the EM (external memory) model [Aggarwal and Vitter, 1988] shortly sum-
marized in section 1.1.

The RAM model is by far the most popular model. It is an abstraction of the
von Neumann architecture. A computer consists of a control and a processing
unit and an unbounded memory. Each memory cell can hold a word, and memory
access as well as logical and arithmetic operations on words take constant time.
The word length is either an explicit parameter or assumed to be logarithmic in
the size of the input. The model is very simple and has a predictive value.

Modern machines have virtual memory, multiple processor cores, an extensive
memory hierarchy involving several levels of cache memory, main memory, and
disks. The external memory model was introduced because the RAM model
does not account for the memory hierarchy, and hence, the RAM model has no
predictive value for computations involving disks.

In part I we introduce an extension to the RAM model that handles virtual
memory, the VAT model that is a tool for predicting asymptotic behavior of
programs with low locality. The research described mostly overlaps with the
content of [Jurkiewicz and Mehlhorn, 2013].

In part II we present a case study of adapting a sequential algorithm to
CUDA, which is a modern massive-parallel computing device. We show how



12 Introduction

CUDA differs from the classic parallel models, and put a groundwork for future
models that would accurately describe this type of machines. Fragments of the
writeup were available on the author’s webpage and were cited in the followup
work as [Jurkiewicz and Danilewski, 2010] and quoted in [Gao et al., 2012] as
the first successful implementation of the QuickHull algorithm on the GPU.
Current writeup is extended and updated.

In part III we mention author’s other contributions, that do not fit the subject
of this thesis.

1.1. The Random Access Machine and the Exter-

nal Memory Machine

A RAM machine consists of a central processing unit and a memory. The memory
consists of cells indexed by nonnegative integers. A cell can hold a bitstring.
The CPU has a finite number of registers, in particular an accumulator and an
address register. In any one step, a RAM can either perform an operation (simple
arithmetic or boolean operations) on its registers or access memory. In a memory
access, the content of the memory cell indexed by the content of the address
register is either loaded into the accumulator or written from the accumulator.
Two timing models are used: in the unit-cost RAM, each operation has cost one,
and the length of the bitstrings that can be stored in memory cells and registers
is bounded by the logarithm of the size of the input; in the logarithmic-cost
RAM, the cost of an operation is equal to the sum of the lengths (in bits) of the
operands, and the contents of memory cells and registers are unrestricted.

An EM machine is a RAM with two levels of memory. The levels are referred
to as cache and main memory or memory and disk, respectively. We use the
terms cache and main memory. The CPU can only operate on data in the cache.
Cache and main memory are each divided into blocks of B cells, and data is
transported between cache and main memory in blocks. The cache has size M
and hence consists of M/B blocks; the main memory is infinite in size. The
analysis of algorithms in the EM-model bounds the number of CPU-steps and
the number of block transfers. The time required for a block transfer is equal
to the time required by Θ(B) CPU-steps. The hidden constant factor is fairly
large, and therefore, the emphasis of the analysis is usually on the number of
block transfers.



13

Part I

Virtual Memory Translation





15

2
The Cost of Address Translation

This research started with a simple experiment. We timed six simple programs
for different input sizes, namely, permuting the elements of an array of size n,
random scan of an array of size n, n random binary searches in an array of
size n, heapsort of n elements, introsort1 of n elements, and sequential scan
of an array of size n. For some of the programs, e.g., sequential scan through
an array and quicksort, the measured running times agree very well with the
predictions of the models. However, the running time of random scan seems to
grow as O(n log n), and the running time of the binary searches seems to grow
as O

(

n log2 n
)

, a blatant violation of what the models predict. We give the
details of the experiments in Section 2.1.

Why do measured and predicted running times differ? Modern computers
have virtual memories. Each process has its own virtual address space {0, 1, 2, . . .}.
Whenever a process accesses memory, the virtual address has to be translated into
a physical address. The translation of virtual addresses into physical addresses
incurs cost. The translation process is usually implemented as a hardware-
supported walk in a prefix tree, see Section 2.2 for details. The tree is stored in
the memory hierarchy, and hence, the translation process may incur cache faults.
The number of cache faults depends on the locality of memory accesses: the less
local, the more cache faults.

We propose an extension of the EM model, the VAT (Virtual Address Trans-
lation) model, that accounts for the cost of address translation, see Section 2.3.
We show that we may assume that the translation process makes optimal use of
the cache memory by relating the cost of optimal use with the cost under the

1Introsort is the version of quicksort used in modern versions of the STL. For the purpose
of this paper, introsort is a synonym for quicksort.



16 The Cost of Address Translation

LRU strategy, see Section 2.3. We analyze a number of programs, including the
six mentioned above, in the VAT model and obtain good agreement with the
measured running times, see Section 2.4. We relate the cost of a cache-oblivious
algorithm in the EM model to the cost in the VAT model, see Section 2.5. In
particular, algorithms that do not need a tall-cache assumption incur no or little
overhead. We close with some suggestions for further research and consequences
for teaching, see Section 2.7.

Related Work: It is well-known in the architecture and systems commu-
nity that virtual memory and address translation comes at a cost. Many
textbooks on computer organization, e.g., [Hennessy and Patterson, 2007], dis-
cuss virtual memories. The papers by Drepper [Drepper, 2007, Drepper, 2008]
describe computer memories, including virtual translation, in great detail.
[Advanced Micro Devices, 2010] provides further implementation details.

The cost of address translation has received little attention from the al-
gorithms community. The survey paper by N. Rahman [Rahman, 2003] on
algorithms for hardware caches and TLB summarizes the work on the subject.
She discusses a number of theoretical models for memory. All models discussed
in [Rahman, 2003] treat address translation atomically, i.e., the translation from
virtual to physical addresses is a single operation. However, this is no longer
true. In 64-bit systems, the translation process is a tree walk. Our paper is
the first that proposes a theoretical model for address translation and analyze
algorithms in this model.

2.1. Some Puzzling Experiments

We used the following seven programs in our experiments. Let A be an array of
size n.

• permute: for j ∈ [n− 1..0] do: i := random(0..j); swap(A[i], A[j]);

• random scan: π := random permutation; for i from 0 to n − 1 do: S :=
S + A[π(i)];

• n binary searches for random positions in A; A is sorted for this experiment.

• heapify

• heapsort

• quicksort

• sequential scan



2.1. Some Puzzling Experiments 17

On a RAM, the first two, the last, and heapify are linear time O(n), and
the others are O(n log n). Figure 2.1 shows the measured running times for
these programs divided by their RAM complexity; we refer to this quantity as
normalized operation time. More details about our experimental methodology
are available in Subsection 2.1.2. If RAM complexity is a good predictor, the
normalized operation times should be approximately constant. We observe that
two of the linear time programs show linear behavior, namely, sequential access
and heapify, that one of the Θ(n log n) programs shows Θ(n log n) behavior,
namely, quicksort, and that for the other programs (heapsort, repeated binary
search, permute, random access), the actual running time grows faster than what
the RAM model predicts.

How much faster and why?

Figure 2.1 also answers the “how much faster” part of the question. Normalized
operation time seems to be a piecewise linear in the logarithm of the problem
size; observe that we are using a logarithmic scale for the abscissa in this figure.
For heapsort and repeated binary search, normalized operation time is almost
perfectly piecewise linear, for permute and random scan, the piecewise linear
should be taken with a grain of salt.2 The pieces correspond to the memory
hierarchy. The measurements suggest that the running times of permute and
random scan grow like Θ(n log n) and the running times of heapsort and repeated
binary search grow like Θ

(

n log2 n
)

.

2.1.1. Memory Hierarchy Does Not Explain It

We argue in this section that the memory hierarchy does not explain the experi-
mental findings by determining the cost of the random scan of an array of size n
in the EM model and relating it to the measured running time. Let si, i > 0
be the size of the i-th level Ci of the memory hierarchy; s−1 = 0. We assume
Ci ⊂ Ci+1 for all i. Let ℓ be such that sℓ < n 6 sℓ+1, i.e., the array fits into level
ℓ+1 but does not fit into level ℓ. For i 6 ℓ, a random address is in Ci but not in
Ci−1, with probability (si − si−1)/n. Let ci be the cost of accessing an address
that is in Ci but not in Ci−1. The expected total cost in the external memory
model is equal to

TEM(n) := n ·
(

n− sℓ
n

cℓ+1 +
∑

06i6ℓ

si − si−1

n
ci

)

= ncℓ+1 −
∑

06i6ℓ

si(ci+1 − ci).

This is a piecewise linear function whose slope is cℓ+1 for sℓ < n 6 sℓ+1. The
slopes are increasing but change only when a new level of the memory hierarchy

2We are still working on a satisfactory explanation for the bumpy shape of the graphs for
permute and random access.



18 The Cost of Address Translation

ru
n
n
in

g
ti

m
e/

R
A

M
co

m
p
le

x
it
y

0	  

20	  

40	  

60	  

80	  

100	  

120	  

140	  

160	  

9	   10	   11	   12	   13	   14	   15	   16	   17	   18	   19	   20	   21	   22	   23	   24	   25	   26	   27	   28	   29	   30	   31	  

permute	  

random	  access	  

binsearch	  

heapsort	  

heapify	  

introsort	  

sequen>al	  access	  

log(input size)

Figure 2.1. The abscissa shows the logarithm of the input size. The
ordinate shows the measured running time divided by the RAM-complexity
(normalized operation time). The normalized operation times of sequential
access, quicksort, and heapify are constant, the normalized operation times
of the other programs are not.

is used. Figure 2.2 shows the measured running time of random scan divided by
EM-complexity as a function of the logarithm of the problem size. Clearly, the
figure does not show the graph of a constant function.3

2.1.2. Methodology

Programs used for the preparation of Figure 2.1 were compiled by gcc in version
“Debian 4.4.5-8”, and run on Debian Linux in version 6.0.3, on a machine with
an Intel Xeon X5690 processor (3,46 GHz, 12MiB4 Smart Cache, 6,4 GT/s
QPI). The caption of Figure 2.2 lists further machine parameters. In each
case, we performed multiple repetitions and took the minimum measurement for
each considered size of the input data. We chose the minimum because we are
estimating the cost that must be incurred. We also experimented with average

3A function of the form (x log(x/a))/(bx− c) with a, b, c > 0 is convex. The plot may be
interpreted as the plot of a piecewise convex function.

4KiB and MiB are modern, non-ambiguous notations for 210∗2 and 210∗3 bytes, respectively.
For more details, refer to http://en.wikipedia.org/wiki/Binary_prefix.

http://en.wikipedia.org/wiki/Binary_prefix


2.1. Some Puzzling Experiments 19

ru
n
n
in

g
ti

m
e/

E
M

co
m

p
le

x
it
y

7	  

9	  

11	  

13	  

15	  

17	  

19	  

9	   10	   11	   12	   13	   14	   15	   16	   17	   18	   19	   20	   21	   22	   23	   24	   25	   26	   27	   28	   29	   30	   31	  

log(input size)

Figure 2.2. The running time of random scan divided by the EM-complexity.
We used the following parameters for the memory hierarchy: the sizes are
taken from the machine specification, and the access times were determined
experimentally.

Memory Size log(maximum Access Time
Level number of elements) in Picoseconds
L1 32kiB 12 4080
L2 256kiB 15 4575
L3 12MiB 20,58 9937

RAM 38746

or median; moreover, we performed the experiments on other machines and
operating systems and obtained consistent results in each case. We grew input
sizes by the factor of 1.4 to exclude the influence of memory associativity, and
we made sure that the largest problem size still fitted in the main memory to
eliminate swapping.

For each experiment, we computed its normalized operation time, which we
define as the measured execution time divided by the RAM complexity. This
way, we eliminate the known factors. The resulting function represents cost of a
single operation in relation to the problem size.

The canonical way of showing asymptotic equivalency of functions f and g
is to show that lim

x→∞

f(x)
g(x)

is bounded between two positive constants. In case of

higher polynomials, the fraction usually converges to a constant quickly enough
to be clearly visible even on very rough charts. Since we deal with logarithms,



20 The Cost of Address Translation

0,01	  

0,1	  

1	  

10	  

100	  

1000	  

10000	  

500	   5000	   50000	   500000	   5000000	   50000000	   500000000	  

log(x)^3/20	  

log(x)*(log(x)-‐12)	  

log(x)*(log(x)-‐21)	  

ceil(log(x))	  

log(x)	  

log(x)-‐12	  

log(x)-‐21	  

(log(x)-‐21)/log(x)	  

Figure 2.3. Functions of a logarithmic flavor related to our measurements.
log(x) in descriptions stands for max(log(x), 1) since running times could
never be negative. Functions in the legend are ordered according to values of
the functions for the greatest argument on the chart. In this ordering, the
top function is Θ

(

log3 x
)

, the next two are Θ
(

log2 x
)

, the following four
are Θ(log x ), and the last one is Θ(1 ). However, the shape of the functions
suggests a completely different classification. Moreover, the last function
shows that a Θ(1 ) function can be confused with a logarithm when it is
composed of translated logarithms.

constant additive factors tend to zero slowly enough that they significantly
influence the measurements. Therefore, even for the highest values on n possible
on our machine, data is too scarce to prove asymptotic tendencies. To illustrate
the issue, we present different functions of a logarithmic flavor in Figure 2.3.

Since we cannot reliably read asymptotic tendencies of measurements, we
instead concentrate on the shape of the graphs on a logarithmic scale for the
functions’ domains. Let ℓ := log x, with this approach, functions of form
x 7→ a logk(bx) + c are drawn in the form of ℓ 7→ aℓk + c′. In particular,
a log(bn) + c becomes a linear function that is easy to identify. Linear plots are
apparent on the chart in Figure 2.1. Our educated guess is that the slowdown is
caused by the Virtual Memory Translation. Let us explain this mechanism and
then argue that it indeed is the cause of our observation.



2.2. Virtual Memory 21

2.2. Virtual Memory

Virtual addressing was motivated by multi-processing. When several processes
are executed concurrently on the same machine, it is convenient and more secure
to give each program a linear address space indexed by the nonnegative integers.
However, theses addresses are now virtual and no longer directly correspond to
physical (real) addresses. Rather, it is the task of the operating system to map
the virtual addresses of all processes to a single physical memory. The mapping
process is hardware supported.

The memory is viewed as a collection of pages of P = 2p cells. Both
virtual and real addresses consist of an index and an offset. The index se-
lects a page and the offset selects a cell in a page. The index is broken
into d segments of length k = logK. For example, for one of the most com-
monly used 64 bit addressing modes on processors of the AMD64 family (see
http://en.wikipedia.org/wiki/X86-64) the numbers are: d = 4, k = 9, and p = 12;
the remaining 16 bits are used for other purposes. Logically, the translation
process is a walk in a tree with outdegree K; this tree is usually called the page
table [Drepper, 2008, Hennessy and Patterson, 2007]. The walk starts at the
root; the first segment of the index determines the child of the root, the second
segment of the index determines the child of the child, and so on. The leaves of
the tree store indices of physical pages. The offset then determines the cell in
the physical address, i.e., offsets are not translated but taken verbatim. Here
quoting [Advanced Micro Devices, 2010]:

“Virtual addresses are translated to physical addresses through hier-
archical translation tables created and managed by system software.
Each table contains a set of entries that point to the next-lower
table in the translation hierarchy. A single table at one level of the
hierarchy can have hundreds of entries, each of which points to a
unique table at the next-lower hierarchical level. Each lower-level
table can in turn have hundreds of entries pointing to tables further
down the hierarchy. The lowest-level table in the hierarchy points to
the translated physical page.

Figure 2.4 on page 22 shows an overview of the page-translation
hierarchy used in long mode. Legacy mode paging uses a subset of
this translation hierarchy. As this figure shows, a virtual address is
divided into fields, each of which is used as an offset into a translation
table. The complete translation chain is made up of all table entries
referenced by the virtual-address fields. The lowest-order virtual-
address bits are used as the byte offset into the physical page.”

Due to its size, the page table is stored in the RAM, but nodes accessed
during the page table walk have to be brought to faster memory. A small



22 The Cost of Address Translation

513-200.eps

PML4E PDE

Physical
Address

PDPE

PTE

Physical Page
Offset

Sign
Extension

63 0

Page Directory
Offset

Page Map
Level-4 Offset

Page Directory
Pointer Offset

Page Table
Offset

Page Map Base Register CR3

64-Bit Virtual Address

Page Directory Pointer
Table

Page Directory
Table

Physical Page
Frame

Page
Table

Page Map
Level 4
Table

Figure 2.4. Virtual to Physical Address Translation in AMD64, figure from
[Advanced Micro Devices, 2010]. Note that levels of the prefix tree have
distinct historical names, as this system was originally not designed to have
multiple levels (Page Map Level 4 Table; Page Directory Pointer Table; Page
Directory Table; and Page Table).

number of recent translations is stored in the translation-lookaside-buffer (TLB).
The TLB is a small associative memory that contains physical indices indexed
by the virtual ones. This is akin to the first level cache for data. Quoting
[Advanced Micro Devices, 2010] further:



2.2. Virtual Memory 23

“Every memory access has its virtual address automati-
cally translated into a physical address using the page-
translation hierarchy. Translation-lookaside buffers (TLBs),
also known as page-translation caches, nearly eliminate
the performance penalty associated with page translation.
TLBs are special on-chip caches that hold the most-recently used
virtual-to-physical address translations. Each memory reference
(instruction and data) is checked by the TLB. If the translation is
present in the TLB, it is immediately provided to the processor, thus
avoiding external memory references for accessing page tables.

TLBs take advantage of the principle of locality. That is, if a memory
address is referenced, it is likely that nearby memory addresses will
be referenced in the near future.”

2.2.1. Virtual Address Translation Does Explain It

The most sensible way to find out how the Virtual Address Translation affects
the running time of programs would be to switch it off and compare the results.
Unfortunately, no modern operating system provides such an option. The second
best thing to do is to increase the page size (ultimately to a single page for
the whole program) in order to decrease the number of translations and cost
of each of them. This is what we did. However, while hardware architectures
already support pages sized in gigabytes, operating systems do not. Quoting
[Hennessy and Patterson, 2007]:

“Relying on the operating systems to change the page size over time.

The Alpha architects had an elaborate plan to grow the architecture
over time by growing its page size, even building it into the size of
its virtual address. When it came time to grow page sizes with later
Alphas, the operating system designers balked and the virtual memory
system was revised to grow the address space while maintaining the
8 KB page.

Architects of other computers noticed very high TLB miss rates,
and so added multiple, larger page sizes to the TLB. The hope was
that operating systems programmers would allocate an object to the
largest page that made sense, thereby preserving TLB entries. After
a decade of trying, most operating systems use these “superpages”
only for handpicked functions: mapping the display memory or other
I/O devices, or using very large pages for the database code.”

We certainly believe that operating systems will at some point be able to use
big pages more frequently. However, using greater pages leads to problems. The



24 The Cost of Address Translation

main concern is conserving space. Pages must be correctly aligned in memory, so
bigger pages lead to a greater waste of memory and limited flexibility while paging
to disk. Another problem is that since most processes are small, using bigger
pages would lengthen their initialization time. Therefore, current operating
systems kernels provide only basic, nontransparent support for bigger pages.
The hugetlbpage feature of current Linux kernels allowed us to use pages of
moderate size of 2MiB on AMD64 machines. The following links together serve
as a relatively correct and complete guide that we have used to take advantage
of this feature.

• http://linuxgazette.net/155/krishnakumar.html

• https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

• https://www.kernel.org/doc/Documentation/vm/hugepage-shm.c

• http://man7.org/linux/man-pages/man2/shmget.2.html

What this feature does is attach a final real address one level higher in the
memory table. This slightly decreases cache usage, decreases the number of
nodes needed in each single translation but one, and finally, increases the range
of addresses covered by the related entry in the TLB by 512.

We rerun the permute, introsort and binsearch on a special machine, with
and without use of the big pages. Figure 2.5 clearly shows that use of bigger
pages can introduce a speedup. In other words, virtual address translation
introduces a significant slowdown that can be partially reduced by use of the
bigger pages. While for some applications this can be the only solution, for
others, there are algorithmic solutions independent of the system configuration
capabilities. However, one needs to be careful while constructing a model that
efficiently aids with work on such algorithms. Current computers are highly
sophisticated machines with many features. Each single feature requires a lot of
attention to be modeled properly. We will concentrate on the virtual address
translation — a feature that we believe leads to the greatest analysis discrepancies
for sequential algorithms. While memory translation is not the only cost factor of
a memory access, to our best knowledge, other processes are either asymptotically
insignificant, or strongly correlated to the memory translation. However, there
is no reason to believe that other significant cost factors will not appear in the
future.

The Model Design

First and foremost, while there is a visible slowdown after L2 cache becomes
too small for our data, the translation cost becomes significant only when the
amount of memory in use is large enough to exceed L3 cache. Hence, we will
consider only one level of memory cache. Please note that modern machines do

http://linuxgazette.net/155/krishnakumar.html
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugepage-shm.c
http://man7.org/linux/man-pages/man2/shmget.2.html


2.2. Virtual Memory 25

2M
iB

p
ag

es
ti

m
e/

4k
iB

p
ag

es
ti

m
e

0,00%	  

20,00%	  

40,00%	  

60,00%	  

80,00%	  

100,00%	  

120,00%	  

10	   12	   14	   16	   18	   20	   22	   24	   26	   28	   30	  

	  permute	  

	  introsort	  

	  binsearch	  

log(input size)

Figure 2.5. The abscissa shows the logarithm of the input size. The ordinate
shows the measured running time with use of the 2MiB pages as a percentage
of the running time with 4kiB pages.

not have a separate cache for the memory table (although it has been considered).
Moreover, every translation is followed by a memory access, hence, one can see
the RAM memory as just one additional level of the translation tree (even though
the branching factor differs on the lowest level). Therefore, there is no need for
a separate count of the traditional cache misses. Similarly, real machines use
TLB to avoid the tree walk in the memory table altogether. For simplicity, we
will only use one type of cache.

Finally, we design the model as an independent extension to the RAM model.
This way, it can be coupled with other (for instance parallel) models as well,
with little or no modification. The model in the current form applies to various
computer architectures (even though it was developed in the context of x64
machines), too precise modeling would remove this advantage. In addition,
modern computers also use other types of symbolic addresses that up to a level
resemble page tables. Internet domain addresses are translated to IP addresses
by DNS servers, and then to MAC addresses by routers. File paths are translated
to cylinders, heads, and sectors on the disk using B-trees. While all those



26 The Cost of Address Translation

mechanisms differ significantly, we believe our research on virtual addressing in
RAM might be of interest in these related fields as well.

2.3. VAT, The Virtual Address Translation Model

VAT machines are RAM machines that use virtual addresses. Virtual addresses
were motivated by multiprocessing. If several programs are executed concurrently
on the same machine, it is convenient and more secure to give each program
a linear address space indexed by the nonnegative integers. However, now the
addresses are virtual. They no longer correspond directly to addresses in the
physical memory. Rather, the virtual memories of all running programs must be
simulated with one physical memory.

We concentrate on the virtual memory of a single program. Both real
(physical) and virtual addresses are strings in {0, . . . , K − 1}d {0, . . . , P − 1}.
The {0, . . . , K − 1}d part of the address is called an index, and its length d
is an execution parameter fixed a priori to the execution. It is assumed that
d = ⌈logK(last used address/P )⌉. The {0, . . . , P − 1} part of the address is
called page offset and P is the page size. The translation process is a tree walk.
We have a K-nary tree T of height d. The nodes of the tree are pairs (ℓ, i) with
ℓ > 0 and i > 0. We refer to ℓ as the layer of the node and to i as the number of
the node. The leaves of the tree are on layer zero and a node (ℓ, i) on layer ℓ > 1
has K children on layer ℓ−1, namely the nodes (ℓ−1, Ki+a), for a = 0 . . . K−1.
In particular, node (d, 0), the root, has children (d−1, 0), . . . , (d−1, K−1). The
leaves of the tree store page numbers of the main memory of a RAM machine. In
order to translate virtual address xd−1 . . . x0y, we start in the root of T , and then
follow the path described by xd−1 . . . x0. We refer to this path as the translation
path for the address. The path ends in the leaf (0,

∑

06i6d−1 xiK
i). Let z be the

page index stored in this leaf. Then zP + y is the memory cell denoted by the
virtual address. Observe that y is part of the real address.

The translation process uses a translation cache TC that can store W nodes
of the translation tree.5 The TC is changed by insertions and evictions. Let a
be a virtual address, and let vd, vd−1, . . . , v0 be its translation path. Translating
a requires accessing all nodes of the translation path in order. Only nodes in the
TC can be accessed. The translation of a ends when v0 is accessed. The next
translation starts with the next operation on the TC.

The length of the translation is the number of insertions performed during
the translation, and the cost of the translation is τ times the length. The length
is at least the number of nodes of the translation path that are not present in
the TC at the beginning of the translation.

5In real machines, there is no separate translation cache. Rather, the same cache is used
for data and for the translation tree.



2.3. VAT, The Virtual Address Translation Model 27

2.3.1. TC Replacement Strategies

Since the TC is a special case of a cache in a classic EM machine, the following
classic result applies.

Lemma 2.1 ([Sleator and Tarjan, 1985, Frigo et al., 2012]). An optimal
replacement strategy is at most by factor 2 better than LRU6 on a cache of
double size, assuming both caches start empty.

This result is useful for upper bounds and lower bounds. LRU is easy to
implement. In upper bound arguments, we may use any replacement strategy
and then appeal to the Lemma. In lower bound arguments, we may assume the
use of LRU. For TC caches, it is natural to assume the initial segment property.

Definition 2.2. An initial segment of a rooted tree is an empty tree or a con-
nected subgraph of the tree containing the root. A TC has the initial segment
property (ISP) if the TC contains an initial segment of the translation tree.
A TC replacement strategy has ISP if under this strategy a TC has ISP at all
times.

Proposition 2.3. Strategies with ISP exist only for TCs with W > d.

ISP is important because, as we show later, ISP can be realized at no
additional cost for LRU and at little additional cost for the optimal replacement
strategy. Therefore, strategies with ISP can significantly simplify proofs for
upper and lower bounds. Moreover, strategies with ISP are easier to implement.
Any implementation of a caching system requires some way to search the cache.
This requires an indexing mechanism. RAM memory is indexed by the memory
translation tree. In the case of the TC itself, ISP allows to integrate the indexing
structure into the cached content. One only has to store the root of the tree at a
fixed position.

2.3.2. Eager Strategies and the Initial Segment Property

Before we prove an ISP analogue of Lemma 2.1, we need to better understand
the behavior of replacement strategies with ISP. For classic caches, premature
evictions and insertions do not improve efficiency. We will show that the same
holds true for TCs with ISP. This will be useful because we will use early evictions
and insertions in some of our arguments.

Definition 2.4. A replacement strategy is lazy if it performs an insertion of
a missing node, only if the node is accessed directly after this insertion, and
performs an eviction only before an insertion for which there would be no free cell

6LRU is a strategy that always evicts the Least Recently Used node.



28 The Cost of Address Translation

otherwise. In the opposite case the strategy is eager. Unless stated otherwise,
we assume that a strategy being discussed is lazy.

Eager strategies can perform replacements before they are needed and can
even insert nodes that are not needed at all. Also, they can insert and re-evict, or
evict and re-insert nodes during a single translation. We eliminate this behavior
translation by translation as follows. Consider a fixed translation and define the
sets of effective evictions and insertions as follows.

EE = {evict(a) : there are more evict(a) than insert(a) in the translation.}
EI = {insert(a) : there are more insert(a) than evict(a) in the translation.}

Please note that in this case “there are more” means “there is one more” as there
cannot be two evict(a) without an insert(a) between them, or two insert(a)
without evict(a).

Proposition 2.5. The effective evictions and insertions modify the content of
the TC in the same way as the original evictions and insertions.

Proposition 2.6. During a single translation while a strategy with ISP is in use:

1. No node from the current translation path is effectively evicted, and all the
nodes missing from the current translation path are effectively inserted.

2. If a node is effectively inserted, no ancestor or descendant of it is effectively
evicted. Subject to obeying the size restriction of the TC, we may therefore
reorder effective insertions and effective evictions with respect to each other
(but not changing the order of the insertions and not changing the order
of the evictions).

Lemma 2.7. Any eager replacement strategy with ISP can be transformed into
a lazy replacement strategy with ISP with no efficiency loss.

Proof. We modify the original evict/insert/access sequence translation by trans-
lation. Consider the current translation and let EI and EE be the set of effective
insertions and evictions. We insert the missing nodes from the current translation
path exactly at the moment they are needed. Whenever this implies an insertion
into a full cache, we perform one of the lowest effective evictions, where lowest
means that no children of the node are in the TC. There must be such an effective
eviction because, otherwise, the original sequence would overfull the cache as
well. When all nodes of the current translation path are accessed, we schedule
all remaining effective evictions and insertions at the beginning of the next
translation; first the evictions in descendant-first order and then the insertions
in ancestor-first order. The modified sequence is operationally equivalent to
the original one, performs no more insertions, and does not exceed cache size.
Moreover, the current translation is now lazy.



2.3. VAT, The Virtual Address Translation Model 29

2.3.3. ISLRU, or LRU with the Initial Segment Property

Even without ISP, LRU has the property below.

Lemma 2.8. When the LRU policy is in use, the number of TC misses in a
translation is equal to the layer number of the highest missing node on the
translation path.

Proof. The content of the LRU cache is easy to describe. Concatenate all
translation paths and delete all occurrences of each node except the last. The
last W nodes of the resulting sequence form the TC. Observe that an occurrence
of a node is only deleted if the node is part of a latter translation path. This
implies that the TC contains at most two incomplete translation paths, namely,
the least recent path that still has nodes in the TC and the current path. The
former path is evicted top-down and the latter path is inserted top-down. The
claim now easily follows. Let v be the highest missing node on the current
translation path. If no descendant of v is contained in the TC, the claim is
obvious. Otherwise, the topmost descendant present in the TC is the first node
on the part of the least recent path that is still in the TC. Thus, as the current
translation path is loaded into the TC, the least recent path is evicted top-down.
Consequently, the gap is never reduced.

The proof above also shows that whenever LRU detaches nodes from the
initial segment, the detached nodes will never be used again. This suggests a
simple (implementable) way of introducing ISP to LRU. If LRU evicts a node that
still has descendants in the TC, it also evicts the descendants. The descendants
actually form a single path. Next, we use Lemma 2.7 to make this algorithm
lazy again. It is easy to see that the resulting algorithm is the ISLRU, as defined
next.

Definition 2.9. ISLRU (Initial Segment preserving LRU) is the replacement
strategy that always evicts the lowest descendant of the least recently used node.

Due to the construction and Lemma 2.7, we have the following.

Proposition 2.10. ISLRU for TCs with W > d is at least as good as LRU.

Remark 2.11. In fact, the proposition holds also for W 6 d, even though ISLRU
no longer has ISP in this case.

2.3.4. ISMIN: The Optimal Strategy with the Initial Seg-

ment Property

Definition 2.12. ISMIN (Initial Segment property preserving MIN) is the
replacement strategy for TCs with ISP that always evicts from a TC the node
that is not used for the longest time into the future among the nodes that are



30 The Cost of Address Translation

not on the current translation path and have no descendants. Nodes that will
never be used again are evicted before the others in arbitrary descendant–first
order.

Theorem 2.13. ISMIN is an optimal replacement strategy among those with
ISP.

Proof. Let R be any replacement strategy with ISP, and let t be the first point
in time when it departs from ISMIN. We will construct R′ with ISP that does
not depart from ISMIN, including time t, and has no more TC misses than R.
Let v be the node evicted by ISMIN at time t.

We first assume that R evicts v at some later time t′ without accessing it
in the interval (t, t′]. Then R′ simply evicts v at time t and shifts the other
evictions in the interval [t, t′) to one later replacement. Postponing evictions to
the next replacement does not cause additional insertions and does not break
connectivity. It may destroy laziness by moving an eviction of a node directly
before its insertion. In this case, R′ skips both. Since no descendant of v is in
the TC at time t, and v will not be used for the longest time into the future,
none of its children will be added by R before time t′; therefore, the change does
not break the connectivity.

We come to the case that R stores v until it is accessed for the next time,
say at time t′. Let a be the node evicted by R at time t. R′ evicts v instead of a
and remembers a as being special. We guarantee that the content of the TCs
in the strategies R and R′ differs only by v and the current special node until
time t′ and is identical afterwords. To reach this goal, R′ replicates the behavior
of R except for three situations.

1. If R evicts the parent of the special node, R′ evicts the special node to
preserve ISP and from then on remembers the parent as being special. As
long as only Rule 1 is applied, the special node is an ancestor of a.

2. If R replaces some node b with the current special node, R′ skips the
replacement and from then on remembers b as the special node. Since a
will be accessed before v, Rule 2 is guaranteed to be applied, and hence,
R′ is guaranteed to save at least one replacement.

3. At time t′, R′ replaces the special node with v, performing one extra
replacement.

We have shown how to turn an arbitrary replacement strategy with ISP into
ISMIN without efficiency loss. This proves the optimality of ISMIN.

We can now state an ISP-aware extension of Lemma 2.1.

Theorem 2.14.

MIN(W ) 6 ISMIN(W ) 6 ISLRU(W ) 6 LRU(W ) 6 2MIN(W/2),



2.3. VAT, The Virtual Address Translation Model 31

where MIN is an optimal replacement strategy and A(s) denotes a number of
insertions performed by replacement strategy A to an initially empty TC of size
s > d for an arbitrary but fixed sequence of translations.

Proof. MIN is an optimal replacement strategy, so it is better than ISMIN.
ISMIN is an optimal replacement strategy among those with ISP, so it is better
than ISLRU. ISLRU is better than LRU by Proposition 2.10. LRU(W ) <
2MIN(W/2) holds by Lemma 2.1.

2.3.5. Improved Relationships

Theorem 2.14 implies LRU(W ) 6 2ISLRU(W/2) and ISMIN(W ) 6 2MIN(W/2).
In this section, we sharpen both inequalities.

Lemma 2.15. LRU(W + d) 6 ISLRU(W ).

Proof. d nodes are sufficient for LRU to store one extra path, hence, from the
construction, LRU on a larger cache always stores a superset of nodes stored by
ISLRU. Therefore, it causes no more TC misses because it is lazy.

Theorem 2.16. ISMIN(W + d) 6 MIN(W ).

In order to reach our goal, we will prove the following lemmas by modifying
an optimal replacement strategy into intermediate strategies with no additional
replacements.

Lemma 2.17. There is an eager replacement strategy on a TC of size W + 1
that, except for a single special cell, has ISP and causes no more TC misses than
an optimal replacement strategy on a TC of size W with no restrictions.

Lemma 2.18. There is a replacement strategy with ISP on a TC of size W + d,
that causes no more TC misses than a general optimal replacement strategy on
a TC of size W .

Since ISMIN is an optimal strategy with ISP, Theorem 2.16 follows from
Lemma 2.18.

In the remainder of this section, some lemmas and theorems require the
assumption W > d, and some do not. However, even for the latter theorems, we
sometimes only give the proof for the case W > d.

2.3.6. Belady’s MIN Algorithm

Recall that Belady’s algorithm MIN, also called the clairvoyant algorithm, is an
optimal replacement policy. The algorithm always replaces the node that will
not be accessed for the longest time into the future. An elegant optimality proof



32 The Cost of Address Translation

for this approach is provided in [Michaud, 2007]. MIN does not differentiate
between nodes that will not be used again. Therefore, without loss of generality,
let us from now on consider the descendant–first version of MIN. For any point
in time, let us call all the nodes that are still to be accessed in the current
translation the required nodes. The required nodes are exactly those nodes
on the current translation path that are descendants of the last accessed node
(or the whole path if the translation is only about to begin).

Lemma 2.19. 1. Let w be in the TC. As long as w has a descendant v in
the TC that is not a required node, MIN will not evict w.

2. If W > d, MIN never evicts the root.

3. If W > d, MIN never evicts a required node.

Proof. Ad. 1. If v will be accessed ever again, then w will be used earlier (in
the same translation), and so, MIN evicts v before w. If v will never be accessed
again, then MIN evicts it before w because it is the descendants–first version.
Ad. 2. Either the TC stores the whole current translation path, and no eviction
occurs, or there is a cell in the TC that contains a node off the current translation
path; hence, the root is not evicted as it has a non-required descendant in the
TC. Ad. 3. Either the TC stores the whole current translation path, or there is
a cell c in the TC with content that will not be used before any required node;
hence, no required node is the node that will not be needed for the longest time
into the future.

Corollary 2.20. If W > d, MIN inserts root into the TC as a first thing during
the first translation, and never evicts it.

Lemma 2.21. If W > d, MIN evicts only (non-required) nodes with no stored
descendants or the node that was just used.

Proof. If MIN evicts a node on the current translation path, it cannot be a
descendant of the just translated node (Lemma 2.19, claim 3), it also cannot be
an ancestor of the just translated node (Lemma 2.19, claim 1). Hence, only the
just translated node is admissible. If the algorithm evicts a node off the current
translation path, it must have no descendants (Lemma 2.19, claim 1).

Lemma 2.22. If MIN has evicted the node that was just accessed, it will continue
to do so for all the following evictions in the current translation. We will refer
to this as round robin approach.

Proof. If MIN has evicted a node w that was just accessed, it means that all the
other nodes stored in the TC will be reused before the evicted node. Moreover,
all subsequent nodes traversed after w in the current translation will be reused
even later than w if at all. In case of W > d, the claim holds by Lemma 2.21.



2.3. VAT, The Virtual Address Translation Model 33

Corollary 2.23. During a single translation, MIN proceeds in the following way:

1. It starts with the regular phase when it inserts missing nodes of a
connected path from the root up to some node w, as long as it can evict
nodes that will not be reused before just used ones.

2. It switches to the round robin phase for the remaining part of the path.

It is easy to see that for W > d, in the path that was traversed in the
round robin fashion, informally speaking, all gaps move up by one. For each gap
between stored nodes, the very TC cell that was used to store the node above
the gap now stores the last node of the gap. Storage of other nodes does not
change. This way, the number of nodes from this path stored in the TC does
not change either. However, it reduces numbers of stored nodes on side paths
attached to the path.

2.3.7. Proof of Lemma 2.17

We introduce a replacement strategy RRMIN7. We add a special cell rr to the
TC, and we refer to the remaining W cells as regular TC. We will show that
the cell rr allows us to preserve ISP in the regular TC with no additional TC
misses. We start with an empty TC, and we run MIN on a separate TC of size
W on a side and observe its decisions.

We keep track of a partial bijection8 ϕt on the nodes of the translation
tree. We put one timestamp t on every TC access and one more between every
two accesses in the regular phase of MIN. We position evictions and insertions
between the timestamps, at most one of each between two consecutive accesses.
At time t, ϕt maps every node stored by MIN in its TC to a node stored by
RRMIN in its regular TC. Function ϕt always maps nodes to (not necessarily
proper) ancestors in the memory translation tree. We denote this as ϕt(a) ⊑ a,
and in case of proper ancestors as ϕt(a) ❁ a. We say that a is a witness for
ϕt(a).

Proposition 2.24. Since the partial bijection ϕt always maps nodes to ancestors,
for every path of the translation tree, RRMIN always stores at least as many
nodes as MIN.

In order to prove the Lemma 2.17, we need to show how to preserve the
properties of the bijection ϕt and ISP. In accordance with Corollary 2.23, MIN
inserts a number of highest missing nodes in the regular phase and uses the
round robin approach on the remaining ones.

7Round Robin MIN
8A partial bijection on a set is a bijection between two subsets of the set.



34 The Cost of Address Translation

Let us first consider the case when MIN has only the regular phase and inserts
the complete path. In this case, we substitute evictions and insertions of MIN
with these described below.

Let MIN evict a node a. If ϕt(a) has no descendants, RRMIN evicts it. In
the other case, we find ϕt(b) a descendant of ϕt(a) with no descendants on
his own. RRMIN evicts ϕt(b), and we set ϕt+1 (b) := ϕt(a). Clearly, we have
preserved the properties of ϕt+1

9, and ISP holds.

Now let MIN insert a new node e. At this point, we know that both RRMIN
and MIN store all ancestors of e. If RRMIN has not yet stored e, RRMIN
inserts it, and we set ϕt+1 (e) := e. If e is already stored, it means it has
a witness ϕ−1

t (e) that is a proper descendant of e. We a find a sequence
e ❂ ϕ−1

t (e) ❂ ϕ−2
t (e) ❂ . . . ❂ ϕ−k

t (e) = g that ends with g RRMIN has not
stored yet. Such g exists because ϕ−1

t is an injection on a finite set and is
undefined for e. We set ϕt+1 (h) := h for all elements of the sequence except g.
RRMIN inserts the highest not stored ancestor f of g, and we set ϕt+1 (g) := f .
Note that the inserted node f might not be a required node. Properties of ϕt

are preserved, and RRMIN did not disconnect the tree it stores. Also, RRMIN
performed the same number of evictions and insertions as MIN. Note as well
that for all nodes on the translation path, ϕt is identity. Finally, Proposition 2.24
guarantees that all accesses are safe to perform at the time they were scheduled.

Now let us consider the case when MIN has both regular and round robin
phase. Assume that the regular phase ends with the visit of node v. At this point,
MIN stores the (nonempty for W > d due to Corollary 2.20) initial segment pv
of the current path ending in v; it does not contain v’s child on the current path,
and it contains some number (maybe zero) of required nodes. Starting with v’s
child, MIN uses the round robin strategy. Whenever it has to insert a required
node, it evicts its parent. Let ℓr and ℓrr be the number of evictions in the regular
and round robin phase, respectively.

RRMIN also proceeds in two phases. In the first phase, RRMIN simulates
the regular phase as described above. RRMIN also performs ℓr evictions in the
first phase and ϕt is the identity on pv at the end of the first phase; this holds
because ϕt maps nodes to ancestors and since MIN contains pv in its entirety
at the end of the regular phase. Let d′ be the number of nodes on the current
path below v; MIN stores d′ − ℓrr of them at the beginning of the round robin
phase, which it does not have to insert, and it does not store ℓrr of them, which
it has to insert. Since ϕt is the identity on pv after phase 1 of the simulation and
maps the d′ − ℓrr required nodes stored by MIN to ancestors, RRMIN stores at
least the next d′ − ℓrr required nodes below v in the beginning of phase 2 of the
simulation. In the round robin phase, RRMIN inserts the required nodes missing
from the regular TC one after the other into rr, disregarding what MIN does.
Whenever MIN replaces a node a with its child g, in case of W > d we fix ϕt by

9ϕt+1 is equal to ϕt on all arguments not explicitly specified.



2.3. VAT, The Virtual Address Translation Model 35

setting ϕt+1 (g) := ϕt(a). By Proposition 2.24, RRMIN does no more evictions
than MIN. Therefore, as it also preserves ISP in the regular TC, Lemma 2.17
holds.

2.3.8. Proof of Lemma 2.18

In order to prove the lemma, we will show how to use additional d regular cells
in the TC to provide functionality of the special cell rr while preserving ISP in
the whole TC. We run the RRMIN algorithm aside on a separate TC of size
W + 1, and we introduce another replacement strategy, which we call LIS10, on
a TC of size W + d. LIS starts with an empty TC where d cells are marked. LIS
preserves the following invariants.

1. The set of nodes stored in the unmarked cells by LIS is equal to the set of
nodes stored in the regular TC by RRMIN.

2. The set of nodes stored in the marked cells by LIS contains the node stored
in the cell rr by RRMIN.

3. Exactly d cells are marked.

4. LIS has ISP.

5. No node is stored twice (once marked, once unmarked).

Whenever RRMIN can replicate evictions/insertions of LIS without violating
the invariants, it does. Otherwise, we consider the following cases.

1. Let RRMIN in the regular phase evict a node a that has marked descendants
in LIS. Then, LIS marks the cell containing a and unmarks and evicts one
of the marked nodes with no descendants that does not store the node
stored in rr. Such a node exists because the only other case is that the
marked cells contain all nodes of some path excluding the root, and the
leaf is stored in rr. Therefore, a is the root, but the root is never evicted
due to ISP.

2. In the regular phase, RRMIN inserts a node c to an empty cell while LIS
already stores c in a marked cell. In this case, LIS unmarks the cell with c
and marks the empty cell.

3. In the round robin phase, RRMIN replaces the content of the cell rr,
LIS (if needed) replaces the content of an arbitrary marked node with no
descendants that is not on the current translation path. Since the root is
always in the TC and there are d marked cells, such a cell always exists.
ISP is preserved, as the parent of this node is already in the TC.

10Lazy strategy preserving the Initial Segments property



36 The Cost of Address Translation

At this stage, if we drop notions of ϕt and marked nodes, LIS becomes an eager
replacement strategy on a standard TC. Therefore, we can use Lemma 2.7 to
make it lazy. This concludes the proof of Lemma 2.18.

Remark 2.25. We believe that the requirement for d is essentially optimal.
Consider the scenario when we access subsequent cells uniformly at random.
Informally speaking, MIN will tend to permanently store first logK(W ) levels of
the translation tree because they are frequently used and will use a single cell
to traverse the lower levels. In order to preserve ISP, we need d− logK(W ) + 1
additional cells for storing the current path. Not uniform random patterns should
lead to even higher requirements. This does not seem to give much more room
for improvement.

Conjecture 2.26. The strategy of storing higher nodes (Lemma 2.17) and using
extra d cells to not evict nodes from the current translation path (Lemma 2.18)
can be used to add ISP to any replacement strategy without efficiency loss.

2.4. Analysis of Algorithms

In this section, we analyze the translation cost of some algorithms as a function of
the problem size n and memory requirement m. For all the algorithms analyzed,
m = Θ(n).

In the RAM model, there is a crucial assumption that usually goes unspoken,
namely, the size of a machine word is logarithmic in number of memory cells used.
If the words were shorter, one could not address the memory. If the words were
longer, one could intelligently pack multiple values in one cell. This technique
can be used to solve NPC problems in polynomial time. This effectively puts
an upper bound on n, namely, n < 2word length, while asymptotic notations make
sense only when n can grow to infinity. However, this is not a bound on the RAM
model, it merely shows that to handle bigger inputs, one needs more powerful
machines.

In the VAT model there is also a set of assumptions on the model constants.
The assumptions bound n by machine parameters it in the same sense as in
the RAM model. However, unlike in the RAM model, they can hardly go
unspoken. We call them the asymptotic order relations between parameters.
The assumptions we found necessary for the analysis to be meaningful are as
follows:

1. 1 6 τd 6 P ; moving a single translation path to the TC costs more than
a single instruction, but not more than size-of-a-page instructions, i.e., if
at least one instruction is performed for each cell in a page, the cost of
translating the index of the page can be amortized.



2.4. Analysis of Algorithms 37

2. K > 2, i.e., the fanout of the translation tree is at least two.

3. m/P 6 Kd 6 2m/P , i.e., the translation tree suffices to translate all
addresses but is not much larger. As a consequence, log(m/P ) 6 d logK =
dk 6 1 + log(m/P ), and hence, logK(m/P ) 6 d 6 1/k(1 + log(m/P )).

4. d 6 W < mθ, for θ ∈ (0, 1), i.e., the translation cache can hold at least
one translation path, but is at least significantly smaller than the main
memory.

Sequential Access: We scan an array of size n, i.e., we need to translate
addresses b, b+ 1, . . . , b+ n− 1 in this order, where b is the base address of the
array. The translation path stays constant for P consecutive accesses, and hence,
at most 2n/P indices must be translated for a total cost of at most τd(2 + n/P ).
By assumption (1), this is at most τd(n/P + 2) 6 n+ 2P .

The analysis can be sharpened significantly. We keep the current translation
path in the cache, and hence, the first translation incurs at most d faults. The
translation path changes after every P -th access and hence changes at most
a total of ⌈n/P ⌉ times. Of course, whenever the path changes, the last node
changes. The next to last node changes after every K-th access and hence
changes at most ⌈n/(PK)⌉ times. In total, we incur

d+
∑

06i6d

⌈ n

PKi

⌉

< 2d+
K

K − 1

n

P

TC faults. The cost is therefore bounded by 2P + 2n/d, which is asymptotically
smaller than RAM complexity.

Random Access: In the worst case, no node of any translation path is in
the cache. Thus the total translation cost is bounded by τdn. This is at most
τ
k
n(1 + log(n/P )).

We will next argue a lower bound. We may assume that the TC satisfies
the initial segment property. The translation path ends in a random leaf of the
translation tree. For every leaf, some initial segment of the path ending in this
leaf is cached. Let u be an uncached node of the translation tree of minimal
depth, and let v be a cached node of maximal depth. If the depth of v is larger
by two or more than the depth of u, then it is better to cache u instead of v
(because more leaves use u instead of v). Thus, up to one, the same number of
nodes is cached on every translation path, and hence, the expected length of
the path cached is at most logK W , and hence, the expected number of faults
during a translation is d− logK W . The total expected cost is therefore at least
τn(d− logK W ) > τn logK n/(PW ) = τ

k
n log(n/(PW )), which is asymptotically

larger than RAM complexity.



38 The Cost of Address Translation

Lemma 2.27. The translation cost of a random scan of an array of size n is at
least τ

k
n log(n/(PW )) and at most τ

k
n(1 + log(n/P )).

Binary Search: We do n binary searches in an array of length n. Each search
searches for a random element of the array. For simplicity, we assume that n is a
power of two minus one. A binary search in an array is equivalent to a search in
a balanced tree where the root is stored in location n/2, the children of the root
are stored in locations n/4 and 3n/4, and so on. We cache the translation paths
of the top ℓ layers of the search tree and the translation path of the current node
of the search. The top ℓ layers contain 2ℓ+1 − 1 vertices, and hence, we need to
store at most d2ℓ+1 nodes11 of the translation tree. This is feasible if d2ℓ+1 6 W .
For the sequel, let ℓ = log(W/2d).

Any of the remaining log n − ℓ steps of the binary search cause at most d
cache faults. Therefore, the total cost per search is bounded by

τd(log n− ℓ) 6
τ

k
(1 + log(n/P ))(log n− ℓ) =

τ

k
log

2n

P
log

2nd

W
.

This analysis may seem unrefined. After all once the search leaves the top ℓ layers
of the search tree, addresses of subsequent nodes differ only by n/2ℓ, n/2ℓ+1,
. . . , 1. However, we will next argue that the bound above is essentially sharp
for our caching strategy. Recall that if two virtual addresses differ by D, their
translation paths differ in the last ⌈logK(D/P )⌉ nodes. Thus, the scheme above
incurs at least

∑

ℓ6i6logn−p

⌈

1

k
log

n

2iP

⌉

>
∑

06j6logn−ℓ−p

1

k
log 2j >

>
1

2k
(log n− ℓ− p)2 =

1

2k

(

log
2nd

PW

)2

TC faults. We next show that it essentially holds true for any caching strategy.
By Theorem 2.14, we may assume that ISLRU is used as the cache replacement

strategy, i.e., TC contains top nodes of the recent translation paths. Let ℓ =
⌈log(2W )⌉. There are 2ℓ > 2W vertices of depth ℓ in a binary search tree. Their
addresses differ by at least n/2ℓ, and hence, for any two such addresses, their
translation paths differ in at least the last z =

⌈

logK(n/(2
ℓP )
⌉

nodes. Call a
node at depth ℓ expensive if none of the last z nodes of its translation path
are contained in the TC and inexpensive otherwise. There can be at most W
inexpensive nodes, and hence, with probability at least 1/2, a random binary
search goes through an expensive node, call it v, at depth ℓ. Since ISLRU is the
cache replacement strategy, the last z nodes of the translation path are missing

11We use vertex for the nodes of the search tree and node for the nodes of the translation
tree.



2.4. Analysis of Algorithms 39

for all descendants of v. Thus, by the argument in the preceding paragraph, the
expected number of cache misses per search is at least

1

2

∑

ℓ6i6logn−p

⌈

1

k
log

n

2iP

⌉

>
∑

06j6logn−ℓ−p

1

2k
log 2j >

>
1

4k
(log n− ℓ− p)2 =

1

4k

(

log
n

4PW

)2

.

Lemma 2.28. The translation cost of n random binary searches in an array of

size n is at most τ
2k
n
(

log 2nd
PW

)2
and at least τ

4k
n
(

log n
4PW

)2
.

We know from cache-oblivious algorithms that the van-Emde Boas layout of
a search tree improves locality. We will show in Section 2.5 that this improves
the translation cost.

Heapify and Heapsort: We prove a bound on the translation cost of heapify.
The following proposition generalizes the analysis of sequential scan.

Definition 2.29. Extremal translation paths of n consecutive addresses are
the paths to the first and last address in the range. Non-extremal nodes are
the nodes on translation paths to addresses in the range that are not on the
extremal paths.

Proposition 2.30. A sequence of memory accesses that gains access to each
page in a range causes at least one TC miss for each non-extremal node of the
range. If the sequence of pages in the range n is accessed in the decreasing order,
this bound is matched by storing the extremal paths and dedicating logK(n/P )
cells in the TC for the required translations.

Proposition 2.31. Let n, ℓ, and x be nonnegative integers. The number of
non-extremal nodes in the union of the translation paths of any x out of n
consecutive addresses is at most

xℓ+
2n

PKℓ
.

Moreover, there is a set of x =
⌈

n/(PKℓ)
⌉

addresses such that the union of the
paths has size at least x(ℓ+ 1) + d− ℓ.

Proof. The union of the translation paths to all n addresses contains at most
n/P non-extremal nodes on the leaf level (= level 0) of the translation tree. On
level i, i > 0, from the bottom, it contains at most n/(PKi) non-extremal nodes.

We overestimate the size of the union of x translation paths by counting one
node each on levels 0 to ℓ− 1 for every translation path and all non-extremal
nodes contained in all the n translation paths on the levels above. Thus, the size



40 The Cost of Address Translation

of the union is bounded by

xℓ+
∑

ℓ6i6d

n/(PKi) < xℓ+
K

K − 1

n

PKℓ
6 xℓ+

2n

PKℓ
.

A node on level ℓ lies on the translation path of KℓP consecutive addresses.
Consider addresses z + iPKℓ for i = 0, 1, . . . ,

⌈

n/PKℓ
⌉

− 1, where z is the
smallest in our set of n addresses. The translation paths to these addresses are
disjoint from level ℓ down to level zero and use at least one node on levels ℓ+ 1
to d. Thus, the size of the union is at least x(ℓ+ 1) + d− ℓ.

An array A[1..n] storing elements from an ordered set is heap-ordered if
A[i] 6 A[2i] and A[i] 6 A[2i+ 1] for all i with 1 6 i 6 ⌊n/2⌋. An array can be
turned into a heap by calling operation sift(i) for i = ⌊n/2⌋ down to 1. sift(i)
repeatedly interchanges z = A[i] with the smaller of its two children until the
heap property is restored. We use the following translation replacement strategy.
Let z = min(log n, ⌊(W − 2d− 1)/ ⌊logK(n/P )⌋⌋ − 1). We store the extremal
translation paths (2d− 1 nodes), non-extremal parts of the translation paths for
z addresses a0, . . . , az−1, and one additional translation path a∞ (⌊logK(n/P )⌋
nodes for each). The additional translation path is only needed when z 6= log n.
During the siftdown of A[i], a0 is equal to the address of A[i], a1 is the address
of one of the children of i (the one to which A[i] is moved, if it is moved), a2 is
the address of one of the grandchildren of i (the one to which A[i] is moved, if is
moved two levels down), and so on. The additional translation path a∞ is used
for all addresses that are more than z levels below the level containing i.

Let us upper bound the number of the TC misses. Preparing the extremal
paths causes up to 2d + 1 misses. Next, consider the translation cost for ai,
0 6 i 6 z − 1. ai assumes n/2i distinct values. Assuming that siblings in the
heap always lie in the same page12, the index (= the part of the address that is
being translated) of each ai decreasses over time, and hence, Proposition 2.30
bounds the number of TC misses to the number of the non-extremal nodes in
the range. We use Proposition 2.31 to count them. For i ∈ {0, . . . , p}, we use
the Proposition with x = n and ℓ = 0 and obtain a bound of

2n

P
= O

( n

P

)

TC misses. For i with p+ (ℓ− 1)k < i 6 p+ ℓk, where ℓ > 1 and i 6 z − 1, we
use the proposition with x = n/2i and obtain a bound of at most

n

2i
· ℓ+ 2n

PKℓ
= O

(

n

2 i
· ℓ+ 2n

2 i

)

= O
( n

2 i
(ℓ+ 2 )

)

= O

(

n
i

2 i

)

12This assumption can be easily lifted by allowing an additional constant in the running
time or in the TC size.



2.5. Cache-Oblivious Algorithms 41

TC misses. There are n/2z siftdowns starting in layers z and above; they use
a∞. For each such siftdown, we need to translate at most log n addresses, and
each translation causes less than d misses. The total is less than n(log n)d/2a.
Summation yields

2d+ 1 + (p+ 1)O
( n

P

)

+
∑

p<i6z−1

O

(

n
i

2 i

)

+
nd log n

2z
= O

(

d +
np

P
+

nd log n

2 z

)

.

For any realistic values of the parameters, the third term is insignificant, hence,
the cost is O

(

τ(d + np

P
)
)

. We next prove the corresponding lower bound under
the additional assumption that W < 1

2
n/P . At least one address must be

completely translated; hence the cost of Ω(τd). The addresses in a0 . . . ap−1

assume at least one address per page in the subarray [n/2..n] because ai can
never jump by more than 2i+1. First, the addresses are swept by a0, then by a1,
and so on, and no other accesses to the subarray occur in the meantime. Hence,
if the LRU strategy is in use and W < 1

2
n/P , there are at least pn/(2P ) TC

misses to the lowest level of the translation tree. This gives the Ω
(

np

P

)

part of
the misses’ lower bound. Hence, the total cost is Ω

(

τ(d + np

P
)
)

.

2.5. Cache-Oblivious Algorithms

Algorithms for the EM model are allowed to use the parameters of the memory
hierarchy in the program code. For any two adjacent levels of the hierarchy,
there are two parameters. The size M of the faster memory and the size B of
the blocks in which data is transferred between the faster and the slower memory.
Cache-oblivious algorithms are formulated without reference to these parameters,
i.e., they are formulated as RAM-algorithms. Only the analysis makes use of
the parameters. A transfer of a block of memory is called an IO-operation. For
a cache-oblivious algorithm, let C(M,B, n) be the number of IO-operations on
an input of size, where M is the size of the faster memory (also called cache
memory) and B is the block size. Of course, B 6 M . For this class of algorithms,
we have the following upper bound in VAT.

Theorem 2.32. Consider a cache-oblivious algorithm with IO-complexity
C(M,B, n), where M is the size of the cache, B is the size of a block, and
n is the input size. Let a := ⌊W/d⌋, and let P = 2p be the size of a page. Then,
the number of TC faults is at most

d
∑

i=0

C(aKiP,KiP, n).

Proof. We divide the translation cache into d parts of size a and reserve one part
for each level of the translation tree.



42 The Cost of Address Translation

Consider any level i, where the leaves of the translation tree are on level
0. Each node on level i stands for KiP addresses, and we can store a nodes.
Thus, the number of faults on level i in the translation process is the same as
the number of faults of the algorithm on blocks of size KiP and a memory of a
blocks (i.e., size akiP ). Therefore, the number of TC faults is at most

d
∑

i=0

C(aKiP,KiP, n).

Theorem 2.32 allows us to rederive some of the results from Section 2.4.
For example, a linear scan of an array of length n has IO-complexity at most
2 + ⌊n/B⌋. Thus, the number of TC faults is at most

d
∑

i=0

(

2 +
n

KiP

)

< 2d+
K

K − 1

n

P
.

It also allows us to derive new results. Quicksort has IO-complexity
O((n/B) log(n/B)), and hence, the number of TC faults is at most

d
∑

i=0

O
( n

K iP
log

n

K iP

)

= O
( n

P
log

n

P

)

.

Binary search in the van Emde Boas layout has IO-complexity logB n, and
hence, the number of TC faults is at most

d
∑

i=0

log n

log(KiP )
6

log n

logP
+ log n

d
∫

0

1

logP + x logK
dx

= logP n+ logK n ln logP (PKd) 6 logP n+ logK n ln logP m.

A matrix multiplication with a recursive layout of matrices has IO-complexity
n3/(M1/2B), and hence, the number of TC faults is at most

d
∑

i=0

n3

(aKiP )1/2KiP
<

K3/2

K3/2 − 1

n3

a1/2P 3/2
.

For several fundamental algorithmic problems, e.g., sorting, FFT, matrix
multiply, and searching, there are cache-oblivious algorithms that match the
performance of the best EM-algorithms for the problem [Frigo et al., 2012].
These algorithms are designed such that they show good locality of reference at
all scales, and therefore, one may hope that they also show good behavior in the
VAT model. As one can infer, Theorem 2.32 gives good (often optimal) results



2.6. Commentary 43

for some typical problems, so the claim about good VAT efficiency can be proved
for many algorithms with no effort. In some other cases, results can be even
slightly improved by replacing the constant a with a more suitable sequence (ai).

Unfortunately, some of these fundamental algorithms require the tall-cache
assumption M > B2. The approach we introduced does not extend to this case.
The reasoning is as follows. The middle bit of the address corresponds to a
chunk of memory of size

√
n. Hence, the tall cache assumption implies that TC

must be able to store at once Θ(
√
n) nodes of the level in the tree related to the

middle address bits, (and exponentially more for the higher bits). TCs cannot
be expected to be of such size for efficiency reasons.

On the other hand, cache-oblivious algorithms profit from the same locality
principle13 that governs the virtual address translation. Furthermore, the VAT
model does not require minimization on each level of translation. Since the cost
of a TC miss is equal on each layer of the translation tree, we care only about
the total number of them. This gives the VAT extra flexibility that might be a
sufficient substitute for the tall cache in case of some cache-oblivious algorithms.

2.6. Commentary

In this section, we describe a number of interesting subjects that extend the
scope of our research. In particular, we address here the comments we received
from the ALENEX13 program committee and other researchers.

2.6.1. Double Address Translation on Virtual Machines

Nowadays, more and more computation is performed on virtual machines in the
clouds. In this environment, address translation must be performed twice, first to
the virtual machine addressing space and then to the host. The cost of address
translation to host can be as high as O(τ log(size of virtual machine)). More-
over, big enough virtual machines may require translation for memory tables in
the virtual machine, not just for the data. This is independent of the problem
input size and significant in the case of random access, but still negligible in the
case of sequential access. To test the impact of the double address translation,
we timed permutation and introsort on a virtual machine; results are provided
in Figure 2.6.

Please note that STL introsort takes actually less time than the permutation
generator, even for very small data. This is very surprising at first but means
that a high VAT cost is especially harmful for programs launched on virtual
machines. Since many cloud systems are meant primarily for computing, the
discussed phenomenon should be of primal concern for such environments.

13See quotation on page 22.



44 The Cost of Address Translation

ru
n
n
in

g
ti

m
e/
n

0	  

50	  

100	  

150	  

200	  

250	  

18	   20	   22	   24	   26	   28	   30	   32	  

	  permute/n	  

	  introsort/n	  

log(input size)

Figure 2.6. Execution times divided by n (not the normalized operation
time) on a virtual machine with the following specification:
cpu: Intel(R) Xeon(R) CPU X5660 @ 2.67GHz
operating system: Windows 7 Enterprise
compiler: Microsoft Visual Studio 2010

2.6.2. The Model is Too Complicated

While we received comments that the model is too simple, we also received ones
saying that the model is too complicated. This impression is probably due to the
fact that some of our proofs are somewhat technical. Some arguments simplify
if asymptotic notation is used earlier, or if the VAT cost is upper bounded by
the RAM cost ahead of time (for sequential access patterns to the memory), or
the other way around for the randomized access. However, as this is the first
work addressing the subject, we find it appropriate to be more detailed than
absolutely necessary. With time, more and more simplifications will appear. Let
us briefly discuss a few candidates.

Value of K

There is evidence that for many algorithms, the exact value of K does not matter,
and hence, K = 2 may be used. In some cases, like repeated binary search,
the exact value of K seems to have only a little impact both in theory and
practice. In other cases, like permutation, it seems to be the cause of bumps
on the chart in Figure 2.1, but the impact is moderate. A notable exception is



2.6. Commentary 45

matrix transpose and matrix multiplication, where the value of K is blatantly
visible. The classic matrix transpose algorithm uses O(n) operations, where n
is the input size. However, if the matrix is stored and read row by row, the
output matrix must be written one element per row. For a square matrix, this
means a jump of

√
n cells between writes, which means

√
n translations of cost

Θ(τd) to produce the first column. As there are
√
n translations before another

element is written to the same row, no translation path can be reused if we
consider the LRU algorithm. Therefore, the total VAT cost is Θ(τnd), which is
Θ(τn log n). Figure 2.7 shows that even though the asymptotic growth is intact,
the translation cost grows in jumps rather than in a smooth logarithmic fashion.
The distance between the jumps appears to be directly related to the value of
K, namely, the jump occurs when the matrix dimension is K times greater than
during the previous jump. Note that the EM cost of this algorithm is Θ(n) for√
n ·B > M , and Θ(n/B) for

√
n ·B < M . In fact, the first cost jump is due to

this barrier itself.

ru
n
n
in

g
ti

m
e/

R
A

M
co

m
p
le

x
it
y

0	  

5	  

10	  

15	  

20	  

25	  

300	   3000	   30000	  

classic	  matrix	  transpose	  

recursive	  matrix	  transpose	  

matrix dimension in logarithmic scale

Figure 2.7. Running time of the matrix transpose in row by row layout and
in the recursive layout

CAT, or Sequence of Consecutive Address Translations

In our analysis, for many algorithms precisely calculated VAT complexity was
much smaller than the RAM complexity. We believe that our approach can bring



46 The Cost of Address Translation

valuable insight for future research, but some of our results can be obtained
in a simpler way. The memory access patterns in the algorithms in question
share some common characteristics. There are not too few elements, they are
not overspread in the memory, and the accesses are more or less performed in a
sequence. We formalize these properties in the following definition.

Definition 2.33. We call a sequence of ℓ memory accesses a CAT (sequence of
consecutive address translations) if it fulfills the following conditions:

• ℓ = Ω(τd).

• On average, Ω(τ) elements are accessed per page in the access range.

• The pages are used in the increasing or decreasing order. (But accesses in
the page need not follow this rule).

• Memory accesses from the sequence are separated by at most a constant
number of other operations.

Lemma 2.34. In case of a CAT, the cost of the address translation is dominated
by the cost of RAM operations and therefore negligible. Hence, for CATs, it is
sufficient to account for them only in the RAM part of the analysis.

Proof. We assume the LRU replacement strategy. First, let us assess the cost
of translating addresses for all the O(ℓ/τ) pages in the increasing order. The
first translation causes d TC misses. Since we allow only a constant number of
operations between accesses from the considered sequence, the LRU replacement
strategy holds translation path of the last translation when the next one starts.
Hence, the addresses to be translated change like in a classic K-nary counter.
The amortized cost of an update of a K-nary counter is O(1 ). Since on average
Ω(τ) elements are accessed per page, the access range is at most of length
O(ℓ/τ), and so the cost of updates is O(ℓ). However, we do not start counting
from zero, and the potential function in the K-nary counter analysis can reach
up to log (the highest number seen), which in our case can reach d. Hence, we
need to add the cost of another d TC misses to our estimation. The cost of all
translations is therefore equal to O(τd + ℓ) = O(ℓ).

In the definition of a CAT, we do not assume that every page is used exactly
once. However, neither skipping values in the counter, nor reusing them causes
extra TC misses.

Since the RAM cost is exactly Θ(ℓ), it dominates the translation cost.

RAT, or Sequence of Random Address Translations

Similarly, algorithms with a high VAT cost share common properties.

Definition 2.35. A sequence of memory accesses is called a RAT (sequence of
random address translations) if:



2.6. Commentary 47

• There is a memory partitioning such that each part consists of all memory
cells with some common virtual address prefix, and parts are of size at
least Pmθ for θ ∈ (0, 1).

• For at least a constant fraction of the accesses with at least a constant
probability, each access is to a part that was not accessed since W TC
misses.

Lemma 2.36. The cost of a RAT of length ℓ is Θ(τℓd). It is the same as the
cost of the address translations.

Proof. We assume the LRU replacement strategy. Since parts are of size at
least Pmθ for θ ∈ (0, 1), a translation of an address from each part uses Θ(d)
translation nodes unique to its translation subtree. Therefore, an access to a
part that was not accessed since W TC misses, misses the root of the subtree,
and by Lemma 2.8, the access causes Θ(d) misses. As this happens for at least
a constant fraction of the accesses with at least a constant probability, the total
cost is Θ(τℓd). The RAM cost is only Θ(ℓ), which is less than the VAT cost by
the order assumption 1.

2.6.3. The Translation Tree is Shallow

It is true that the height of the translation tree on today’s machines is bounded by
4, and so the translation cost is bounded. However, even though our experiments
use only 3 levels, the slowdown appears to be at least as significant in practice
as the one caused by a factor of log n in the operational complexity. Therefore,
decreasing VAT complexity has a prominent practical significance. Please note
that while 64 bit addresses are sufficient to address any memory that can ever
be constructed according to known physics, there are other practical reasons to
consider longer addresses. Therefore, the current bound for the height of the
translation tree is not absolute.

2.6.4. What about Hashing?

We have been asked whether the current virtual address translation system could
be replaced with one based on hashing tables to achieve a constant amortized
translation time. Let us argue that it is not a good idea. First and foremost,
hashing tables sometimes need rehashing, and this would mean the complete
blockage of an operating system. Moreover, an adversary can try to increase
a number of necessary rehashes. Note that probabilistic guarantees are on the
frequencies of the rehashes and the program isolation is insufficient to discard
this concern, because an attack can be performed with side-channels like, for
example, differential power analysis (see [Tiri, 2007]). Finally, a tree walk is



48 The Cost of Address Translation

simple enough to be supported by hardware to obtain significant speedups; in
case of hashing, this would be not so easy.

On the other hand, simple hash tables can be used to implement efficient
caches. In fact, associative memory can be seen as a hardware implementation
of a hashing table. If we no longer require from the associative memory that
it reliable stores all the previous entries, then associative memories of small
enough sizes can be well supported by hardware. This is in fact how the TLB is
implemented, and one of the reasons why it is so small.

2.7. Conclusions

We have introduced the VAT model and have analyzed some fundamental
algorithms in this model. We have shown that the predictions made by the
model agree well with measured running times. Our work is just the beginning.
There are many open problems, for example: Which translation cost is incurred
by cache-oblivious algorithms that require a tall cache assumption? Virtual
machines incur the translation cost twice. What is the effect of this? What is
the optimal VAT cost of sorting?

We believe that every data structure and algorithms course must also discuss
algorithm engineering issues. One such issue is that the RAM model ignores
essential aspects of modern hardware. The EM model and the VAT model
capture additional aspects.



49

Part II

Massive Multicore Parallel





51

3
Parallel Convex Hull

Currently, we are facing a technological barrier in speeding up processor cores.
Multicore systems seem to be the only direction to follow. This can be achieved
by putting together a number of traditional CPU cores, which proved effective
for many applications. On the other hand, one can use the same number of
transistors to build a great number of very simple cores; this is the GPU1

approach, commonly referred to as many-core. While the future is uncertain,
there is one thing we are convinced about. We believe that machines of the future
are going to be heterogeneous. They will consist of a number of highly capable
cores based on current CPUs and of a great number of simpler cores based on
current GPUs. While not every problem can be efficiently solved on GPU, those
that can gain speedups counted in orders of magnitude. The hope is that, for
many problems, clever algorithms can use the additional computational power
to overcome the architectural shortcomings. Unfortunately, many fundamental
problems still have no practical solutions for GPUs. We need to understand
these machines much better to use them efficiently.

It is hard to predict what the future many-core devices will be like as they
are still evolving, but a general trend has already been established. nVidia,
while developing their graphic accelerators, as a side effect have also created an
efficient massive multicore processor comprising hundreds of so-called CUDA
cores and billions of transistors. All nVidia graphic cards released after 2006
support CUDA2. Soon after the success of CUDA, companies like nVidia, AMD,
Intel and Apple agreed on a common programming interface called OpenCL3 that

1Graphics processing unit, see http://en.wikipedia.org/wiki/GPU
2Compute Unified Device Architecture, see http://en.wikipedia.org/wiki/CUDA
3Open Computing Language, see http://en.wikipedia.org/wiki/OpenCL

http://en.wikipedia.org/wiki/GPU
http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/wiki/OpenCL


52 Parallel Convex Hull

resembles CUDA. One can safely assume that a vast majority of the processors
that are to be released in upcoming years will be compatible with CUDA or
OpenCL.

Is seems that all possible aspects of parallel algorithms and many-core systems
were already discussed in the past. The subject has been well-known in the algo-
rithms community for several decades. It is true that different models of parallel
and multicore computations have given researchers a lot of insight into what could
be done with multiprocessor machines. Parallelism in its purest forms of SIMD
and MIMD has been studied extensively (see [JáJá, 1992]). Memory hierarchy can
be described in terms of the External Memory model [Aggarwal and Vitter, 1988]
extended with the Cache Oblivious approach [Frigo et al., 2012]. Difficulties
with execution control on CUDA due to nondeterministic asynchronous threads
(see [Gibbons, 1989]) and need of “barrier synchronization” as the only means of
synchronization, like in the Bulk Synchronous Parallel model (see [Valiant, 1990],
[Culler et al., 1996]) are well-known as well. Yet, none of the models proposed
by theoreticians have received much attention from the software engineering
community. Practice shows that existing models are just not close enough to
the hardware to be applied easily; only few individual results have been put
into practice. The reason for this setback is that the foundations on which
these models were designed not only precede the age of multicores, but were
founded by forefathers of the field whose expectations do not match the current
development. Unfortunately, assembling more fitting models feels too incre-
mental for many researchers to want to get involved. As a result, the applied
community works with informal models detached from the theoretical current
that are slowly emerging from the publications of CUDA users and programmers
(see [Billeter et al., 2009]). It is very clear that only through working with exist-
ing technology like CUDA are we actually able to understand how to perform
computations efficiently.

Among the theoreticians, the issue is visible as well. While for sequential
von Neuman type machines the RAM model feels perfectly natural, there is no
natural model for parallel machines. One of the very first attempts to analyze
CPU based multicores together with the memory hierarchy is the PEM model
[Goodrich et al., 2007]. The very successful MapReduce4 parallel API is slowly
appearing in the consciousness of the theoretical community due to researchers
like Michael Goodrich and Eli Upfal. In this part we take on the challenge of
making a foothold in the uncharted world of the GPUs.

In the following chapters, we show how to efficiently solve the 2D Convex
Hull problem on CUDA, which is currently the most commonly used many-core
technology. Prior to our implementation of the Convex Hull algorithm, the
problem was considered by the CUDA community to be unsuitable for GPUs.
For instance in [Rueda and Ortega, 2008], the authors state:

4See [Dean and Ghemawat, 2008] and http://en.wikipedia.org/wiki/MapReduce.

http://en.wikipedia.org/wiki/MapReduce


3.1. Sequential Algorithm 53

“We have implemented other geometric algorithms in CUDA like (. . . )
convex hull of large meshes but the results have been poor. (. . . )
The problem can hardly be decomposed into simpler independent
tasks that can be assigned to the threads.”

We show a case study of the problem, a number of techniques we found useful for
designing multicore algorithms, and in the analysis we point out the differences
between known models and the real machines. In particular we show how to
deal with the fact that CUDA is a blend of both SIMD and MIMD, and by
design provides a very short cache. We abstain from defining the complete model;
instead we take a more axiomatic approach and assume only what is needed for
the solution. A good algorithm should work on many models.

3.1. Sequential Algorithm

First, let us show a sequential version of the algorithm we use. In this way,
we will be able to more directly describe its advantages while we explain
our choice. The algorithm is based on [Chan et al., 1997], [Wenger, 1997],
and [Bhattacharya and Sen, 1997], which in turn extend the research of
[Kirkpatrick and Seidel, 1986].

The Algorithm 1 finds the leftmost point of the set l and the rightmost
point r. It splits points into ones that lie above or below line lr5. The up-
per and lower hull are computed separately by Algorithm 1 and then merged.
The algorithm is described from the perspective of the upper hull. First,
we find a point belonging to the final convex hull and set it as a pivot.
Next, we partition the points using the pivot like in the Quicksort algo-
rithm, along the way discarding some points that do not participate in the
hull. The discarding is handled by replacing these points with placeholders.
When the partition procedure is complete, the result is available in the orig-
inal input array, mixed arbitrarily with the correct number of placeholders.

5In this chapter, we will repeatedly denote pairs of points like {a, b} as ab to indicate that
every pair of points is also a segment on the plane.



54 Parallel Convex Hull

Algorithm 1: ConvexHull

Input : T[l..r]: Array segment of 2D points.
Assert : l = T[l] is the leftmost point of the set; r = T[r] is the

rightmost point of the set; T[l] and T[r] belong to the final
convex hull.

1 if(T[l+1..r-1] is empty) break;
2 m := select_pivot_belonging_to_the_convex_hull(T[l..r]);
3 p := lossy_partition(T[l..r], m);
4 ConvexHull(T[l..p]);
5 ConvexHull(T[p..r]);

Result : Array T contains the sequence of the points from the upper convex
hull appearing in left to right order and separated by placeholders.

3.1.1. Select Pivot and Lossy Partition

For the recursion to be effective, we need to assure that the subproblems decrease
in size by a constant factor. At the same time, we insist that point m comes
from the convex hull. To reach both of these goals at once we implement the
helper procedures as follows:

Algorithm 2: select_pivot_belonging_to_the_convex_hull

Input : T[l..r]: Array segment of 2D points.
1 i := random(0,sizeof(T[l..r])/2);
2 (a, b) := (T[l+2*i], T[l+2*i+1]);
3 return the highest point form T[l..r] in the direction normal to line ab

Algorithm 3: lossy_partition

Input : T[l..r]: Array segment of 2D points, m: pivoting point.
Assert : l = T[l] is the leftmost point of the set; r = T[r] is the

rightmost point of the set; T[l] and T[r] belong to the final
convex hull.

1 forall the i in [0..sizeof(T[l+1..r-1])/2] do

2 (p, q) := (T[l+1+2*i], T[l+2+2*i]);
3 if p is a convex combination of {q, l,m, r} then discard p;
4 if q is a convex combination of {p, l,m, r} then discard q;

5 return partition(T[l..r], m) // returns final position of the pivot

Checking whether we can discard points in algorithm 3 covers, in particular,
the following case. Let pair pq (px < qx) lie on the left side of m and have a
slope lesser than the slope of ab. Then q would lie below segment pm (see Figure
3.1), and so it would be pruned. Therefore, the right point of any pair with the
slope lesser than the slope of ab will either be assigned to the right subproblem
or be pruned.



3.2. Problem Analysis 55

m

q1
p

q2

l r

Figure 3.1. In this case, q1 and q2 can be safely pruned before recursing to
subproblem [l,m].

For pair ab with the median slope, 1
4

of all points could never appear in the
left subproblem. It is worth noticing that there might be only one subproblem if
point m returned by select_pivot_belonging_to_the_convex_hull is equal
to l or r. However, while we do not progress with the extension of the hull here,
we actually benefit because there is only one subproblem with a size usually
much smaller than the superproblem.

b
a

l m = r

Figure 3.2. Input in which every choice of segment ab leads to point m
being one of l or r, unless l or r is one of a or b.

The algorithm can be seen as the Basic-Randomized-Upper-Hull algorithm
from [Bhattacharya and Sen, 1997] with a slightly improved pruning strategy.
Hence, the following theorem holds.

Theorem 3.1. Algorithm 1 has output sensitive complexity O(n log h) where n
is the size of the input, and h is the size of the convex hull.

3.2. Problem Analysis

In order to develop an efficient algorithm for CUDA, one needs to first understand
CUDA’s basic design. Many-core systems are intended to handle massive numbers
of parallel threads at the expense of having very restrictive cashing and flow
control.



56 Parallel Convex Hull

Basic Design

A CUDA device runs a single program on a user defined number of numbered
threads. Every 32 consecutive 32-aligned threads (0 to 31, 32 to 63, and so
on) constitute a warp. From the user point of view, threads in a warp run
in SIMD (single instruction multiple data) fashion, with the arbitrary CRCW
(concurrent read concurrent write), for details see [JáJá, 1992]. All warps have
access to the large global memory. A user defined, hardware limited number of
consecutive warps constitutes a block. Warps in a single block share a cache
as well as a so-called shared memory of a rather restrictive size and can be
explicitly synchronized. Cache transactions are performed on coalesced, byte-
aligned chunks of 32, 64, or 128 bytes. The collection of all blocks is called a
grid, and a CUDA program is executed as a sequence of grids. The number
of threads and the size of a block is a grid parameter. Only the content of the
global memory is carried on between the grids.

Warp-Centric Design

Computation is performed on a collection of multiprocessors. Each multiprocessor
contains multiple types of scalar processors, each suited for different tasks like
memory transactions, floating point operations, etc. The smallest assembly unit
in CUDA is the warp. All warps in the same block are guaranteed to be run on
the same multiprocessor. Available warps are scheduled instruction by instruction
to suitable processors, not necessarily in the program order. As a result, classic
notions of scheduling and task preemption are meaningless on CUDA.

Currently, once a block is scheduled on a multiprocessor it cannot be evicted,
and number of blocks that can be scheduled at once is limited, therefore, attempt
to synchronize between blocks can lead to deadlock. However, scheduling algo-
rithm of blocks is not defined, and can be changed any time. Task completion is
guaranteed only if there are no inter-block dependencies.

Use Cases

CUDA is by design most efficient with grids of many small threads that do not
communicate and execute identically (at least per warp). Similarly, grids of
threads that cooperate in SIMD manner at warp level are efficient. The smallest
schedulable unit on CUDA is the warp. To take advantage of these patterns in
the first phase of design, we ignore the fact that each warp consists of threads,
and we treat it as if it was a scalar processor. This allows us to parallelize by
using MIMD techniques. Therefore, we call these grids MIMD grids. Only
later we use the fact that each warp can perform fairly complicated operations
and try to use SIMD techniques to speed up the work that each warp does
independently. This approach cleanly separates high and low level parallelization.
In the following chapters we will mostly discuss high level parallelization with



3.2. Problem Analysis 57

MIMD grids. Therefore, unless stated otherwise, when we say processor we
have a warp in mind.

In the case of grids that require more communication, using a single block of
maximal size and explicit wall synchronizations allows us to use classic SIMD
algorithms and is efficient enough for small data. We call these grids SIMD

grids.
Unfortunately, in the case of large tasks that require even more communication,

one must find a way to split them into multiple MIMD and SIMD grids that
store intermediate data in the global memory.

Marriage Before Conquest

There are plenty of classic sequential algorithms to choose from, yet as CUDA is
best suited for solving many independent problems; the first approach that comes
to mind is Divide and Conquer. In this case, for most of the time there should
be enough subproblems to occupy each warp with no need for communication
or coordination. However, there are two problems. First, CUDA does not
support recursion6, and hence recursion must be replaced with iteration. In
each iteration, the program divides all remaining subproblems and processors,
then solves them independently, and finally merges them iteration by iteration.
Unfortunately, except for very predictable, very well balanced recursion trees,
the level of synchronization achievable with the barrier synchronizations does
not appear to be sufficient to achieve enough parallelism while merging solutions.

Fortunately, there is a better way. In [Kirkpatrick and Seidel, 1986], the
authors proposed a concept of marriage before conquest which is a variant of
the divide and conquer technique where merging is performed before solving
subproblems. The proposed algorithm splits a problem into left and right halves,
finds the (upper) convex hull edge that connects the halves, and only then
proceeds to the subproblems. The key to making the algorithm iterizative is the
fact that when we have more than one processor working on a marriage before
conquest problem, all the subproblems can be launched immediately as if it were
a tail recursion.7 We call this technique a multiple-tile recursion, and we
discuss it in more detail in Section 3.3. The major advantage of this technique is
that there is no need for partial resynchronizations between processors in order
to merge solutions.

There is however, one disadvantage to this algorithm from
[Kirkpatrick and Seidel, 1986]. While finding a bridge that splits the problem
into halves takes only a linear time, it can take a logarithmic number of phases
that must be executed in a sequence. The Basic-Randomized-Upper-Hull

algorithm from [Bhattacharya and Sen, 1997], instead of searching for a bridge,
finds a single vertex of the convex hull that splits the problem into subproblems

6CUDA 5 supports a limited level of recursion.
7Special credit for noticing this analogy goes to Prof. Tony Hoare.



58 Parallel Convex Hull

that with a high probability are smaller by a constant. The drawback of this
approach is that the vertex found could coincidentally be one of the two already
known extremal vertices, therefore the total number of subproblems grows. The
benefit is that this form of partitioning always takes only one phase of a linear
time, which in turn permits more efficient parallelization.

3.3. Marriage Before Conquest and Good Distri-

bution

One natural approach to load balancing on multicores is work-stealing. Un-
fortunately, it is not feasible to implement stealing with the limited execution
control that CUDA provides. Yet, we will show that regular enough multiple-tile
recursion trees can be executed efficiently. The technique is as follows. We
execute a recursion tree level by level, describing all the tasks on the level as a
single uniform task that can be synchronized with barrier synchronizations only.
Processors used for each task are more or less proportionally assigned to the
subtasks they spawn. At some point, the problem gets divided into multiple small
subproblems, each assigned to a separate processor (splitting stage). When this
happens, the subproblems can be solved independently in a sequential manner
(independent stage).

3.3.1. Splitting Stage

The splitting stage must fulfill two conditions to be efficient. First, the idle must
be small in each iteration. Second, there should not be too many iterations.

We cannot make any formal statement about idle time on CUDA itself, not
knowing the scheduling algorithm. However, we can guarantee the regularity
of the tasks we launch in a way that permits competitive scheduling on a wide
range of models. We show later that a partition can be computed in work Θ(n),
with the parallel speedup essentially equal to the number of assigned processors
P . Under this assumption, it is sufficient if the number of processors assigned to
each subproblem is proportional to the size of the input on every level of the
recursion.

Lemma 3.2. Let us consider algorithms that split each problem t into a set of
subproblems S such that the total size of the subproblems

∑

s∈S ns does not
exceed the size of the superproblem nt.

It is possible to assign at least Ps :=
⌊

ns

n
P
⌋

processors to every subproblem s
of size ns, using only processors from their superproblem t.

Proof. The proof is by induction. There are enough processors to assign to
the root problem as

⌊

n
n
P
⌋

= P . There are also enough processors to assign to



3.3. Marriage Before Conquest and Good Distribution 59

subproblems, if we have enough processors in the superproblem, since:

∑

s∈S

⌊ns

n
P
⌋

6

⌊
∑

s∈S ns

n
P

⌋

6

⌊nt

n
P
⌋

.

Notice that distributing processors, according to the principle above, may
assign no processors to tasks of size less than

⌊

n
P

⌋

. However, this is fine at this
stage because our goal is to split tasks, not to solve them.

Lemma 3.3. If the splitting strategy on an algorithm realizes lemma 3.2, each
subproblem of size at least n

P
gets assigned at least half of the processors implied

by the perfect proportional split.

Proof.

Pt
nt

n
P

>

⌊

nt

n
P
⌋

nt

n
P

>

⌊

nt

n
P
⌋

⌊

nt

n
P
⌋

+ 1
>

1

2
, since

⌊nt

n
P
⌋

>

⌊

n/P

n
P

⌋

= 1

We claim that distributing tasks in agreement with lemma 3.3 allows for
efficient task scheduling on a wide range of models.

Now, let us estimate the number of iterations needed to reduce the problem
to a collection of tasks of size no more than n/P . The original algorithm from
[Kirkpatrick and Seidel, 1986] guarantees that each subproblem is of size at most
3
4

of the superproblem. For a uniform random choice, the result is only slightly
weaker.

Proposition 3.4. We say that a partition is α-shrinking if both subproblems
get no more than fraction 1/α of the points for α > 1. Every processor needs
to participate in no more than logα P shrinking partitions before its problem is
reduced to size n

P
.

Lemma 3.5. Let us consider a partition procedure that uses P processors in
accordance with lemma 3.2 and is α-shrinking with probability at least 1/β.
With a probability at least 1

2
for some constant γ > 0, all remaining subproblems

are no larger than n
P

after γ logα P iterations.

Proof. By lemma 3.2, no task of size at least n
P

is left without a processor.
Hence, by proposition 3.4, each processor needs to participate in logα P shrinking
partitions in order to reduce all subproblems. Let p be an arbitrary processor.
Let X be a random variable that counts the number of α-shrinking partitions
after γ logα P partitions. Let us calculate the probability that X < logα P . As a
partition is α-shrinking with a probability at least 1

β
, by Chernoff bound we can

say:



60 Parallel Convex Hull

P(X < logα P ) = P

(

X <

(

1− γ − β

γ

)

γ

β
logα P

)

6

6 e
( γ−β

γ )
2 γ
β

logα P

−2 = P−γ·( γ−β
γ )

2 logα P

2β .

For fixed α and β, and sufficiently large P we can choose γ so that
P(X < logα P ) < P−2. Finally, by use of the union probability, we calculate the
probability that at least one of P processors fails to shrink its task.

P · P−2 = P−1 <
1

2
(for P > 2)

Lemma 3.6. In the convex hull algorithm, a randomly taken pair defines a pivot
that splits the problem so that no subproblem has size greater than 5

6
with a

probability at least 1
3
.

Proof. With probability 1
3
, the slope of the randomly chosen pair is from the

middle third. For every pair with a slope smaller than the median, the right
point of the pair will not be assigned to the left subproblem. This eliminates 1

6
of

the points. Therefore, no more than 5
6

points is assigned to the left subproblem
(analogically for the right subproblem).

In the convex hull algorithm, a partition is 5
6
-shrinking with probability at

least 1
3
. Applying calculation from the proof of lemma 3.5 yields the following

proposition:

Proposition 3.7. In the convex hull algorithm, all remaining subproblems are
no larger than n

P
after 7 log 6

5
P iterations of the partition with a probability at

least 1
2
.

3.3.2. Independent Stage

When all remaining subproblems are small enough, we assign each one to a single
processor (perhaps more than one per processor) and solve sequentially. All
subproblems are of size at most n/P and contain at most h vertices of the convex
hull. For this stage to be efficient, none of the independent problems should take
significantly more time than others. This can be achieved with any deterministic
O(n log h) algorithm. We conjecture that our algorithm has this property as
well, with high probability, but we prove only a simpler related result.

Theorem 3.8. The expectation of the maximum running time of a collection of P
quicksort instances of size ℓ is sharply concentrated around O(ℓ log ℓ), assuming
that P < ℓc for some constant c > 0.



3.4. Algorithmic Details 61

Proof. Every processor has an input of size ℓ. From the main theorem of
[McDiarmid and Hayward, 1996], we know that the running time of Quicksort is
sharply concentrated around its expectation value, here O(ℓ log ℓ). In particular,
the probability that the running time varies from the expectation by more than
factor of ǫ equals

ℓ−2ǫ ln ln ℓ−O(ln ln ln ℓ).

Hence, the union probability that any one of the processors takes more time
than expected by a factor of ǫ, is bounded by

P · ℓ−2ǫ ln ln ℓ−O(ln ln ln ℓ) < ℓc−2ǫ ln ln ℓ−O(ln ln ln ℓ),

which is a sharp bound.

With ℓ 6 n
P

and c = 1 the assumption on P in the theorem 3.8 becomes
P 2 < n, which is reasonable in practice.

3.3.3. A Couple of Words on Processor Virtualization

By design, the number of threads one can run on CUDA is largely independent
of the number of the actual on chip processors. CUDA effectively creates an
illusion of as many virtual processors as are needed for a task and simulates
them on the available hardware. The greatest drawback of this kind of processor
virtualization is its nondeterministic asynchronicity (compare [Gibbons, 1989]).
It forces us to resort to barrier synchronizations whenever we need to pass
any message between processors. The nondeterministic asynchronicity makes
it impossible to implement load balancing systems based on the work-stealing
technique widely used in parallel scheduling [Blumofe and Leiserson, 1999]. The
only way to implement load balancing is to periodically perform a synchronization,
collect all tasks, and redistribute them. However, this design has advantages
as well. As noticed by [Valiant, 1990], if we randomly distribute p tasks on p
processors, then, with high probability, at least one will get about log p/ log log p
tasks. However, if we randomly distribute p log p tasks on p processors, then,
with high probability, no one will get more than about 3 log p tasks. Of course,
the CUDA scheduling algorithm, while not publicly available, is clearly better
than a random one. Therefore, when load distribution is uncertain, splitting
problems on more virtual processors than areavailable on the hardware effectively
introduces a form of auto-balancing.

3.4. Algorithmic Details

Up to now we have presented an algorithm with a regular iterative structure that
admits parallelization. In this section, we show how to parallelize it efficiently.
There are many ways to perform certain actions, and there are many performance



62 Parallel Convex Hull

indicators. Practical experience shows that the most important indicator is work,
assuming linear speedup for a limited number of processors. Sacrificing work to
further shorten the critical path is impractical. In particular Nick’s Class8 is not
a class of general practical interest.

“Thus, parallel algorithms need to be developed under the assumption
of a large number of data elements per processor. This has significant
impact on the kinds of algorithms that are effective in practice.”

[Culler et al., 1996]

However, there are cases where linear speedup cannot be expected. In
particular, parallelization usually leads to additional communication steps. The
solution in this case is to hide these between instructions that do gain optimal
speedup.

“Thus, if the algorithm designer can arrange to overlap communication
with enough independent computation in each step, the communica-
tion latency and bandwidth can be ignored (up to a constant factor).”

[Culler et al., 1996]

3.4.1. Splitting Stage

The splitting stage consists of a number of iterations and prior preparation. The
implementation of the preparation is trivial after the iteration is understood;
therefore, we will simply assume the following:

1. Array T[0..n-1] contains all the input points for the upper hull problem.

2. T[0] is the leftmost point on the plane and T[n-1] is the rightmost.

3. We have temporary global arrays L[0..P-1], V[0..3*(P-1)], and
U[0..n-1].

Array L[0..P-1] will be used to carry on private processor information between
grids, in particular the execution control data. Before the first iteration, every
processor stores in his private storage the range of its current problem, which
is (0, n− 1); the range of processors assigned to it (0, P − 1); and range of its
consecutive part. (We split the array into P possibly equal parts.) We will
make an effort to update L in a consistent way without the need for additional
interprocessor communication.

8http://en.wikipedia.org/wiki/NC_(complexity)

http://en.wikipedia.org/wiki/NC_(complexity)


3.4. Algorithmic Details 63

Iteration

Each iteration executes as follows. We describe it from the perspective of a
single processor Pc. Let Pmin and Pmax stand for the first and the last processor
assigned to the same problem as Pc, respectively.

1. Pmin picks a random pair in the current problem and stores it in its control
structure.

◦ barrier synchronization (by slicing the problem into separate grids)

2. Pc accesses the pair stored in the storage of Pmin. Next, it sequentially
scans its part of T for the highest point in the direction normal to the
line defined by the pair. Finally, it stores in V[P

c
] the following pair

(the highest point, 0 if Pc = Pmin and 1 otherwise).

◦ barrier synchronization

3. We run a SIMD grid (see page 57) to compute in array V the prefix of the
following associative but not-commutative operator. Here, a, b ∈ R

2, and
y, z ∈ {0, 1}.

(a, y) ⊳ (b, z) := (max{a · z, b}, y · z)
The operator executed sequentially computes the maximum of all the
previous elements in the first element of the pair, but resets whenever it
encounters 0 in the second element.

The maximum here is taken on the position in the direction normal to the
line defined by the pair chosen in step 1, under the assumption that 0 is
the minimum.

◦ barrier synchronization

4. Pc accesses the maximum point stored in V[P
max

]. Next, with this point
taken as the pivot, the processor sequentially scans its part of T and counts
how many points should go to which subproblem.

5. We store calculated quantities of the points into V so that values for each
generated subproblem are stored consecutively, and the number of discarded
points is stored between the left and right subproblems. We store the
values in the first element of a pair; the second element is 1, unless it is the
size of the left subproblem stored by the first processor in the problem.

◦ barrier synchronization

6. We run a SIMD grid to compute in array V the prefix of the following
associative but not-commutative operator. Here, a, b ∈ R, and y, z ∈ {0, 1}.

(a, y) ⊳ (b, z) := (a · z + b, y · z)



64 Parallel Convex Hull

The operator executed sequentially computes the sum of all the previous
elements in the first element of the pair but resets whenever it encounters
0 in the second element. Effectively, the operator determines for each
processor where a sequential algorithm could move points while executing
a partition.

◦ barrier synchronization

7. Pc sequentially scans its consecutive part of T and uses values from V to
move elements into their position. Since we cannot perform the partition
in-place, we store them in array U. In case of discarded elements, we write
a copy of the pivot.

◦ barrier synchronization

8. Pc computes the sizes of the subproblems of its problem and, respecting
the good distributions, decides which subproblem to join. If Pc wrote to U

data that will get no processor assigned, or copies of the pivot created for
discarded elements, then Pc copies them to the respective cells in array T.
These cells will not be accessed in any future iteration. Finally, Pc updates
its control structure with its new Pmin, Pmax, the range of its next problem
and new range of its part.

◦ barrier synchronization

9. We run a SIMD grid to find out whether there is still a problem too big to
finish the splitting stage. We also swap pointers to T and U.

In this approach, subproblems occupy a subset of the memory assigned to
their parents, and abandoned space is first filled in with copies of elements from
the convex hull chosen as subsequent pivots. Therefore, the output needs to be
postprocessed to remove the repetitions. Another approach to this problem is as
follows.

Iteration with Balancing

In step 6, we compute a typical prefix sum and do not reserve any space for the
discarded elements, but we do reserve space for the abandoned tasks. Hence, we
compact the problem in every step, but we always need to completely generate
all content of the array U. In this approach it is necessary to rebalance the
workload in every step since the copying of the abandoned subproblems must be
distributed equally. We assume that processor i is responsible for splitting the
task that contains the element i

⌈

n
P

⌉

and for copying abandoned subproblems
that lie between i

⌈

n
P

⌉

and (i + 1)
⌈

n
P

⌉

(if any). Finally, this means that the
processor control structures cannot be generated in-place. Therefore, we generate
them in a helping array, and the structure for the new processor i is prepared



3.4. Algorithmic Details 65

by the processor that stored the cell number i
⌈

n
P

⌉

in array U, where n is meant
in the context of the next iteration (because this is the processor that has all
the required information). It could happen that some processors may need to
prepare more than a constant number of control structures. This is not a problem
because it is possible only if the total number of the points shrinks substantially,
which is worthwhile. Moreover, this approach makes it possible to easily readjust
the number of processors from an iteration to iteration.

3.4.2. Independent Stage

Once all the tasks are smaller than the required threshold value α, the independent
stage starts. Any sequential algorithm can be used; we used the same algorithm
as in the splitting stage. However, here we use only a single processor, therefore,
the algorithm can no longer be executed as a multiple tail recursion. Hence, we
simulate the recursion by an iteration with a stack. The stage is executed as
follows.

1. The tasks are compacted (like in the iteration with balancing).

◦ barrier synchronization

2. Each processor prepares a privete recursion stack in the global memory to
simulate recursion by iteration.

3. Each processor i puts all the problems that have their rightmost point in
segment T[iα..(i+ 1)α-1] on its recursion stack.

◦ barrier synchronization

4. Each processor sequentially solves problems on its recursion stack.

◦ barrier synchronization

5. The final result is compacted.

3.4.3. Complexity

Each iteration runs a constant number of SIMD grids to compute parallel prefixes
(for details see [JáJá, 1992]). The prefixes can be computed in Θ(logP) parallel
steps and would take Θ(P) time if serialized. Each parallel independent scan in
MIMD grids has work Θ(n) and hence takes time at least n

P
. Therefore, as long

as P 2 < n, the communication cost can be ignored.



66 Parallel Convex Hull

3.4.4. Low Level SIMD Parallelism

On page 56 where we introduced MIMD and SIMD grids, we stated that by
default we use the MIMD grids, and for simplicity we pretend that each warp
is a single processor. Now it is the time to take this simplification away. The
CUDA warp has access to a small cache, a small addressable shared memory,
and a relatively high number of private non-addressable registers9 per thread.
This creates a convenient SIMD environment, yet there are differences.

First, the shared memory is limited, and all accesses to the global memory
are actually performed through the cache in 64, 128 and 256 byte aligned
blocks. Assigning the warps to different consecutive segments is a high level
parallelization technique to decrease the number of cache misses. On the low level
of parallelization it is the opposite; one needs to interleave the parts assigned to
threads so the memory accesses can be coalesced. It is quite apparent that our
algorithm can easily coalesce the memory accesses as data is almost always read
sequentially.

Second, in the external memory model, one could simply ignore the cost of
the operations; in the RAM model, operations are all one cares about. In CUDA,
global memory transactions are clearly more expensive than the operations, but
the difference is not immense. Therefore, since CUDA can perform memory
transactions in parallel with the computation, the usual goal is to make sure
that the cost of the computation time is comparable with the time of the
memory transactions. The proportion is hard to predict and usually needs to be
established experimentally.

Finally, the small amount of memory, the fixed number of processors, and
an incomparably greater number of elements to process makes the standard
measure of operational complexity unpractical; the game is about a constant.
Some classic time-efficient (rather than work-efficient) algorithms apply, but in
the end, clever engineering is maybe even more important than the algorithmic
insights. Let us discuss some task specific techniques we use.

9Namely, we can declare an array in the shared memory and refer to particular cells using
integer variables; in the case of registers, there is no such flexibility.



3.4. Algorithmic Details 67

Step 2 of the Splitting Stage

The standard sequential maximum algorithm is as follows.

Algorithm 4: sequential maximum

Input : T[0..n-1]: Array of 2D points, a, b: chosen slope, a.x<b.x.
1 x0 := a.y-b.y;
2 y0 := b.x-a.x;
3 // (x0, y0) is a vector normal to ab directed upwards.

4 ans := T[0];
5 i := 1;
6 while i<n do

7 projection := (T[i].x-ans.x)·x0 + (T[i].y-ans.y)·y0;
8 if projection>0 then ans := T[i];
9 i++;

10 return ans

The obvious way to parallelize it is as follows. Here, Pc is our point-of-view
processor, and both processors and cells in the array are indexed from 0.

Algorithm 5: parallel maximum

Input : T[0..n-1]: Array of 2D points, a, b: chosen slope, a.x<b.x.
1 x0 := a.y-b.y;
2 y0 := b.x-a.x;
3 // (x0, y0) is a vector normal to ab directed upwards.

4 ans := T[Pc ];
5 i := Pc + size_of_a_warp;
6 while i<n do

7 projection := (T[i].x-ans.x)·x0 + (T[i].y-ans.y)·y0;
8 if projection>0 then ans := T[i];
9 i := i+size_of_a_warp;

Result : answer

However, there is another way that will allow us to spread the computation
for each single point to two threads. Let us assume that array T is stored in
memory as an alternation of x and y coordinates, and we access the memory cells
directly with notation T[[i]]. In particular, T[[4]]=T[2].x, T[[6]]=T[3].x,
T[[7]]=T[3].y, etc. Let us also introduce a notation v{thread_id} that allows
us to access the instance of the variable v that is local to another thread in
the warp10. We denote our point-of-view processor as Pc and its companion
processor as P̄c, where Pc xor P̄c = 1. Finally, let both processors and cells in
the array be indexed from 0. Then, we can write the following algorithm.

10It can be realized via local memory or in the modern CUDA by the shuffle instructions.



68 Parallel Convex Hull

Algorithm 6: another parallel maximum

Input : T[0..n-1]: Array of 2D points, a, b: chosen slope, a.x<b.x.
1 if Pc = 0 (mod 2) then

2 c0 := a.y-b.y // the left companion thread

3 else

4 c0 := b.x-a.x // the right companion thread

5 // Each thread has a half of the normal vector,

6 ans := T[[Pc ]]; // and half of an answer.

7 i := Pc + size_of_a_warp;
8 while i<2·n do

9 projection := (T[[i]]-ans)·c0; // one of the two components

10 if projection + projection{P̄c }>0) then ans := T[[i]];
11 i := i+size_of_a_warp;

Result : answer: one of the coordinates of the highest point

In this approach, each point is handled by two threads. This slightly increases
the total work but has other advantages.

• The number of threads that can be efficiently utilized doubles.

• The amount of shared memory available per point doubles.

• The chances of warp not diverging on conditional statements significantly
increases. (It is raised to the power 1

2
.)

This technique is not very beneficial in this step, but it is very useful in others.

Step 4 of the Splitting Stage

Let us assume that p and q both fall to the left subproblem, and they both lie
above the line lm, see Figure 3.3. In order to decide whether we can discard one
of them, it is sufficient to compute with means of the cross product orientation
of the angles ∠plq and ∠pmq. If the orientations are the same (the case of q1),
then no point can be discarded; otherwise, one of them is discarded (the case of
q2).

m

l r

p
q1

q2

Figure 3.3. Localization of points q1 and q2 in respect to point p.



3.5. Implementation 69

This procedure has enough symmetry to spread the classification of a single
pair to multiple threads with the technique we presented in step 2. In order for
the data to fit in the limited space provided by the shared memory, we had to
spread the computation of each pair into two threads. We chose to keep p and q
in separate threads, and we used the following procedure to compute the cross
product.

1 value:=x·y{P̄
c
}; // equals x{P

c
}·y{P̄

c
}

2 value:=value− value{P̄c};
Result : value: Cross product of vectors (x, y) in Pc and P̄c

Step 7 of the Splitting Stage

The algorithmic part of the solution is very straight forward. From the perspective
of a sequential processor, the task is to split a stream of incoming data into two
output streams (three if we count the pruned points). The parallel procedure
itself is based on computing the prefix sum on the characteristic function of
elements belonging to each class. However, is not obvious whether to recompute
which class the points belong to in this step, or store the data already computed
in step 4 in the global memory. Our implementation a little of both, but this
will not necessarily be the most efficient approach for future machines.

“Sometimes, the best optimization might even be to avoid any data
transfer in the first place by simply recomputing the data instead
whenever it is needed.”

[NVIDIA Corporation, 2008, CUDA programming Guide]

3.5. Implementation

In order to verify the relevance of the proposed model and the algorithm, we
implemented it for NVIDIA GPU parallel machines using CUDA. In this section,
we provide detailed information on our implementation of the CUDA convex hull.
We designed the implementation to work on any GPU of compute capability 1.2.
Please note that the algorithm presented in the previous sections was improved
over time to be even more efficient on modern CUDA devices. Hence, it slightly
differs from the implementation presented here.

We have used an nVidia GTX 285 card, with the following properties:

• M = 30 — Number of multiprocessors;

• W = 32 — Maximal number of concurrent warps on a single multiprocessor;

• S = 32 — Warp size



70 Parallel Convex Hull

• B = 512 — Maximal block size — size of a group of threads that can
communicate without using expensive global memory and barrier synchro-
nization

• R = 16 — Maximal register-per-thread usage to achieve full occupancy.

For MIMD grids, we could have potentially used up to P = M ·W = 960
warps, each representing an independent processor. Yet, because of the limited
amounts of shared memory and registers, we were abble to use only half of this
number, namely 480.

For SIMD grids, we launch exactly one block of B = 512 threads.

The whole program consists of four major stages. Let us now describe them,
together with the main differences between our CUDA implementation and the
theoretical algorithm explained in the previous sections.

Initialization. We search for 4 extreme points — the furthest point in the
top-left, top-right, bottom-right, and bottom-left directions. For many input
problems, this approach allows us to immediately throw out many points that
fall into a quadrilateral formed by these extreme points. Points which remain
outside the quadrilateral are partitioned into four initial subproblems. We can
run them all at once with a slight adaptation of the upper convex hull algorithm,
assigning warps proportionally.

Splitting Stage. First, for every subproblem bounded by points l and r, we
select a single random pair (a,b) and determine the pivot m. Next, we overwrite
the discarded points with a special value. Only after rejecting points inside the
triangle (l,m,r) do we pair the remaining points such that each pair consists
of points from the same subproblem. This is substantially different from the
theoretical approach where the pairing is fixed before all other operations take
place. Theoretically, an adversary can order points such that our pairing will
discard much fewer points than the number guaranteed in the original algorithm.
However, in practice, this heuristic is very effective as it significantly increases
the number of pairs with a potential of discarding a point.

In our implementation, we try to assign processors to subproblems propor-
tionally without abandoning any task, and with an accordance to lemma 3.2.
There is a small probability that there is no such split, in which case we rerun the
task, unless there are only 3 processors. Finally, the stage is complete when all
processors have been separated. This approach was a practical improvement over
our previous solution with provable length of O(logP) iterations. However, for
future implementations, we recommend the use of our current strategy described
in the previous sections.



3.5. Implementation 71

Independent Stage: At this point, the problems are small enough that each
warp can work independently of all others. Exactly one MIMD grid is launched
for this whole stage. The loop is encoded within the procedure, with every warp
holding a single stack in the CUDA local memory11. Operations on the stack,
although expensive, are executed only O(h) times.

At this stage, every processor has exclusive access to the problem it was
assigned to; therefore, we can afford a Hoare-style in-place partition. This
way, we read and classify each point only once, and we move it to its correct
destination immediately thereafter. Other parts of the program are analogical to
the collaborative stage.

Finalization: We compact the resulting convex hull points so that they are
stored consecutively in the memory.

Now, let us describe each of the major stages in more detail.

3.5.1. Initialization

The program starts with a single pass over the following phases:

Input: T[0..n]: An unordered array of 2D points,
i: Processor index (global warp index)

1. Conceptually divide the array into groups of size g :=
⌈

n
P

⌉

.
b:=g·i; e:=g·(i+1). Assign subarray T[b..e] to warp i.

2. Launch a MIMD grid: Each warp searches for the top-left, top-right,
bottom-right, and bottom-left point in its subarray T[b..e] using a simple
reduction algorithm.

3. Launch a SIMD grid to find global points: top-left (A), top-right (B),
bottom-right (C), and bottom-left(D). We form the quadrilateral ABCD.

4. We say that point p is above edge XY, if (Y− X)× (p− X) > 0. In a MIMD
grid, we count how many points in the subarray T[b..e] are above each
of the edges AB, BC, CD, and DA. Note that each point can be above only
one of the edges at most, since the vertices are the extreme points.

5. In a SIMD grid, we compute the total number of points above each of the
edges of the quadrilateral ABCD. We create 4 bins for each type of points
and reserve an appropriate amount of space in them for each warp.

11Local memory is a misleading name for a section of the global memory private to a thread.



72 Parallel Convex Hull

6. In a MIMD grid for every point in subarray T[l..r], we recompute the
edge above which it is located. We copy the point into the corresponding
bin reserved in the previous phase. Points inside the quadrilateral ABCD
are implicitly discarded.

7. In a SIMD grid, we prepare the GPU to work on the collaborative stage.
Given the four bins, we assign a number of warps to work on them,
proportional to their size. We assert that at least one warp is assigned to
each bin.

Output: The quadrilateral ABCD
4 arrays, each consisting of points lying only above an edge AB, BC, CD, DA,
respectively.

3.5.2. Splitting Stage

As long as there is at least one problem with several warps assigned to it, we
proceed as follows:

Input: i: Global warp index
T[0..n]: An array of 2D points
A set of control variables, separate for every warp.

• l, r — endpoints of the current problem that warp i is assigned to.

• B, E — begin and end indices of points that belong to the problem that
warp i is working on.

• b, e — mark the portion of array T that current warp is explicitly and
exclusively assigned to.

Assert: At least one problem has at least two warps assigned to it.
For every active warp, the range it is exclusively assigned to (b,e) lies
entirely in the problem range (B,E).
Exclusive ranges (b,e) for warps assigned to the same problem sum up to
the range of the whole problem (B,E).
For every active warp, all points in the range of the problem (B,E) are
above the base line lr.

The following phases are executed only by these warps, which are assigned
non-exclusively to a problem. Otherwise, the warp stays idle.

1. We launch a MIMD grid, with every warp selecting a random pair of points
from the problem. We ensure that every warp belonging to the same
problem selects the same pair. The pair of points form the pivoting line.
Each warp finds the outermost point in its range from T[b..e] in the
direction perpendicular to the pivoting line, using a reduction algorithm.



3.5. Implementation 73

2. A single block finds a single pivoting point m for each problem, using a
segmented prefix scan algorithm. m belongs to the convex hull. Note that
m can be l or r.

3. In the next MIMD grid, we perform a lossy partition. Each warp counts
how many points from T[b..e] will fall to the left and right subproblems.
For every pair of points falling into the same subproblem, we check whether
one can be discarded. If so, its value in the global memory is overwritten
by the pivoting point m, which guarantees that it will be discarded in the
next phase.

4. A SIMD grid finds the sizes of subproblems, based on values reported by
each warp. The memory for the new subproblems is reserved, and correct
portions of them are assigned to each of the warps.

5. A MIMD grid partitions points from T[b..e] to the left and right sub-
problems. Points are copied into another array U. Points inside the triangle
(l,m, r) are discarded.

6. Because some points may be dropped, we launch another MIMD grid to
clean up new empty space occurring in the output array U by setting a
special value there. The same part of the memory is cleaned in array T

as well. From this point, until the finalization step, the empty space will
never be referenced.

7. A SIMD grid is launched to reassign warps to new subproblems following
the good distribution principle from Section 3.3, but keeping all warps
busy, if possible. The kernel updates the control values for all warps.

Finally, pointers to the output array U and the input array T are swapped.

Output: T[0..n]: An array of partitioned 2D points
A set of control variables, separate for every warp, prepared for the next
iteration of the algorithm.

3.5.3. Independent Stage

At this point we have enough problems, so that each warp can work independently.
Exactly one MIMD grid is launched for this whole stage. Recursion stack is
encoded within the grid.

Algorithm 7 provides a detailed pseudo-code close to our CUDA implementa-
tion. Let us explain the important points of the code:

1 Each warp uses its own stack. Because the warp’s fast shared memory is
limited, the stack is located in the global memory. Stack operations become
quite expensive, but their total number is limited by O(h).



74 Parallel Convex Hull

Algorithm 7: CUDA convex hull for an independent stage

Input : inputProblem, T[b..e]: Array segment of 2D points
1 stack.push(inputProblem); // 1

2 while stack not empty do

3 problem=stack.pop();
4 pivotingLine:=randomPointPair(T[b..e]);

5 pivot:=furthestPoint(T[b..e],pivotingLine); // 2

6 declare register var p[0..2S]; // 3

7 p[0..2S].side:=’discard’;
8 p[0..S].point:=readChunk(T[b..b+S]);

9 p[0..S].side:=classify(pivot,p[0..S]); // 4

10 empty:=[S..2S];
11 subproblem[left,right].size:=0;
12 while something more to read do

13 p[empty]:=readChunk(T[next chunk]); // 5

14 p[empty].side:=classify(pivot, p[empty]);

15 sort p[0..2S] by p.side: {’left’,’discard’,’right’}; // 6

16 if count(p[0..2S].side=left)≥S then

17 connectInPairsAndDiscardSome(p[0..S]); // 7

18 subproblem[left].size+=storeChunk(p[0..S]); // 8

19 empty:=[0..S];

20 if count(p[0..2S].side=right)≥S then

21 connectInPairsAndDiscardSome(p[S..2S]);
22 subproblem[right].size+=storeChunk(p[S..2S]);
23 empty:=[S..2S];

24 sort p[0..2S] by p.side: {’left’,’discard’,’right’};
25 if empty6=[0..S] then

26 connectInPairsAndDiscardSome(p[0..S]);
27 storeChunk(p[0..S]);

28 if empty6=[S..2S] then

29 connectInPairsAndDiscardSome(p[S..2S]);
30 storeChunk(p[S..2S]);

31 cleanEmptySpace();
32 if subproblem[left].size>1 then stack.push(subproblem[left]);
33 if subproblem[right].size>1 then stack.push(subproblem[right]);



3.5. Implementation 75

2 The search for the furthest point is performed using a simple reduction
algorithm over all the points in the range.

3 We use the register space to hold 2D point data. There are S threads per
warp and each holds two points, forming a virtual array of size 2S. Thread
i holds points at index i and i+ S of that virtual array.

4 In the classify function, each thread checks independently whether the point
it holds falls to the left or right subproblem, or whether it should be
discarded.

5 If we are reading into the left side of array p (that is, into [0..S]), we take
the next unread chunk from array T[b..e] (e.g. [b+S..b+2S]). However,
if we are reading onto the right side of array p (into range [S..2S]), we
take the next unread chunk counting from the end side of array T[b..e]. In
particular, in the first iteration of the while loop, it will be T[e-S..e].

The function readChunk ensures that at the end of the inner while loop,
every point is read exactly once.

6 The sort is using p.side as a key value, which can take only three values.
This is why we use a counting-sort. The points are stored in the register
space; we make use of a small amount of shared memory to count the
points and then transfer them.

7 At this point in the program execution, we are guaranteed that in p[0..S],
there are only points which fall into the left subproblem. Now we concep-
tually connect these points into pairs, matching an even point with the
next odd point.

The two threads in parallel can compute necessary cross products to learn
if one of the points can be dropped without exchanging the full point
information.

If some points get dropped, we mark them as ’discarded’ and compact the
p[0..S] part of the array.

Analogous operations are performed at lines 21, 24, and 27.

8 We perform the partition in-place. Since there is at least one chunk of size
S read from the left and right side of array T[b..e] at all times, we are
guaranteed that we can store the computed data back there.

In our case, at line 18, we store data at the beginning of the array and
immediately thereafter, by setting “empty” to [0..S], we schedule the read
of the next chunk from the front as well, preserving the invariant.

Finally, we increment the size of the left subproblem by the number of
points that were actually stored after the pair-pruning. Note that at each
write, the value cannot be smaller than

⌊

S
2

⌋

.



76 Parallel Convex Hull

Analogous operations, working at the end side of T[b..e], are performed in
lines 22-23.

3.5.4. Finalization

We obtain an array T containing all the points of the convex hull in a sorted
order, interleaved with special markers to indicate an empty space. A stable
compaction algorithm is used to obtain the convex hull without the gaps.

3.6. Experiments

Here we present results of the tests we have performed. We created tests
containing 105, 106, and 107 points. For each size, we selected random points in
a unit square, on a unit disc, and on a unit ring. In the latter case, in theory,
all points should belong to the convex hull. In practice, however, since we used
32-bit floating point numbers, many points overlapped and some were not exactly
on the ring, resulting in much smaller convex hulls. The best practical result we
could relate to is presented in [Srikanth et al., 2009]. The algorithm we refer to
is a simple adaptation of a QuickHull algorithm that always chooses as a pivot
the point that lies the furthest from the baseline. The simplicity of the approach
makes it effective for the random input case, but gives no guarantees for a general
case. The authors provide only a very sparse performance report and complexity
analysis, and so our comparative analysis is equally brief; for details refer to
Figure 3.4. Our approach seems to outperform their implementation by a factor
of about 2.

We have also measured the number of global memory reads and writes the
program had to perform. In the analysis, we implied that the number of reads
and writes per warp is of the optimal order O

(

n
PS

log h
)

. The total number of

memory operations is then O
(

n log h
S

)

. Figure 3.5 shows how the experimentally
obtained number of reads and writes relates to this asymptotic expectation.
Finally, in Figure 3.6, we present the number of iterations the program had to
perform.

3.7. Future Research

A follow-up work based on our research already exists. While our algorithm does
not scale to the 3D case, it is a good starting point. The algorithm described in
[Tang et al., 2012] is an analogue to ours, raised to the 3D case. While it does
not compute the convex hull, it produces a star-shaped polyhedron in 3D, and in
the process prunes many of the internal points. It is designed to be an efficient
preprocessing strategy for CPU algorithms. The approach is taken another step



3.7. Future Research 77

Test n h LEDA Srikanth Our implementation

Square
105 36 70ms 9ms
106 40 970ms 14ms
107 42 19550ms 58ms

Disc
105 160 80ms 12ms
106 344 980ms 13ms 20ms
107 715 19960ms 115ms 73ms

Ring
105 31526 220ms 27ms
106 58982 2750ms 53ms
107 101405 45690ms 282ms

Figure 3.4. Absolute run times of the convex hull. Column ‘LEDA’ shows
the performance of a CPU program that computes the convex hull using 64-bit
floating point numbers, see [Mehlhorn and Näher, 1995]. Column ’Srikanth’
refers to the CUDA implementation reported in [Srikanth et al., 2009]. We
do not know exactly how the points are distributed in their tests; we believe
they are evenly distributed on a disc.

forward by [Gao et al., 2013] who first compute a star-shaped polyhedron in 3D,
and then turn it into a convex hull by flipping concave regions into convex ones.

We also suggest another approach. [Edelsbrunner and Shi, 1991] describes a
sequential marriage before conquest 3D convex hull algorithm. It has the same
weaknesses and strengths as [Kirkpatrick and Seidel, 1986] for the 2D case, hence,
to become truly efficient it needs an efficient pruning strategy. The algorithm has
suboptimal complexity O

(

n log2 h
)

, but the marriage before conquest property
is required only for the splitting stage. For the independent stage, another
algorithm can be used.

While shifting from 2D to 3D is a theoretical challenge, solving the higher
dimensional case appears to be more of an engineering challenge, unless new
approaches can be found.

A long term goal is to port other fundamental algorithms to CUDA, especially
graph algorithms, as they seem to be another class of problems that are hard
to split. The technique of partitioning a graph into small distance subgraphs
from [Mehlhorn and Meyer, 2002] might be a good starting point for developing
a marriage before conquest algorithm in this case.

Finally, nVidia recently designed CUDA devices capable of running multiple
grids concurrently. This requires some mechanism of virtual memory that at
some point will have to be investigated.



78 Parallel Convex Hull

Test n h
Memory transactions n⌈log h⌉

1000·Sreads/103 writes/103

Square
105 36 36 13 19
106 40 225 59 188
107 42 2085 453 1875

Disc
105 160 55 31 25
106 344 293 153 281
107 715 2500 1265 3125

Ring
105 31526 206 127 47
106 58982 1224 693 500
107 101405 11409 6315 5313

Figure 3.5. The number of global memory operations and their relation to
our predictions.

Test n h
Splitting ⌈logP ⌉ Independent iterations
iterations min max avg total

Square
105 36 3 9 0 3 0.04 19
106 40 4 9 0 4 0.06 30
107 42 4 9 0 5 0.06 27

Disc
105 160 6 9 0 7 0.2 98
106 344 9 9 0 10 0.45 218
107 715 11 9 0 19 0.94 453

Ring
105 31526 14 9 3 123 48 23198
106 58982 12 9 8 256 99 47540
107 101405 13 9 11 542 177 85074

Figure 3.6. Number of program iterations at splitting and independent
stages. Each warp performs the same number of steps at the splitting stage,
but at the independent stage, the number depends on the size of the problems
the warp was assigned to.



79

4
Parallel Sorting

The reader might have noticed that the previous chapter, while focusing on the
convex hull problem, provides all the necessary tools to efficiently implement
quicksort on CUDA. In fact, the code below does not contain steps we did not
already parallelize in the solution of the convex hull problem.

Algorithm 8: quicksort

Input : Array segment A[a..b]
1 if(a >= b) break;
2 pivot = select_pivot(A[a..b]);
3 p = partition(A[a..b], pivot);
4 quicksort(A[a..p-1]);
5 quicksort(A[p+1..b]);

We implemented this algorithm by removing irrelevant parts of the convex hull
implementation, which yielded very decent results. However, readers interested in
performance should refer to [Cederman and Tsigas, 2009]. The article presents
a dedicated, tuned, and tested implementation of quicksort very similar to our
approach.

Since this is an implementation of quicksort, the expected work is Θ(n log n).
Work proved itself to be a very good performance indicator in practice However,
unlike in the convex hull, in quicksort a simple comparison is sufficient to
decide into which subproblem each element should be passed. Therefore, the
number of the memory transactions has high impact on the quicksort’s running
time. Increasing the number of pivots from 2 to k decreases the I/O cost from
Θ
(

n
S
log n

)

to Θ
(

n
S
logk n

)

and is practical if we have enough free shared memory.
This raises a natural question: What is the lower bound?



80 Parallel Sorting

4.1. Lower Bound

In order to discuss lower bounds, we need a formal I/O model strong enough to
resemble a CUDA machine, but not too strong so it still remains meaningful.
We suggest the following warp-centric model.

The machine consists of P processors with a cache of size cS and a global
memory of size 2n, split into blocks of size S. In each step, each processor (in
some globally fixed order) exchanges content of its memory cells with some single
block of the global memory. By exchange we mean read a complete block and
then write S elements into it. We assume that elements to be exchanged cannot
be modified, only moved and compared.

4.1.1. Bound on Permutation

We permute n distinct elements, allowing for the usage of an extra n memory
cells. Any permutation algorithm must be able to output each of the n! possible
permutations. Assuming that each block must be accessed at least once, the
block can be permuted during its last access with no extra I/O. This way we
reduce the number of required outputs to n!/(S!)n/S . Every memory exchange
can introduce

(

cS
S

)

possible values to any of the 2n/S blocks. Therefore, to know
how many steps t are needed for P processors to permute n elements, we need
to solve the following inequality:

n!

(S!)n/S 6

(

2n

S

(

cS
S

))tP

.

Knowing that for large enough values: (n/e)n < n!; SS > S!;
(

cS
S

)

< (ce)S ,

we can relax the inequality to:
( n

eS
)n

<

(

2n

S (ce)S
)tP

.

Thus: t >
n log( n

Se
)

P log(2n
S
(ce)S)

.

If n
S
= Ω

(

(ce)S
)

, then the result is t = Ω( n
P
).

If (ce)S = Ω
(

n
S

)

, then the result is t = Ω
(

n
PS

logc
(

n
S

))

.

Theorem 4.1. The worst case number of I/O turns required to permute n
distinct elements is: Ω

(

min
{

n
P
, n
PS

logc
(

n
S

)})

To get the bound that incorporates the possibility of ℓ warps communicating
in a block, one needs to multiply c by ℓ.



4.1. Lower Bound 81

4.1.2. Bound on Sorting by Comparisons

To sort, we must first learn the correct permutation and then actually permute.
To learn the permutation by comparisons, the processor first reads a block. If the
block is read for the first time, we learn in which of the S! possible permutations
are elements in the block. This happens n/S times. Then, we learn in which of
the

(

cS
S

)

possible relations are read elements to elements already in local memory.
By the pigeon hole rule, adversary can always make sure that if we learn in which
of r possible permutations is our subset of elements, the number of possible
permutations of all elements decreases at most by a factor r. Therefore, to
know how many steps t are needed for P processors to learn a permutation of n
elements, we need to solve the following inequality:

n!

(S!)n/S
(

cS
S

)tP
6 1

Solving the inequality, analogically to the one in Subsection 4.1.1, leads to the
result: t = Ω

(

n
PS

logc
(

n
S

))

. Again, to determine the bound that incorporates
the possibility of ℓ warps communicating in a block, one needs to multiply c by
ℓ.

In Section 4.2, we mention algorithms that can match this bound.

4.1.3. Conclusions

The bounds clearly resemble the onces known for the “External Memory” model.
This is not surprising, because the settings have much in common. However, the
“External Memory” approach was first introduced to handle the delay of I/O
transactions on disks. One of the most fundamental beliefs in the community is
that in practice

(

M
B

)

= Ω
(

N
B

)

; in our case, (ce)S = Ω
(

n
S

)

. Therefore, the lower
bounds on permutations and on sorting by comparisons are equivalent. Thus,
linear work sorting algorithms perform poorly on external memories. In the
case of CUDA, the formula (ce)S ≫ n

S
looks reasonable at first, but due to the

small values of S and c, the exponential function on the left is not big enough to
balance the hidden constants. A practical implementation of radix sort, which is
described in [Billeter et al., 2009], is highly regarded in the CUDA community
and supports the claim described above.

Another common assumption, especially in the “Cache Oblivious” setting, is
the tall cache assumption (see [Frigo et al., 2012]). The assumption says that
M = Ω (B2), where M is the size of cache, and B is the size of a memory block.
In our case, the assumption would have to be applied to the shared memory and
rewritten as cS = Ω (S2), which is c = Ω (S). That is in direct opposition to the
CUDA design principles. Moreover, sharing the memory by S scalar processors
effectively leaves c memory cells per processor.



82 Parallel Sorting

The bounds for CUDA are very similar to those of External Memory if one
considers only the formulas. However, two of the most basic assumptions about
the External Memory are reversed on CUDA. Hence, for many of the problems
already considered in literature, cases that seemed to be of little importance for
larger but slower memory storages are exactly the ones that are interesting on
CUDA.

4.2. Sorting by Sorting in Registers

There are many sorting algorithms known for the External Memory. For fast
memory levels, simplicity tends to prevail, because computational complexity
(with regard to the asymptotic constant) dominates the cost of the memory
access for algorithms with a reasonable memory locality. k-merge sorting based
algorithms that minimize the number of memory accesses, especially ones based
on buffers and priority queues, proved to be effective for sorting data stored
externally in slow memories. In this section we present a simple way of interfacing
the external k-merge sort with an arbitrary internal sorting algorithm. The
greatest advantage of our approach is that it allows for smooth interfacing
algorithms between substantially different architectures. In particular, we will
use it to design an efficient many-core sorting algorithm on CUDA.

Algorithm 9: k-merge

Input : k sorted streams organized in blocks of size B
Assert : Memory can fit at least k blocks of size B

1 foreach input stream i do

2 rank(i) = −∞
3 while there is unread input do

4 while there is free space in the memory do

5 read a block b from an input stream i with the smallest rank;
6 rank(i) = max(b); // value of the last element

7 sort all elements in the memory;
8 output all elements except for k − 1 blocks with the largest elements

(and release space);

9 output remaining elements;
Result : Sorted output stream

Theorem 4.2. Algorithm 9 merges k sorted streams into one sorted stream.

Before we proceed with the proof, let us offer this intuition. Note that
the blocks are read in precisely the same order as in the k-merge algorithm



4.2. Sorting by Sorting in Registers 83

with heap build on k input buffers. This is the optimal prefetch order (see
[Hutchinson et al., 2005]).

Proof. Without the loss of generality, let us assume all elements are strongly
comparable. Let us consider a point in time when the memory is full after
reading a block and updating its rank. Note that rank(j) is equal to the largest
element read from stream j up to this point. Let ℓ be the new stream of the
smallest rank. Therefore, all the elements of stream ℓ smaller than or equal to
rank(ℓ) have already been read. For each stream j 6= ℓ, all elements smaller than
or equal to rank(j) are already read, and since rank(ℓ) < rank(j), all elements
smaller than or equal to rank(ℓ) in all streams are already read. Therefore, it is
safe to output all the blocks with elements smaller than or equal to rank(ℓ). Let
us show that there is no more than (k − 1)B elements larger than rank(ℓ).

Let j 6= i, hence rank(j) > rank(ℓ), but before reading the last block of j,
the rank of j had had to be smaller than the current rank of ℓ, as otherwise the
algorithm would not had read from j. Therefore, from each input stream j 6= ℓ,
at most B elements greater than rank(ℓ) are read, and none from the stream ℓ
itself. As there are k streams, all the elements except for at most B(k − 1) are
smaller than rank(ℓ).

From the External Memory perspective, the algorithm is already applicable
for a memory of size Bk, and is online in the sense that (except for setup) it
repeatedly reads one block and then it outputs one block. With a proper choice
of internal sorting procedure, the algorithm can already be made efficient on
CPU in this setting, but the application we are aiming for is possible only when
the memory is of size Bk + Ω(Bk). In this case, the algorithm needs to read
Ω(k) blocks before outputting Ω(k) new blocks. However, for this price, we get
the flexibility to choose the internal sorting procedure to engineer an efficient
algorithm for CUDA.

4.2.1. Internal Warp Sorting

Sorting elements by threads of a single warp is a common primitive in CUDA
programming. The current algorithm of choice for this problem is usually bitonic
sort1 in the shared memory. While it theoretically has neither optimal work nor
time, its simplicity leads to very efficient implementations. Yet, while registers
and shared memory are constructed with use of the same hardware components,
use of registers is more constrained, but this in turn makes them even faster than
already fast shared memory. The price we pay for the speed is that registers are
private to each thread and are non-addressable, that is, it must be known at the
compilation time which particular registers are to be used in each instruction.2

1http://en.wikipedia.org/wiki/Bitonic_sorter
2CUDA C language provides a syntactic sugar that allows us to define arrays in registers,

yet the indices must still be known at the compilation time.

http://en.wikipedia.org/wiki/Bitonic_sorter


84 Parallel Sorting

Therefore, in the past, each data exchange between the threads had to use the
shared memory. Additionally, CUDA devices have more registers than the shared
memory cells. With the warp shuffle instructions available on the most modern
CUDA devices, we can engineer a sorting procedure that uses only registers. The
shuffle instruction3 permits the exchange of a variable between threads within
a warp without using shared memory. The exchange occurs simultaneously for
all active threads within the warp, moving 4 bytes of data per thread. The shuffle
instruction is suitable only to a SIMD environment of a single warp. Invoking
shuffle(value, thread ID) in each thread evaluates to the first argument of
this very instruction submitted by the thread with the id specified in the second
argument.

2D Sorting, Merging and Partitioning

It is clear that shuffle can be used to implement a bitonic sorting net-
work without using the shared memory. Let us assume that the command
horizontal_sort(value) does exactly that. It takes a value from each thread
and returns the smallest value to the first thread, the second smallest to the
second thread, etc. In each thread we can internally prepare a sequence of
ordered registers that we can sort by another sorting network, we will call it
vertical_sort(sequence of registers). Now, let us take a 2D array stored
in registers indexed by thread id and register names. With the horizontal and
vertical sorting procedures we can easily sort 2D arrays using the technique from
[Scherson and Sen, 1989]. We can use this procedure to construct an efficient
k-merger using algorithm 9. Additionally, we can use it to easily implement a
k-partition using algorithm 10.

4.2.2. Efficient Sorting Algorithms

The internal warp sorting is a primitive that allows us to treat warps as if they
were simple processors in MIMD sorting algorithms that are based on mergers
and partitioners. To conclude, and hint on interesting subjects for a further
experimental study, let us suggest sorting algorithms that seem relatively easy
to implement with the set of tools we collected. We assume that P 2 < n.

k-Quicksort

Algorithm 8 can be easily adapted to use algorithm 10 to introduce the k-partition.
Any sorting algorithm can be used in the independent stage. This leads to an
algorithm with the asymptotically optimal I/O cost.

3Actually __shfl(), __shfl_up(), __shfl_down() or __shfl_xor().



4.2. Sorting by Sorting in Registers 85

Algorithm 10: k-partition

Input : Stream organized in blocks of size B
Assert : Memory can fit at least k blocks of size B

1 while there is unread input do

2 while there is free space in the registers do

3 read a block from the input stream;

4 sort all elements in the registers using 2D sorting technique;
5 foreach block b in the registers do

6 if b[0] and b[B-1] belong to the same partition i then

7 output b to partition i;

8 output remaining elements to their partitions;
Result : k output streams that are a partition of the input stream in the

sorting sense of a partition

2 Phase Merging

The algorithm is as follows.

1. Split input into P parts and sort independently.

2. Sample the data to get a set of P evenly distributed pivots.

3. Merge parts of each partition by an independent processor.

The first sorting can be done with any sequential sorting algorithm. Very
good pivots can be obtained deterministically with the procedure described in
[Cole and Ramachandran, 2010]. Finally, merging can be done with Algorithm 9.



86 Parallel Sorting



87

Part III

Other Contributions





89

5
Minimum Cycle Bases

In [Amaldi et al., 2009], we present improved algorithms for finding minimum
cycle bases in undirected and directed graphs. For general graphs, the algorithms
are Monte Carlo and have a running time of O(mω), where m is the number of
edges (arcs) and ω is the exponent of fast matrix multiplication, assuming ω > 2.
For planar graphs, the algorithm is deterministic and has a running time of
O(n2), where n is the number of nodes, whereas the previous best running time
was O(n2 log n). We moreover observe that this algorithm for planar graphs also
solves the problem for more specialized classes of cycle bases, namely, integral,
totally unimodular, and weakly fundamental cycle bases.

A key ingredient to our improved running times is the insight that the search
for minimum cycle bases can be restricted to a subset of at most nm candidate
cycles, the so-called isometric cycles, whose total number of edges is bounded
above by nm.

The work is extended in [Amaldi et al., 2010], where an O(m2n/ log n) algo-
rithm is proposed, and another practical algorithm is evaluated.



90 Minimum Cycle Bases



91

Bibliography

[Advanced Micro Devices, 2010] Advanced Micro Devices (2010). AMD64 architecture
programmer’s manual volume 2: System programming.

[Aggarwal and Vitter, 1988] Aggarwal, A. and Vitter, Jeffrey, S. (1988). The in-
put/output complexity of sorting and related problems. Communications of the
ACM, 31(9):1116–1127.

[Amaldi et al., 2009] Amaldi, E., Iuliano, C., Jurkiewicz, T., Mehlhorn, K., and Rizzi,

R. (2009). Breaking the O(m2n) barrier for minimum cycle bases. In ESA, pages
301–312.

[Amaldi et al., 2010] Amaldi, E., Iuliano, C., and Rizzi, R. (2010). Efficient determin-
istic algorithms for finding a minimum cycle basis in undirected graphs. Integer
Programming and Combinatorial Optimization, pages 397–410.

[Bhattacharya and Sen, 1997] Bhattacharya, B. K. and Sen, S. (1997). On a simple,
practical, optimal, output-sensitive randomized planar convex hull algorithm. J.
Algorithms, 25(1):177–193.

[Billeter et al., 2009] Billeter, M., Olsson, O., and Assarsson, U. (2009). Efficient
stream compaction on wide SIMD many-core architectures. In Proceedings of the
Conference on High Performance Graphics 2009, pages 159–166. ACM.

[Blumofe and Leiserson, 1999] Blumofe, R. and Leiserson, C. (1999). Scheduling multi-
threaded computations by work stealing. Journal of the ACM (JACM), 46(5):720–748.

[Cederman and Tsigas, 2009] Cederman, D. and Tsigas, P. (2009). Gpu-quicksort: A
practical quicksort algorithm for graphics processors. J. Exp. Algorithmics, 14:1.4–
1.24.

[Chan et al., 1997] Chan, T. M., Snoeyink, J., and Yap, C.-K. (1997). Primal dividing
and dual pruning: Output-sensitive construction of four-dimensional polytopes
and three-dimensional voronoi diagrams. Discrete & Computational Geometry,
18(4):433–454.

[Cole and Ramachandran, 2010] Cole, R. and Ramachandran, V. (2010). Resource
oblivious sorting on multicores. Automata, Languages and Programming, pages
226–237.



92 Bibliography

[Culler et al., 1996] Culler, D., Karp, R., Patterson, D., Sahay, A., Santos, E., Schauser,
K., Subramonian, R., and von Eicken, T. (1996). LogP: A practical model of parallel
computation. Communications of the ACM, 39(11):78–85.

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). Mapreduce: simpli-
fied data processing on large clusters. Communications of the ACM, 51(1):107–113.

[Drepper, 2007] Drepper, U. (2007). What every programmer should know about
memory. http://lwn.net/Articles/250967/.

[Drepper, 2008] Drepper, U. (2008). The cost of virtualization. ACM Queue, 6(1):28–
35.

[Edelsbrunner and Shi, 1991] Edelsbrunner, H. and Shi, W. (1991). An O(n log2 h)
time algorithm for the three-dimensional convex hull problem. SIAM J. Comput.,
20(2):259–269.

[Frigo et al., 2012] Frigo, M., Leiserson, C., Prokop, H., and Ramachandran, S. (2012).
Cache-oblivious algorithms. ACM Transactions on Algorithms, pages 4:1 – 4:22. a
preliminary version appeared in FOCS 1999.

[Gao et al., 2012] Gao, M., Cao, T.-T., Nanjappa, A., Tan, T.-S., and Huang, Z.
(2012). A GPU algorithm for 3D convex hull. Submitted to ACM Transactions on
Mathematical Software.

[Gao et al., 2013] Gao, M., Cao, T.-T., Tan, T.-S., and Huang, Z. (2013). Flip-flop:
convex hull construction via star-shaped polyhedron in 3D. In Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’13,
pages 45–54, New York, NY, USA. ACM.

[Gibbons, 1989] Gibbons, P. (1989). A more practical PRAM model. In Proceedings
of the first annual ACM symposium on Parallel algorithms and architectures, pages
158–168.

[Goodrich et al., 2007] Goodrich, M., Nelson, M., and Sitchinava, N. (2007). Sorting
in parallel external-memory multicores. submitted to WADS, 2007.

[Hennessy and Patterson, 2007] Hennessy, J. L. and Patterson, D. A. (2007). Computer
Architecture: A Quantitative Approach. Morgan Kaufmann, San Diego.

[Hutchinson et al., 2005] Hutchinson, D. A., Sanders, P., and Vitter, J. S. (2005).
Duality between prefetching and queued writing with parallel disks. SIAM Journal
on Computing, 34(6):1443–1463.

[JáJá, 1992] JáJá, J. (1992). An Introduction to Parallel Algorithms. Addison-Wesley.

[Jurkiewicz and Danilewski, 2010] Jurkiewicz, T. and Danilewski, P. (2010). Efficient
quicksort and 2D convex hull for CUDA, and MSIMD as a realistic model of massively
parallel computations.

http://lwn.net/Articles/250967/


Bibliography 93

[Jurkiewicz and Mehlhorn, 2013] Jurkiewicz, T. and Mehlhorn, K. (2013). The cost
of address translation. In Proceedings of the Meeting on Algorithm Engineering &
Experiments, New Orleans, USA. Society for Industrial and Applied Mathematics.
Invited for publication in the ACM Journal of Experimental Algorithmics (JEA).

[Kirkpatrick and Seidel, 1986] Kirkpatrick, D. G. and Seidel, R. (1986). The ultimate
planar convex hull algorithm? SIAM J. Comput., 15(1):287–299.

[McDiarmid and Hayward, 1996] McDiarmid, C. and Hayward, R. (1996). Large devi-
ations for quicksort. J. Algorithms, 21(3):476–507.

[Mehlhorn and Meyer, 2002] Mehlhorn, K. and Meyer, U. (2002). External-memory
breadth-first search with sublinear I/O. In ESA, pages 723–735.

[Mehlhorn and Näher, 1995] Mehlhorn, K. and Näher, S. (1995). Leda: A platform
for combinatorial and geometric computing. Commun. ACM, 38(1):96–102.

[Michaud, 2007] Michaud, P. (2007). (yet another) proof of optimality for min replace-
ment. http://www.irisa.fr/caps/people/michaud/yap.pdf.

[NVIDIA Corporation, 2008] NVIDIA Corporation (2008). CUDA programming
Guide, version 2.0.

[Rahman, 2003] Rahman, N. (2003). Algorithms for hardware caches and TLB. In
Meyer, U., Sanders, P., and Sibeyn, J., editors, Algorithms for Memory Hierarchies,
volume 2625 of Lecture Notes in Computer Science, pages 171–192. Springer Berlin
/ Heidelberg. 10.1007/3-540-36574-5_8.

[Rueda and Ortega, 2008] Rueda, A. and Ortega, L. (2008). Geometric algorithms on
CUDA. Journal of Virtual Reality and Broadcasting.

[Scherson and Sen, 1989] Scherson, I. D. and Sen, S. (1989). Parallel sorting in two-
dimensional vlsi models of computation. IEEE Trans. Computers, 38(2):238–249.

[Shepherdson and Sturgis, 1963] Shepherdson, J. C. and Sturgis, H. E. (1963). Com-
putability of recursive functions. Journal of the ACM, 10(2):217–255.

[Sleator and Tarjan, 1985] Sleator, D. and Tarjan, R. (1985). Amortized efficiency of
list update and paging rules. Commun. ACM (CACM), 28(2):202–208.

[Srikanth et al., 2009] Srikanth, D., Kothapalli, K., Govindarajulu, R., and Narayanan,
P. (2009). Parallelizing Two Dimensional Convex Hull on NVIDIA GPU and Cell
BE.

[Tang et al., 2012] Tang, M., yi Zhao, J., feng Tong, R., and Manocha, D. (2012).
GPU accelerated convex hull computation. Computers & Graphics, 36(5):498 – 506.
Early version appeared on Shape Modeling International (SMI) Conference 2012.

[Tiri, 2007] Tiri, K. (2007). Side-channel attack pitfalls. In Proceedings of the 44th
annual Design Automation Conference, DAC ’07, pages 15–20, New York, NY, USA.
ACM.

http://www.irisa.fr/caps/people/michaud/yap.pdf


94 Bibliography

[Valiant, 1990] Valiant, L. (1990). A bridging model for parallel computation. Com-
munications of the ACM, 33(8):103–111.

[Wenger, 1997] Wenger, R. (1997). Randomized quickhull. Algorithmica, 17(3):322–
329.


	Introduction
	The Random Access Machine and the External Memory Machine

	I Virtual Memory Translation
	The Cost of Address Translation
	Some Puzzling Experiments
	Virtual Memory
	VAT, The Virtual Address Translation Model
	Analysis of Algorithms
	Cache-Oblivious Algorithms
	Commentary
	Conclusions


	II Massive Multicore Parallel
	Parallel Convex Hull
	Sequential Algorithm
	Problem Analysis
	Marriage Before Conquest and Good Distribution
	Algorithmic Details
	Implementation
	Experiments
	Future Research

	Parallel Sorting
	Lower Bound
	Sorting by Sorting in Registers


	III Other Contributions
	Minimum Cycle Bases

	Bibliography

