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Abstract

Background: People with severe disabilities, e.g. due to neurodegenerative disease, depend on technology that

allows for accurate wheelchair control. For those who cannot operate a wheelchair with a joystick, brain-computer

interfaces (BCI) may offer a valuable option. Technology depending on visual or auditory input may not be feasible

as these modalities are dedicated to processing of environmental stimuli (e.g. recognition of obstacles, ambient

noise). Herein we thus validated the feasibility of a BCI based on tactually-evoked event-related potentials (ERP) for

wheelchair control. Furthermore, we investigated use of a dynamic stopping method to improve speed of the

tactile BCI system.

Methods: Positions of four tactile stimulators represented navigation directions (left thigh: move left; right thigh:

move right; abdomen: move forward; lower neck: move backward) and N = 15 participants delivered navigation

commands by focusing their attention on the desired tactile stimulus in an oddball-paradigm.

Results: Participants navigated a virtual wheelchair through a building and eleven participants successfully

completed the task of reaching 4 checkpoints in the building. The virtual wheelchair was equipped with simulated

shared-control sensors (collision avoidance), yet these sensors were rarely needed.

Conclusion: We conclude that most participants achieved tactile ERP-BCI control sufficient to reliably operate a

wheelchair and dynamic stopping was of high value for tactile ERP classification. Finally, this paper discusses

feasibility of tactile ERPs for BCI based wheelchair control.
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Background
Brain-computer interfaces (BCI) allow for direct communi-

cation between a person’s brain and technical devices with-

out the need for motor control (for review, [1-4]). BCIs

thus constitute a promising assistive technology device for

people with severe motor impairment, e.g. due to neurode-

generative disease (e.g., [5-10]). Among many different ap-

plications, researchers suggested their use for wheelchair

control (e.g., [11]), thus rendering BCIs of high value for

people with severe paralysis who are not able to control a

wheelchair by means of a joystick (e.g., [12]).

For example, people with intermediate spinal muscle at-

rophy (SMA, type II) are usually in need of a wheelchair at

a young age. With progression of the disease, they may lose

control of a wheelchair even by means of a small finger

joystick. Control with eye-tracking devices is not feasible,

as they obviously need the visual modality for observation

of their environment during navigation. Facial muscles

may also lose their reliability and are rapidly fatigued in fre-

quent use [13]. With progression of disease, BCIs may be-

come a feasible alternative for wheelchair control.

Among different input signals for BCI control, electroen-

cephalography (EEG) appears viable for wheelchair control

due to its high temporal resolution and portability. Most

studies on wheelchair control by means of a BCI investi-

gated sensorimotor rhythms (SMR) as input signal that can

be modulated voluntarily by motor imagery (MI; [14,15]). It
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is possible to discriminate between different imageries or

for example between imagery and rest. Each command is

referred to as one class, e.g. left hand vs. right hand MI

would be referred to as a two-class SMR-BCI paradigm.

Different protocols have been suggested for wheelchair

(or robot) navigation tasks that either analyze ongoing

EEG activity (asynchronous control, i.e. a command can be

delivered at any time; e.g., [11,12,16-19]) or analyze EEG ac-

tivity at a given time window (synchronous control, i.e. a

command can be delivered only at a certain time; e.g.,

[20-22]). The latter require cues that trigger the time win-

dows and display them to the user. Such cues can be pre-

sented visually. However, to achieve SMR modulations

without occupying the visual channel (i.e. visual cue on

a screen), auditory-cued paradigms have been validated

(auditory: e.g., [21,23]; auditory + visual: e.g., [20]). Fur-

thermore, feedback can be presented through tactile

stimulation units (e.g., [24,25]).

As any error made while controlling a wheelchair may im-

mediately cause damage (or even danger for the patient),

wheelchairs may be equipped with shared control systems,

i.e. sensors that for example prevent collisions or regulate

speed while approaching an object (e.g., [12,16,26-28]). Such

shared control systems usually also dedicate parts of the

movement control to the wheelchair as BCIs are not yet

capable to operate on a full control level as possible with

motor control [29]. One reason is, that the number of clas-

ses in SMR based BCIs is limited, as discrimination between

different MI patterns becomes more difficult with increasing

class number, and intensive training may be required [30].

Thus, researchers introduced paradigms that extrapolate dif-

ferent navigation commands from few MI classes only, e.g.

translate three MI classes into six different commands [11]

or two MI classes into three different commands [20,30].

Such translation, however, may require tasks that are

more complex and entail slower rates for communicating

commands. Furthermore, a general issue with motor im-

agery based BCIs is that for many participants SMR-BCIs

are inefficacious or display large performance variations

across runs [31-35]. However, reliability of BCI commands

is particularly necessary for accurate wheelchair control. In

a recent evaluation study, severely motor impaired end-

users rated reliability of BCI applications controlled by

event-related potentials (ERP) high [10]. ERP-based systems

may thus constitute a more reliable alternative to SMR as

input signal for wheelchair control, although users cannot

actively modulate ERPs for control command generation

but need external stimulation. ERP-BCIs make use of a so-

called oddball-paradigm, i.e. rare but relevant stimuli are

presented within frequent, but irrelevant stimuli. Users

focus their attention by counting the rare target stimuli

whilst ignoring all other (non-target) stimuli. Target stimuli

will evoke more pronounced negative and positive poten-

tial fluctuations in the event-related EEG than non-target

stimuli (for review on the paradigm, [36]). The most

prominent potential in ERP-BCI systems usually is the

P300, a positive deflection around 300 milliseconds

post-stimulus ([37], its amplitude, shape and latency

strongly varies with paradigms and subject-specific con-

ditions; for review, e.g., [38]), which is why ERP-BCIs

were often referred to as P300-BCIs (originally by [39]; for

comparison of ERPs contributing to ERP-BCI performance

[40]; for recent review [36,41-43]). By detecting the elicited

ERPs, classification algorithms can identify the intended

target selection and translate it into a control command.

Several ERP-based BCI systems for wheelchair (or robot)

control have been proposed that differ strongly concerning

the amount of control that is left to the user. Rebsamen

and colleagues [44] proposed a system, which allowed

users to select the targeted destination in a building (e.g.

the kitchen) from a visually displayed ERP-BCI matrix. The

wheelchair will then autonomously drive to the selected lo-

cation. This fully transfers navigation control to the smart

wheelchair and users can only interfere through selecting a

stop mechanism that will terminate the movement. A simi-

lar level of control was proposed for control of a humanoid

robot [45]. Users selected targeted objects or locations from

a series of camera screenshots used as stimuli in an oddball-

paradigm. The robot then autonomously approached and

picked up the object. The advantage of such systems with

which users select high-level goals (e.g. a location) while the

system performs all low-level operations (steering toward

the location) usually lies in its speed and accuracy. However,

its performance fully depends on which and how many en-

vironmental conditions the device can handle. In addition,

users may well prefer to have more process control on

their side, as situational goals may change and the goal

selection options of the smart wheelchair may not

cover all goals.

An ERP-BCI for actual navigation control can easily be

implemented by displaying direction arrows in a visual

ERP-BCI matrix, i.e. the wheelchair is steered step by step

by selecting the upcoming movement direction from a sep-

arately displayed matrix [46]. Iturrate and colleagues pro-

posed a more advanced ERP-BCI for navigation control

[47]. The authors equipped a wheelchair with a screen

that displayed a reconstruction of the real environmental

scenario in real time. Target locations were displayed in

the reconstruction model and could be selected using an

ERP-BCI. Consequently, the system leaves more decisions

to the user, yet the actual target locations are computed

by the smart wheelchair, i.e. users can only select those

target locations that are recognized as possible locations

by the detection sensors. This system was recently devel-

oped further for control of a telepresence mobile robot

[48]. Furthermore, different input signals can be combined

for wheelchair control in a hybrid approach (e.g., [49]).

Long and colleagues [49] implemented a system that
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controlled direction by means of SMR modulation and

speed with a visual ERP-BCI.

Although visually elicited ERPs usually provide best

classification accuracies [50] and thus highest information

transfer rates compared to other modalities (for review,

e.g., [36]), there are several issues with regard to wheelchair

control. The same issues apply to BCIs based on steady-

state visual evoked potentials (SSVEP, e.g., [51]) (1) Visual

stimulation requires a display mounted in the visual field

of the user, which is critical for those with severe impair-

ment not able to move the neck for looking past the screen

to observe their environment they navigate through. (2)

Users cannot observe their environment in the process of

target selection, as they need to pay attention to the visual

stimulation. (3) Changing light settings may negatively in-

fluence the efficacy of BCIs that rely on visual stimulation

(e.g. due to bright sun).

In light of these restrictions, Brower and van Erp pro-

posed to tactually elicit ERPs for BCI control [52]. Such

tactile BCIs use tactile vibration units (called tactors)

placed on participants’ body, e.g. on hands and wrists

[50], on different positions around the waist [52-54] or

on the back of participants [54]. Similar to the visual

oddball-paradigm, tactors are stimulated randomly (i.e.

they vibrate for a short time) and participants focus their

attention on one of the tactors (target) whilst ignoring

all others (non-targets). Stimuli will elicit distinct ERPs

among which the most prominent is the above described

P300 component ([54]; for a thorough investigation of

tactually-evoked ERPs in a BCI setting). Brouwer and

van Erp [52] investigated how stimulus uncertainty (i.e.

the number of stimuli used) and stimulus timing affect

classification accuracy and found equal accuracies for

two, four and six tactors. For stimulus timing, they

found similar parameters feasible as used for visual

ERP-BCIs. Thurlings and colleagues [54] found, that

placement of tactors significantly affected offline BCI

performance in a paradigm that applied tactors for

control-display mapping (i.e. mapping between naviga-

tion directions and tactor location). A placement that

was congruent with the navigation environment provided

best results. Recently, a case study reported tactile stimu-

lation feasible for reliable elicitation of ERPs in a patient

with classic locked-in syndrome [55]. Results were more

robust in the tactile than in the auditory or the visual do-

main. Our current study is based on these results that

established a basis for tactile ERP-BCI based navigation.

In contrast to the above described studies on wheelchair

control that use SMRs, SSVEPs or visually-evoked ERPs as

input signal, this study investigated feasibility of tactually-

evoked ERPs for wheelchair control. (1) We exposed par-

ticipants to a virtual environment. Participants steered a

virtual wheelchair in real time by selecting one of four tac-

tor locations. This approach allowed us to investigate how

more complex (and realistic) scenarios affect user perform-

ance. Navigation tasks can be regarded as more complex,

as users individually decide on the path they take and as

processing of their environment may distract them. (2) Re-

cently, researchers reported great benefit of dynamic stop-

ping methods for visual and auditory BCIs (e.g., [56-60];

for comparison of techniques [61,62]). The proposed algo-

rithms stop the stimulation cycle when classification

reached sufficient probability for identification of the

intended target from the event-related EEG. Thus, they dy-

namically adjust the number of stimulation cycles based on

users’ individual brain signals. In this work, we investigated

the potential of dynamic stopping on performance and

timing in tactile ERP-BCIs. (3) Finally, we evaluated device

satisfaction following the user-centered approach [10,63].

Methods
Participants

N= 17 healthy participants were recruited for this study.

We excluded one participant due to incompliance with the

experimental protocol and one participant stopped before

the end of the experiment. The final sample thus comprised

N = 15 participants (12 female, mean age: M = 21.8 years,

SD = 2.9, range 18–27 years). All had normal or corrected-

to-normal vision and none reported any neurological

disorders. All participants were naïve with regard to

tactually evoked ERP-BCIs. We conducted the experi-

ment in accordance with standard ethical guidelines as

defined by the Declaration of Helsinki (World Medical

Association) and the European Council’s Convention

for the Protection of Human Rights and Dignity of the

Human Being with regard to the Application of Biology and

Medicine (Convention on Human Rights and Biomedicine).

All participants gave written informed consent prior to the

study. The study was approved by the ethics committee of

the Institute of Psychology at University of Würzburg,

Germany.

Equipment and data acquisition

Eight tactile stimulators, i.e. vibrate transducers (C2 tactors;

Engineering Acoustic Inc., Casselberry, USA), were grouped

into pairs of two and attached to a participant’s left thigh

(top, toward knee), right thigh (top, toward knee), abdomen

(above navel) and lower neck (at the height of C4 to C8)

using Velcro® belts. Prior to the experiment participants had

the opportunity to stimulate all tactors individually, to en-

sure that they adequately perceived all stimulations. During

the experiment, each pair of tactile stimulators consti-

tuted one target, i.e. two tactors at close position were

stimulated simultaneously. We found that grouping two

tactors into one target facilitated participants' recogni-

tion of stimuli in a pilot study. Stimulus duration was

set to 220 ms and inter-stimulus interval to 400 ms.

Stimulation frequency was 250 Hz.
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EEG was acquired from 16 passive Ag/AgCl electrodes at

positions Fz, FC1, FC2, C3, Cz, C4, CP1, CP2, P7, P3, Pz,

P4, P8, O1, Oz and O2 ([5]) with ground and reference be-

ing applied to right and left mastoid respectively. Imped-

ance was kept below 5 kΩ. Signals were amplified using a

g.USBamp (g.tec Engineering GmbH, Graz, Austria) and

recorded at a sampling rate of 512 Hz. Band pass filtering

between 0.1 and 60 Hz and notch filtering between 48 and

52 Hz were applied online.

Software implementations

Tactile stimulation

We implemented control of the C2 tactor API in C++ and

integrated it into the BCI2000 software (Version 3.0; [64]).

We modulated the P3Speller module, usually used for

communication of characters (for details on the procedure

see [39]), such that flashing of the visual character matrix

triggered stimulation of tactor pairs (see section “Equip-

ment and data acquisition”). In a 4×4 character matrix,

flashing of row 1 or column 1 would trigger stimulation of

tactor pair 1, row 2 or column 2 would trigger tactor pair

2, etc. Consequently, a 4×4 matrix triggers four possible

targets (the diagonal). The underlying spelling matrix was

invisible to the participants.

Feedback paradigms

Participants were guided through the calibration and copy

task runs (see section “Study design”) such that the current

target was displayed on a screen, i.e. target positions on the

body were presented in a schematic side- and top view.

Figure 1A provides a screenshot of the presented display

during the calibration phase. The same display was also

presented during the copy task runs except that feedback

on the outcome of classification was provided in real time.

We implemented the paradigms in Python 2.5 (using

Pygame 1.9 and PyOpenGL 3.0) and connected them to

BCI2000 via user datagram protocol (UDP). Feedback para-

digm and BCI2000 were executed on separate computers.

Virtual environment

We created a 3D-model of a virtual building in Blender

2.6 (Blender Foundation, Amsterdam, Netherlands). It

comprised a single floor with four rooms and a corridor.

Figure 1B displays a top view of the floor plan. We also

modeled a wheelchair and several objects (table, checkpoint

flags) in Blender and generated corresponding textures with

Gimp 2.8 (www.gimp.org, GNU Image Manipulation pro-

gram). The Panda3d game engine (Version 1.7; Entertain-

ment Technology Center, Pittsburgh, USA) was used to

accomplish motion of the wheelchair through the building.

Finally, the virtual environment was connected to BCI2000

via UDP. Figure 1C provides a screenshot of the virtual en-

vironment. Participants controlled the wheelchair from a

third person perspective (view from behind the neck

support of the wheelchair). We chose this perspective as

from a first person perspective the wheelchair would not

have been visible and participants could not have looked

around as would be possible in a real wheelchair setting or

virtual environment. As the scenario displayed on the screen

was restricted to one view, we consequently chose a view

from which they could perceive the wheelchair and their en-

vironment. In the upper right corner, a top view map pro-

vided position tracking to support orientation in the

building.

The virtual wheelchair was equipped with collision sen-

sors imitating the behavior of an intelligent wheelchair.

The collision system was implemented independent from

the one incorporated in Panda3d’s game API, as this pre-

set collision system allows for sliding along walls. This

would not be feasible for wheelchair control. The wheel-

chair was thus equipped with collision sensors that would

either stop the wheelchair (prevent collision with an object

and/or sliding along it) or slow down the wheelchair’s

speed to enable for more accurate control (e.g. when

passing through a door). Figure 1D illustrates the colli-

sion zones of the wheelchair. Detection of objects

within the forward or backward collision zones imme-

diately stopped all movement in the specific direction

and the wheelchair ignored all further commands in

this direction until the zone was cleared again. By util-

izing generous forward and backward collision zones

we ensured that collision free turning is possible after

the wheelchair stopped. Detection of objects within

the “slow mode” collision zone reduced the movement

and turning speed down to 50% of the original value

until the zone was cleared again.

Each time a pair of tactors was classified as target (left,

right, forward or backward; section “Equipment and data

acquisition”) the wheelchair would either move by 1 virtual

meter into the desired direction or turn to the requested

side by 45 degrees.

We placed four checkpoints in the building. They illus-

trated the task of moving along a corridor through a door

into the office room to approach the desk. The optimal

path to fulfill this task comprised 16 commands with no

more than 5 commands in between two check-points

(see Figure 1B).

Offline and online classification: dynamic stopping and

static stopping

We refer to classification based on data acquired during a

calibration run as offline classification, whereas online

classification is classification that is performed during on-

going data collection and results in immediate feedback to

the user.

During online runs, data were streamed into MATLAB

2010b (The Mathworks Inc., Massachusetts, USA) using Field-

trip ([65]; http://fieldtrip.fcdonders.nl). Online classification

Kaufmann et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:7 Page 4 of 17

http://www.jneuroengrehab.com/content/11/1/7

http://www.gimp.org
http://fieldtrip.fcdonders.nl


(stepwise linear discriminant analysis, SWLDA, 800 ms

post-stimulus; as e.g. used in [39,66,67]) was then per-

formed in MATLAB and results communicated to the

feedback applications by means of UDP.

We implemented a dynamic stopping based on a com-

bination and modification of two recently published dy-

namic stopping methods ([56,57], see introduction).

Figure 2 illustrates the decision tree. The tree comprised

three basic rules as follows. (1) A minimum number of

three sequences were collected for classification. (2) If no

decision could be made after gathering a predefined max-

imum number of sequences (NoS), the most likely target

was classified from all gathered sequences of the trial. The

maximum number of trials was adjusted for each partici-

pant separately based on results from calibration (mini-

mum NoS to reach offline performance estimation of

stable 100% plus two sequences; described in detail in

[68]). (3) A dynamic stop could be performed if the most

likely target was the same three sequences in a row (modi-

fied from [57]) or if a t-test with unequal variance per-

formed on so far gathered samples was significant at an

alpha level below 10% (modified from [56]). The alpha

level was chosen after pilot testing.

We compared dynamic stopping to the commonly used

static stopping, i.e. each trial comprised a fixed number of

sequences that were all used for classification. The number

of sequences was equal to the maximum number of se-

quences used in the dynamic stopping run.

Study design

Before the experiment, participants were instructed and tac-

tors were placed (see section “Equipment and data acquisi-

tion”). Participants had the possibility to adjust tactor

positions by a few centimeters until they perceived all stimu-

lations equally well. To familiarize the participants with the

floor map and with the control principle of the virtual

wheelchair, they used a keyboard to move the wheelchair

through the virtual environment during EEG preparation.

The actual experiment consisted of one calibration run

(predefined task; data is used to compute classifier weights),

two copy tasks (predefined task; used to evaluate classifier

performance online) and finally the main goal of the study,

i.e. one task aiming at navigation through the virtual build-

ing. Duration of calibration was 10 min. Duration of copy

and navigation tasks were participant specific depending on

their performance (see section “Results”). One calibration

trial comprised 15 stimulation sequences per tactor pair,

i.e. each tactor pair vibrated 30 times (one sequence corre-

sponding to four row and four column flashes in the visual

matrix; see section “Software implementations - Tactile

stimulation”). Calibration was performed with eight trials

(each tactor pair was twice the target). If offline

Figure 1 Experimental design. (A) Screenshot of the display presented during the calibration phase. The current target tactor was presented

schematically in top and side view. The arrows on the top left indicate the consecutive targets of the run. (B) Top view of the floor plan. Four

checkpoints were inserted into the building and participants had to target one after another until reaching a desk at checkpoint 4. (C) Screenshot of the

virtual environment (view from behind the neck support of the wheelchair). The screenshot was taken shortly before reaching the final checkpoint

(blue/red stack) close to the desk (left center of the screenshot). In the upper right corner, position tracking was provided for orientation in the building.

(D) Collision zones of the wheelchair. When frontally approaching an object (i.e. an object enters the “stop” zone marked in orange), the wheelchair

would stop to prevent collision. Furthermore, it would slow down when any objects entered the “slow” zone (green ellipse around the wheelchair).
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analysis revealed a performance below 100% after these

eight trials (when including all sequences into classifi-

cation), we repeated calibration once. After calibration,

participants performed two copy task runs. One copy

task run included static number of sequences, i.e. each

trial comprised a maximum number of sequences before

classification. A second copy task run introduced the above-

described dynamic stopping method. This allowed for with-

in comparison of performance achieved with and without

dynamic stopping. During both copy tasks, immediate feed-

back on classification outcome was provided to the partici-

pants. As for the calibration run, each tactor pair was twice

the target, resulting in eight trials per copy task run. Partici-

pants then moved on to control of a virtual wheelchair and

tried to navigate along the predefined route (see section

“Software implementations – Virtual environment”). When

reaching one of the four checkpoints, they took a break of

approximately one minute before moving on (the BCI was

manually switched off during this time by the experimenter).

The number of trials during navigation varied dependent on

the participants’ performance. In the optimal path (Figure 1B)

selection of the “move forward” command was required

most frequently. However, as errors had to be corrected, the

number of required commands per navigation direction dif-

fered between participants.

Offline data processing of ERPs

EEG data were filtered between 0.1 and 30 Hz (FIR

equiripple) and divided into segments of 800 ms post-

stimulus. Determination between targets and non-targets

was quantified by computing R2 values. For computing the

grand average of R2 values we Z-transformed (Fisher’s Z)

the square root of the determination values for each par-

ticipant and electrode, averaged across participants and fi-

nally retransformed and squared these grand averages.

Analysis of system performance

In the virtual environment, performance estimation is dif-

ficult, as different paths may be feasible for reaching the

checkpoints. For example, after an error participants may

either steer back by one step or take a different path to ap-

proach the next checkpoint. Thus, we asked participants

to report during the breaks whether or not the selected

targets were the desired targets and performance was

computed based on their reports. To control for false

reporting, we manually went through each decision and

decided if it was goal-oriented. Finally, we aligned these

two analyses. Except for two selections, these decisions

were similar to the subjects reports (265 selections in

total; from the two selections one would slightly increase

performance estimate, one would slightly decrease per-

formance estimate). Therefore, we consider adequate to

estimate performance based on subjects reports.

The impact of shared control was determined from the

number of collisions and the number of times when sen-

sors for slowing down speed were active. Furthermore, we

computed the time required for delivering commands

from the duration of stimulus and inter-stimulus intervals.

Classification time, wheelchair movement duration and

duration of the breaks the participants took at each

Figure 2 Decision flow chart of the dynamic stopping method.
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checkpoint were not taken into account. Thus, the re-

ported time is system independent and includes only the

mandatory time needed for stimulation.

Furthermore, following the user-centered approach we val-

idated the system based on user reports. Participants rated

their confidence with tactile ERP-BCI based wheelchair con-

trol with forced choice questionnaires. The questions cov-

ered learnability, strain, level of control, speed of the system

and participants’ trust in the used BCI technology [10].

Statistical analysis

We checked data of achieved BCI performance for normal

distribution using Lilliefors - Kolmogorov Smirnov tests.

Due to non-normal distributions, we performed pairwise

testing with the Mann–Whitney U test. Bonferroni cor-

rection to 5% alpha levels is indicated. Statistical analysis

was performed in Matlab 2010b.

Results
Five participants repeated calibration once due to insuf-

ficient offline performance estimates after the first cali-

bration run. Figure 3 displays offline classification

performance: N = 14 of 15 participants achieved offline

classification accuracy of 100%. Their average number of

sequences required to reach Stable 100% offline accuracy

(i.e. retaining 100% performance when adding further se-

quences) was M= 4.9 (N = 14, SD = 1.8, range: 2–8). This

would correspond to an average time of M = 24.3 s per

command. Offline performance for participant 15 was es-

timated Stable 87.5% with eight sequences, but did not

further improve when calibrating on all sequences.

Dynamic vs. static stopping

We validated tactile stimulation for ERP elicitation online

in two copy tasks. Participants gained overall high accuracy

levels in both tasks (see Figure 4A). Average accuracy with

static number of sequences was M= 90.8% (SD = 13.7,

range 62-100%) and nine of 15 participants performed

without errors. The time needed to fulfill the task with

static stopping ranged from 4.2 to 8.2 min (M = 6.1,

SD = 1.2 min), whereas the time needed to fulfill the task

with dynamic stopping ranged from 2.6 to 5.4 min

(M = 3.7, SD = 1.0). Performance did not significantly

decrease when introducing dynamic stopping (N = 15,

Z = 0.70, p = .48; M = 84.2%, SD = 23.4), i.e. most par-

ticipants maintained the performance level achieved

with static number of sequences. However, performance for

two participants (participant 6 and 15) severely decreased -

for participant 15 even to chance level (25%). Furthermore,

we investigated if errors were equally distributed across tar-

gets. The total amount of errors did not differ between the

targets (left: 10% errors of all left target selections; right:

11.7%; forward: 13.3%; back: 15%; N = 15, H (3) = 0.97,

p = .81, Bonferroni adjusted alpha level: α = .0083).

Figure 3 Offline classification accuracy estimated from calibration data for each individual subject (left) and averaged across all subjects (right).
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Figure 4B depicts the average number of sequences

needed to deliver a command. In line with previous re-

ports, the number of sequences significantly decreased in

the dynamic stopping copy task (N = 15, Z = 3.81, p < .001).

Consequently participants on average needed M= 27.2

seconds per selection as compared to M= 44.6 seconds in

the task with static number of sequences.

Wheelchair navigation

Participant 15 did not perform the navigation task as

the performance decreased to chance level when using

dynamic stopping in the copy task (section “Results –

Dynamic vs. static stopping”). Thus, only N = 14 of 15 par-

ticipants performed the navigation task through the virtual

building. For each participant, Figure 5 illustrates the path

along which they steered the virtual wheelchair. Import-

antly, N = 11 participants reached the targeted desk at

checkpoint 4 and four participants made no error. Al-

though the navigation task can be regarded as more com-

plex than a simple copy task, performance did not

significantly decrease in the virtual environment (N = 14,

Z = 0.33, p = .74). Average accuracy was M = 85.8%

(SD = 17.6, range 37.5-100%) with a mean of M = 5.58

sequences. Three participants, however, could not suc-

cessfully finish the task and performed the experiment

only until they communicated to prefer canceling. Two of

them at least managed to pass the corridor before quitting

whereas participant 6 again had almost no control (due to

dynamic stopping, see section “Results – Dynamic vs.

static stopping”) and thus canceled the experiment early.

In contrast to the copy tasks that involved no correction

of errors, wrong selections in the virtual environment had

a direct impact for the further navigation task, i.e. errors

had to be corrected. Alike intelligent wheelchairs pro-

posed in robotics research, the virtual wheelchair was thus

equipped with simulated shared control sensors. Most

participants (N = 8) did not navigate into any situation

where these sensors were needed. Collision was prevented

once for N = 4 participants, twice for participant 3 and five

times for participant 14. Sensors for slowing down speed

of the wheelchair were active for two participants when

passing the door to the office room. Hence, they managed
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to enter the room and reach the checkpoint. For partici-

pant 4 these sensors were activated three times when

passing close to a wall, but did not have an effect on the

navigation, i.e. they were instantly turned off again with

the next movement of the wheelchair (see Figure 5).

Table 1 summarizes participants’ individual navigation

task performances and task durations.

ERP differences in target vs. non-target trials

During stimulus duration, tactile stimulation of non-target

positions also evokes an event-related response as partici-

pants directly perceive all stimuli on the body and cannot

easily ignore them. Yet after around 300 ms, target and

non-target signals diverge. Target stimulation elicits a

P300, whereas non-target stimuli often entail a negative

ERP in the period between 300 and 500 ms post-stimulus.

ERP responses differed considerably between participants,

yet for all of them discrimination between target and non-

target stimuli was possible (see Figure 6). Figure 7 pro-

vides a topographical map of the grand-averaged ERPs

across all participants based on calibration data.

We further computed the determination coefficients

to investigate which features contribute most to classifi-

cation. As depicted in Figure 8, the centro-parietal elec-

trodes contributed most to discrimination between

targets and non-targets. Determination coefficients were

highest between 400 and 500 ms, i.e. in the time window

of the tactile P300.

Subjective validation with questionnaires

We further explored system performance using forced

choice questionnaires with the four choices “I do not agree

at all”, “I do not really agree”, “I mostly agree”, “I fully

agree”. Table 2 depicts the results. All participants were

confident with learning how to control the wheelchair

and – except participants 6 and 14 – with reliability of

control. As expected, responses to questions on learnabil-

ity and reliability depended on participants’ task perform-

ance. With regard to strain and speed participants’

answers were independent of their actual performance

(Kendalls Tau τ = .06, p = .86). For example, participant 5

who did not perform any error in the virtual environment

stated that control was too demanding.

Discussion
Tactile ERPs for BCI based wheelchair control

We exposed participants to a virtual environment and

asked them to navigate a virtual wheelchair by means of a

tactually evoked event-related potential based BCI. Our

results are promising in that most of the participants

reached the final checkpoint and that only few partici-

pants needed shared control.

Figure 5 Path along which participants steered the virtual wheelchair.
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Table 1 Summary of participants’ individual performances in the wheelchair navigation task

Participant Final checkpoint
reached

Time needed [min]
(b.c. = before canceling)

Accuracy
(sensitivity) [%]

Specificity [%] Average time
needed per
selection [s]

Average number of
sequences per
selection [abs]

Collision sensors
needed [abs]

Sensors for slowing the
wheelchair needed [abs]

1 x 8.8 100.0 100.0 17.7 3.6 - -

2 x 20.8 90.0 96.7 35.7 7.2 - -

3 x 21.0 77.8 92.6 25.2 5.1 2 1

4 - 36.0 b.c. 63.3 88.5 38.5 7.8 1 3

5 x 12.8 100.0 100.0 27.3 5.5 - -

6 - 7.8 b.c. 37.5 79.2 33.5 6.8 1 -

7 x 15.0 94.4 98.2 27.6 5.6 - -

8 x 14.4 89.5 96.5 25.6 5.2 - -

9 x 14.3 88.9 96.3 26.6 5.3 1 -

10 x 14.9 90.0 96.7 23.3 4.7 1 1

11 x 14.3 100.0 100.0 30.7 6.2 - -

12 x 10.3 100.0 100.0 21.4 4.3 - -

13 x 12.7 94.7 98.2 22.5 4.5 - -

14 - 22.7 b.c. 75.0 92.8 31.9 6.4 5 -

Total: N = 11 Mean: 14.5 (excl. those who canceled) Mean: 85.8 Mean: 95.4 Mean: 27.7 Mean: 5.6 Total: 11 (N = 6) Total: 5 (N = 3)
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Importantly, N = 14 of 15 participants reached 100% off-

line classification accuracy and one further participant had

an offline accuracy level of 87.5%. In all three online tasks,

performance of N = 11 participants remained above 70%.

For two further participants performance may have

remained high (participant 6) or at least medium (partici-

pant 15) if we would not have switched to the dynamic

stopping method. Tactile ERP-BCIs may thus offer a valu-

able alternative to motor imagery based BCIs considering

the findings that many SMR-BCI users do not gain suffi-

ciently reliable SMR control [31-35]. Also, SMR-BCIs usu-

ally require a longer calibration phase than ERP-BCIs and

intensive user training may be necessary to achieve a good

level of control, specifically in people with neurodegenera-

tive disease [8]. However, performance varied considerably

between participants implying the need for testing larger

groups for generalization of results, which is hardly ever

the case in studies that use BCI for wheelchair control

(e.g., N = 2 in [11,12,16,30,46]; N = 3 in [69]; N = 5 in

[20,44,47,48]; and N = 6 in [22]). Furthermore, often healthy

users with prior BCI experience were selected thereby also

hampering generalization of results (e.g., [30,70]). Since all

our participants were naïve with regard to tactile ERP-

BCIs, we speculate that a studious learning of tactile

perception (in particular learning to ignore irrelevant

tactile stimulations) may further enhance their per-

formance. Furthermore, rebuilding classifiers based on

more data input may increase performance, as the

short calibration performed at the beginning of the ex-

periment may not be sufficient.

Consequently, in case more data would further en-

hance classifier accuracy, generic models could be of

high value to shorten calibration time (i.e. building a

classifier based on data from a large pool of participants;

e.g., [71,72]). Also, such models may increase perform-

ance of those participants who do not achieve accurate

Figure 6 Average event-related potential at electrode Cz for all N = 15 participants based on calibration data.
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control with their individual classifier [73]. However, our

results show large inter-individual differences of the

ERPs elicited post-stimulus. In line with previous reports

(e.g., [54]) the tactually-evoked P300 peaked at central

electrodes with an average latency around 400-500 ms.

Centro-parietal electrodes contributed most to classifica-

tion accuracy. Considering the varying ERP responses

across participants, recording from more electrode sites

could further enhance subject-specific ERP detection

and facilitate investigation of generic models.

Our study design built on prior work on tactile ERP

elicitation. Brouwer and van Erp [52] found no perform-

ance difference with regard to a number of two, four or six

tactile stimulators. We thus implemented a system

based on four tactors representing direction control

units. Thurlings and colleagues [54] investigated how

congruent tactor positioning affects task performance.

They positioned a monitor vertically or horizontally in

front of participants. A control display mapping was

realized with tactors positioned either congruent with

monitor angle (i.e. horizontal tactor positions around

the waist for horizontal monitor placement and vertical

tactor positions on the participants’ back in the case of

vertical monitor placement) or incongruent (i.e. horizontal

tactor positions around the waist and vertical monitor

placement). The authors demonstrated that a congruent

setup yielded increased P300 amplitudes and thus in-

creased estimated BCI performance. Therefore, in our

Figure 7 Topographical representation of the grand average event-related potential across N = 15 participants based on calibration

data.
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study we aligned tactor placement with movement direc-

tions. With regards to stimulus timing we opted for an

on-time of 220 ms and an off-time of 400 ms, i.e. a similar

timing than the baseline condition from Brouwer and van

Erp [52] in experiments 1 and 2 (188 ms on-time, 367 ms

off-time). The authors suggested matching on- and off-

times and found this condition to enhance bit-rate while

maintaining the performance level. Such adjustment may

thus also be feasible for our proposed system. However,

due to the increased probability of ERP overlap when

reducing off-times, we chose the longer duration.

In contrast to Brouwer and colleagues [52], who chose

only the front tactor as target, our calibration and online

copy tasks comprised equally often all tactors as target.

Figure 8 Grand average across N = 15 participants of determination coefficients over time for all electrode sites. Values were Fisher-Z

transformed before averaging. Results are based on calibration data.

Table 2 Questionnaires on satisfaction with the tactile ERP-BCI based wheelchair control

Question I do not
agree at all [%]

I do not really
agree [%]

I mostly
agree [%]

I fully
agree [%]

Control of the wheelchair was quickly learnable 0.0 0.0 71.4 28.6

The wheelchair correctly recognized the delivered commands 0.0 14.3 71.4 14.3

I always had full control over the wheelchair 14.3 0.0 71.4 14.3

Control of the wheelchair was too demanding 50.0 21.4 28.6 0.0

Control of the wheelchair was too slow 0.0 64.3 35.7 0.0
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Our results thus account for perception differences or

attention difficulties between different body locations.

Some participants may for example perceive the front tar-

get (close to the navel) stronger than the back target. In our

study participants performed equally well on selection of

tactors, i.e. in total participants did not perform signifi-

cantly more errors on any of the targets than on others. Es-

pecially in light of a BCI with manifold selection options

(realized placing many tactors on the body), it is inherently

important to adjust tactor locations according to users’ re-

ports so that they perceive all targets (approximately)

equally well.

In line with previous reports from visual and auditory

ERP-BCIs (e.g., [56-60]; for comparison of techniques

[62]), dynamic stopping was of high value also for tactile

ERP-BCIs. Participants greatly benefited in terms of time

needed to deliver commands, thereby increasing speed

of the system. Importantly, the reduced number of se-

quences in the dynamic stopping copy task did not affect

performance (no significant difference between static

and dynamic stopping copy task performance) except for

two participants who displayed a strong performance

drop during dynamic stopping. Hence, these participants

did not benefit from dynamic stopping. From the offline

classification results as well as from task performance

in the copy task with static stopping we assume that

participant 6 may have successfully performed the

navigation task when using a static number of sequences.

As participant 15 did not perform a navigation task, we do

not know whether the drop in performance was due to

bad performance in one run or due to dynamic stopping.

In a comparison of dynamic stopping methods, Schreuder

and colleagues [61] reported that some methods decrease

performance of participants with less discriminative data.

Considering the fact that offline classification performance

of participant 15 displayed aggravated discriminability

compared to other participants’ data, the performance

drop may be attributed to dynamic stopping. For all

participants, user specific parameter adjustment (as

performed by e.g., [56]) could have further increased

performance of the dynamic stopping method, espe-

cially in the case of those two participants. This may

have prevented the algorithm from stopping too early

although classification of the target was not sufficient.

Validation of the system based on questionnaires re-

vealed that tactile ERP-BCI based wheelchair control is

quickly learnable by naïve participants. Device satisfac-

tion regarding reliability and control was mostly positive.

However, evaluation results for demand of control and

speed of the system varied and were independent of

users’ performances. To better estimate these aspects,

longer navigation tasks will be needed. On the one hand,

learning to perceive stimuli may positively affect the de-

mands for the user, on the other hand long navigation

tasks may further increase demands on attention. Users

of such systems in daily life navigation tasks may judge

speed of the system more critically.

Limitations and future experimentation

This study explored feasibility of the proposed BCI sys-

tem in healthy users. We assessed user confidence with

forced choice questionnaires to identify remaining issues

and how they depend on task performance. However,

validation may strongly vary with users’ health and with

their actual dependence on the technology. Further re-

search must investigate use of tactile ERP-BCIs by the

actual target population. In the process of user-centered

BCI development, potential end-users with severe motor

impairment should be integrated into the design process

at an early stage, so that research can specifically ac-

count for their needs and requirements ([6,10,63,74-76]).

Furthermore, the effect of proposed improvements may

well be larger in patients as compared to healthy partici-

pants (as recently found for a modification of visual

ERP-BCIs; [7]). In particular, we suggest including pa-

tients with SMA type II who we consider a potential tar-

get group for use of BCI based wheelchair control. With

progression of disease, they usually lose the ability to

control a wheelchair with a joystick. Eye-tracking devices

would occupy the visual channel needed for observation

of their environment and devices based on facial muscles

may be too fatiguing. Progression of the disease is

usually slower than for example for patients with

amyotrophic lateral sclerosis, which renders it more

feasible to learn device control when needed. Cheliout-

Heraut and colleagues [77] reported abnormalities of

somatosensory-evoked potentials in a sample of SMA

children (type I and II). Yet, these abnormalities oc-

curred far less frequent in SMA type II than in SMA

type I. As somatosensory-evoked potential abnormalities

were more pronounced in the lower limbs, the proposed

tactor positions may not be feasible and thus adjusted

individually. The same issue may apply to other types of

diseases or injuries, e.g. in the case of spinal cord injury

tactile perception on the legs is usually lost. Thus, in all

cases, the system requires individually-tailored adjust-

ments based on the sensory perception capabilities of

patients.

Generalization of results may be limited with regard to

the complexity of the navigation task performed in this

study. The path did not require users to select all direc-

tion options. From the results of the copy-task, however,

it appears unlikely that more errors would have occurred

for a different path. Yet, future testing of the system

should be performed with several different tasks over a

longer period of time. In addition, a vivid environment,

in which users need to react to changing settings, could

provide useful insights in feasibility of tactual ERP-BCI

Kaufmann et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:7 Page 14 of 17

http://www.jneuroengrehab.com/content/11/1/7



systems under such, more realistic conditions. Finally,

generalization may be limited as the third person per-

spective and the position tracking used in this study may

have positively influenced navigation ability, e.g. estima-

tion of distances. However, in a virtual environment it

may be more difficult to estimate distances than in a real

world setting. Thus, the benefit of position tracking and

perspective may be negligible as compared to the benefit

of navigating in a real environment.

However, in its current state the system bears some

major drawbacks. (1) Some users reported that focusing

on tactile stimulation was too demanding in a long navi-

gation task. Thus, stimulation should be enhanced so

that users perceive stimuli better. Furthermore, training

in several sessions could be conducted to decrease users'

workload. Halder and colleagues recently demonstrated,

that performance with an auditory ERP-BCI can be im-

proved with training [78]. Zickler and colleagues [10]

demonstrated for visual ERP-BCIs that subjective work-

load of a naïve, severely motor impaired, potential end-

user could be strongly decreased the more sessions were

conducted, i.e. in his first session he rated workload ra-

ther high (49 of 100 on a linear scale) but decreased his

rating to 15 in the last session. (2) The average time to

deliver a command was roughly 28 seconds, ranging

from 17.8 to almost 38.8 seconds. For effective wheel-

chair control, speed should be further enhanced, e.g. by

implementing other dynamic stopping techniques or by

increasing the signal-to-noise ratio of the recorded ERPs

[7,79]. As already addressed above, decreasing the off-

time parameter of the system may also enhance speed.

(3) The herein tested system is synchronous and not

able to detect if a user wants to deliver a navigation

command or perform any other task. For example, users

may want to interrupt navigation and perform navigation-

independent actions (e.g. communicating, reading, observ-

ing). It is thus inherently necessary to implement an

asynchronous system that will account for such situa-

tions [80-82]. (4) Finally, we did not implement an option

that rapidly allows for stopping the wheelchair. Once users

delivered a movement command, they would hand over

full control to the wheelchair, i.e. only its sensors could

stop the wheelchair in case of an obstacle. Currently, if

they delivered a wrong command, the wheelchair would

still perform the action if the requested movement would

not interfere with navigation barriers. Implementation of

such correction method could be based on residual muscle

activity or on other BCI signals in a hybrid approach

(e.g., [49,83-86]). This would possibly further reduce

the amount of times, when shared control is necessary

for intervention. However, already in our experimental

setting, participants rarely needed shared control sen-

sors and most of them had full control on the user

side.

Conclusion
We explored tactile ERP-BCI based online wheelchair

control in a virtual environment. Participants overall

gained high accuracy levels in copy tasks and when navi-

gating through the virtual environment. Importantly, 11

participants finished the requested task, i.e. successfully

navigated along four checkpoints. Most participants did

not require shared control sensors. In conclusion, our re-

sults prove tactile ERP-BCIs feasible for wheelchair con-

trol. Yet we discovered and discussed a number of issues

to be addressed and solved in future research. Most im-

portantly, data have to be collected with the targeted pa-

tient group in the iterative process of user-centered BCI

development.
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