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  Among the many cell types that may prove useful to regenerative medicine, mounting evidence suggests that 
human term placenta-derived cells will join the list of signifi cant contributors. In making new cell therapy-based 
strategies a clinical reality, it is fundamental that no a priori claims are made regarding which cell source is 
preferable for a particular therapeutic application. Rather, ongoing comparisons of the potentiality and charac-
teristics of cells from different sources should be made to promote constant improvement in cell therapies, and 
such comparisons will likely show that individually tailored cells can address disease-specifi c clinical needs. 
The principle underlying such an approach is resistance to the notion that comprehensive characterization of 
any cell type has been achieved, neither in terms of phenotype nor risks-to-benefi ts ratio. Tailoring cell therapy 
approaches to specifi c conditions also requires an understanding of basic disease mechanisms and close collab-
oration between translational researchers and clinicians, to identify current needs and shortcomings in exist-
ing treatments. To this end, the international workshop entitled “Placenta-derived stem cells for treatment of 
infl ammatory diseases: moving toward clinical application” was held in Brescia, Italy, in March 2009, and aimed 
to harness an understanding of basic infl ammatory mechanisms inherent in human diseases with updated fi nd-
ings regarding biological and therapeutic properties of human placenta-derived cells, with particular emphasis 
on their potential for treating infl ammatory diseases. Finally, steps required to allow their future clinical appli-
cation according to regulatory aspects including good manufacturing practice (GMP) were also considered. 
In September 2009, the International Placenta Stem Cell Society (IPLASS) was founded to help strengthen the 
research network in this fi eld.     

        Toward Cell Therapy Using Placenta-Derived Cells: 
Disease Mechanisms, Cell Biology, Preclinical Studies, 

and Regulatory Aspects at the Round Table    

    Ornella     Parolini   ,   1         Francesco     Alviano   ,   2         Irene     Bergwerf   ,   3         Diana     Boraschi   ,   4         Cosimo     De Bari   ,   5         Peter     De Waele   ,   6    

     Massimo     Dominici   ,   7         Marco     Evangelista   ,   1         Werner     Falk   ,   8         Simone     Hennerbichler   ,   9,10         David C.     Hess   ,   11    

     Giacomo     Lanzoni   ,   2         Bing     Liu   ,   12         Fabio     Marongiu   ,   13         Colin     McGuckin   ,   14         Stefan     Mohr   ,   15         Maria Luisa     Nolli   ,   16    

     Racheli     Ofir   ,   17         Peter     Ponsaerts   ,   3,18         Luca     Romagnoli   ,   16         Abraham     Solomon   ,   19         Maddalena     Soncini   ,   1         

Stephen     Strom   ,   13         Daniel     Surbek   ,   15         Sankar     Venkatachalam   ,   20,21         Susanne     Wolbank   ,   9,10,22         Steffen     Zeisberger   ,   23    

     Andy     Zeitlin   ,   24         Andreas     Zisch   ,   23    and      Cesar V.     Borlongan    25   

  1 Centro di Ricerca E. Menni, Brescia, Italy. 
  2 Department of Histology, Embryology, and Applied Biology, University of Bologna, Bologna, Italy. 
  3 Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium. 
  4 National Research Council, Pisa, Italy. 
  5 Division of Applied Medicine, University of Aberdeen, Aberdeen, United Kingdom. 
  6 Cryo-Save Research and Development, Pfäffi kon, Switzerland. 
  7 Department of Oncology, Hematology, and Respiratory Diseases and Department of Pediatrics, University–Hospital of Modena and 

Reggio Emilia, Modena, Italy. 
  8 Department of Internal Medicine I, University Clinic Regensburg, Regensburg, Germany. 
  9 Red Cross Blood Transfusion Service of Upper Austria, Vienna, Austria. 
  10 Austrian Cluster for Tissue Regeneration, Linz, Austria . 
  11 Medical College of Georgia, Augusta, Georgia. 
  12 Laboratory of Oncology, Affi liated 307 Hospital of Academy of Military Medical Sciences, Beijing, People’s Republic of China. 
  13 Department of Pathology, University of Pittsburgh, Pennsylvania. 
  14 Cell Therapy Research Institute, Lyon, France. 
  15 Department of Obstetrics and Gynecology and Department of Clinical Research, University of Bern, Switzerland. 
  16 Areta International, Gerenzano (VA), Italy. 
  17 Pluristem Therapeutics Inc., Haifa, Israel. 
  18 Centre for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium. 
  19 Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. 
  20 Department of Cell Biology and Neuroscience, W.M. Keck Center for Collaborative Neuroscience, Piscataway, New Jersey. 
  21 Department of Anatomy, University of Madras, Chennai, India. 
  22 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz-Vienna, Austria. 
  23 Department of Obstetrics, University Hospital Zurich, Switzerland. 
  24 Celgene Corporation, Summit, New Jersey. 
  25 Department of Neurosurgery, University of South Florida, Tampa, Florida.               

COMPREHENSIVE REVIEWS



 PAROLINI ET AL. 144

endogenous cells to secrete trophic and protective factors 
[ 5 , 6 ]. Concomitantly, the immunomodulatory effects of 
MSC, independently of the source, blunt the infl ammatory 
response and allow tissue remodeling after injury, resulting 
in reduced numbers of fi broblasts and less scarring in the 
heart [ 7 , 8 ], lung [ 9 ], and kidney [ 10 ] and less astroglial scar-
ring in the brain [ 7 ]. 

 In developing therapeutic treatments, the administration 
route must be carefully considered. Administration can be 
local, such as intraparenchymal (eg, into muscle or brain) or 
intra-articular (eg, during arthritis), or systemic (eg, intra-
arterial and intravenous). A limitation of intravenous deliv-
ery is that most administered cells are trapped in the lung 
and spleen. Emerging evidence indicates that after ischemic 
stroke the peripheral immune response is activated and 
immune cells migrate to the brain and contribute to cerebral 
injury [ 11 , 12 ]. Intravenous administration of hematopoietic 
stem cells and umbilical cord blood cells reduces cerebral 
ischemic injury and infl ammation at least partly by interfer-
ing with splenic and lymphoid activation [ 13–15 ], suggesting 
that intravenous delivery might be preferable in pathologies 
involving lymphoid activation. 

 Although the anti-infl ammatory and immunomodula-
tory effects discussed above pertain to stem or progenitor 
cells in general, accumulating evidence suggests that similar 
mechanisms might also accompany placenta-derived cells. 
Furthermore, the development of cell therapy approaches 
using these cells may also benefi t from the fact that placen-
tal tissues harbor different cell types that may complement 
each other in a clinical setting (ie, amniotic epithelial cells of 
early embryological origin with multilineage differentiation 
potential, as well as cells with immunomodulatory proper-
ties [ 16 ]). Furthermore, aside from being easily procured in a 
painless and noninvasive manner, placental cells also offer 
additional advantages over stem cells from other sources 
such as bone marrow, which carry a risk of viral infection 
[ 17 ], and also show decreasing differentiation capacity with 
increasing donor age [ 18 , 19 ]. Finally, it is tempting to specu-
late that placenta-derived cells may also be preferable from 
an immunological point of view, given the unique role of 
this tissue in maintaining fetomaternal tolerance through-
out pregnancy, and supported by the fi nding that placental 
cells show a greater capacity to down-regulate T-cell pro-
liferation in vitro compared to bone marrow-derived cells 
(Parolini et al., unpublished data). 

 Here, we will provide an overview of the current state of 
the art regarding the potential of placenta-derived cells to 
treat infl ammatory diseases, beginning with an update on 
the most recent fi ndings on the characteristics of these cells 
as well as a detailed discussion of their immunomodulatory 
properties. Indications from preclinical studies supporting 
the use of these cells for treatment of a wide range of condi-
tions will also be presented. Finally, aspects that will need to 
be addressed for GMP production of these cells for clinical 
application will be discussed.  

  Update on Characteristics and Handling Methods 

for Stem/Progenitor-Like Cells in the Human 

Placenta 

 The placenta is a fetomaternal organ consisting of 2 
components: the maternal component, termed the decidua, 

  Mechanisms of Infl ammatory Disease: Will 

an Increased Understanding Light the Path to 

Effective Cell Therapy-Based Treatments? 

 Inflammation is mediated by several cell types that patrol 
the organism in border areas where the body comes into 

contact with the environment. While it functions primarily 
to restrict dangerous events, the infl ammatory response is 
Janus faced, encompassing not only protective/regenerative 
effects, but also deleterious outcomes [ 1 , 2 ]. 

 Innate recognition, at the basis of infl ammatory response 
initiation, takes place through receptors on macrophages, 
epithelial cells, and several other cells. Innate receptors rec-
ognize microorganism-derived molecular patterns (Toll-
like receptors, scavenger receptors, lectin-like receptors) 
and endogenous stress-dependent molecules (infl amma-
tory cytokines, complement). Upon receptor activation, cells 
initiate the defense response. Macrophages phagocytose 
and degrade foreign material, concomitantly producing 
infl ammatory and toxic factors (cytokines, reactive oxygen 
and nitrogen species, prostaglandins, degrading enzymes) 
to destroy the invader and activate the adaptive immune 
response. IL-1 family cytokines and receptors are central 
to macrophage-dependent infl ammation and the transition 
to adaptive immunity. However, the potent infl ammatory 
effects of IL-1 must be tightly controlled to avoid excessive 
damage of surrounding host tissues. 

 The mechanisms governing infl ammation are in delicate 
equilibrium, and pathological derangements can occur eas-
ily when this equilibrium is broken. An example is errone-
ous recognition of self molecules, causing chronic triggering 
of innate receptors. Indeed, most chronic infl ammatory and 
autoimmune diseases are related to uncontrolled infl amma-
tion following recognition of endogenous molecules. 

 For optimal treatment of infl ammatory diseases, precise 
timing in inhibiting infl ammation is needed, to inhibit del-
eterious effects while promoting regenerative effects. The 
need for such fi ne-tuning is exemplifi ed by the role of matrix 
metalloproteinases (MMP) after cerebral ischemia. Inhibition 
of MMP9 within hours after stroke reduces tissue injury and 
cerebral infarct size; however, MMP inhibition after 7 days 
impairs recovery by preventing angiogenesis, neuroblast 
migration, and brain remodeling [ 3 , 4 ]. Thus, timed “immu-
nomodulation” is key to optimal treatment of infl ammation. 

 Cell therapy has been proposed for treatment of chronic 
infl ammation and immune alterations (multiple sclerosis, 
infl ammatory bowel disease (IBD), arthritis, graft versus 
host disease) and ischemia (coronary/peripheral artery dis-
ease, stroke). Current evidence suggests that cell replacement 
is likely not the major mechanism by which cell therapy 
confers functional benefi t. Despite reports of bone marrow-
derived stem cells differentiating into neural cells or “fus-
ing” with diseased neurons, the number of engrafted cells 
is low and likely insuffi cient to account for the observed 
functional improvements. Rather, increasing experimen-
tal data indicate that stem or progenitor cells, such as mes-
enchymal stromal cells (MSC), act benefi cially by exerting 
trophic effects on host cells, reducing apoptotic cell death 
and stimulating angiogenesis. Indeed, administration of 
MSC after cerebral ischemia leads to increased angiogene-
sis, neurogenesis, synaptogenesis, and oligodendrogenesis, 
with axonal sprouting [ 5 ] either directly or by stimulating 
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and highlighting the need to develop better methods for 
selecting progenitor cells from placental tissues. 

 In exploring placental tissues as a source of progenitor 
cells, researchers have focused their attention mainly on 
cells derived from fetal tissue, in particular from amnion, 
chorion, and umbilical cord [ 16 , 27 , 28 ]. However, stem/pro-
genitor properties of placental cells of maternal origin have 
also been described [ 29 ]. Recently, a comparative phenotypi-
cal study between bone marrow- and placenta-derived mes-
enchymal cells has underlined the fact that the cell types 
have a very similar cell surface marker profi le; however, they 
differ in their expression of the chemokine receptors CCR1 
and CCR3 [ 30 ], which are only present on placenta-derived 
cells; meanwhile, other molecules such as CD56, CD10, and 
CD49d have been shown to be more highly expressed on 
placenta-derived mesenchymal cells [ 31 ], and differences 
in proliferation potential have been also observed between 
these 2 cell types [ 29 ]. 

 However, based on the lack of signifi cant differences 
between these above-mentioned cell types, as well as the 
fact that placental cells are plentiful and easily procured, a 
good manufacturing practice (GMP)-compliant facility has 
been established for isolating and expanding human pla-
centa-derived MSC in a fi rst clinical trial setup [ 32 ]. 

 As a potential source of MSC, placental tissues have also 
attracted recent interest in the hematopoiesis fi eld. During 
mouse embryogenesis, the placenta has been newly unveiled 
as an important niche for hematopoietic stem cell (HSC) 
development, although the origin of placental hematopoiesis 
remains undefi ned. Recent advances in this fi eld come from a 
study using Ncx1 −/−  embryos lacking a functional heart and 
circulation. Rhodes and colleagues [ 33 ] found hematopoietic 
progenitors with both myeloerythroid and lymphoid poten-
tial in the placenta of these embryos, as well as in dorsal 
aorta, yolk sac, and vitelline vessels, indicating that these 
cells arose in situ. Meanwhile, the potential role of human 
placenta in embryonic hematopoiesis has also been recently 
documented, together with development of procedures for 
processing and storing hematopoietic cells from placen-
tal tissue [ 34 , 35 ]. Specifi cally, CD34 + CD45 dim  cells isolated 
from human placenta were shown to contain myeloid and 
erythroid progenitors [ 34 , 35 ] and were capable of generat-
ing CD56 +  natural killer cells and CD19 + CD20 + sIgM +  B cells 
in vitro [ 34 ]. More importantly, human placenta has been 
shown to contain bona fi de HSCs throughout fetal develop-
ment [ 36 ]. HSCs can be detected as early as gestational week 
6 (either CD34 +  or CD34 − ), and most strikingly at term. At 
weeks 16–20, HSCs are more enriched in the CD34 +  fraction. 
After storage in liquid nitrogen, the placental cells retain 
their HSC potential, suggesting this tissue as an important 
source for banking and clinical application [ 36 ]. 

 Recent efforts have also been dedicated to optimizing 
isolation, culture, and preservation methods for placenta-
derived cells. These include a study aimed at defi ning cell 
yields obtainable from the amniotic epithelial and mesen-
chymal regions [ 26 ], while others have proposed long-term 
expansion methods to allow thorough analysis of cellular 
material before use in cell-based therapies. Immortalized 
hAMSC have been established through ectopic expression 
of the human telomerase catalytic subunit, and compared 
to the parent population, the resultant cells displayed unal-
tered surface marker profi le, morphology, karyotype, and 

originating from the endometrium, and the fetal component, 
including the fetal membranes–amnion and chorion–as well 
as the chorionic plate, from which chorionic villi extend 
and make intimate contact with the uterine decidua during 
pregnancy. 

 Since the fi rst studies on placenta-derived stem cells were 
reported, it has been recognized that, due to the complex-
ity of the placental structure, there is a need for assigning 
proper terminologies to the different regions of this organ 
and to the various cell types that can be isolated from these 
regions. To this end, as reported by Parolini et al. [ 16 ], the First 
International Workshop on Placenta-Derived Stem Cells saw 
the following nomenclature proposed: human amniotic epi-
thelial cells (hAEC), human amniotic mesenchymal stromal 
cells (hAMSC), human chorionic mesenchymal stromal cells 
(hCMSC), and human chorionic trophoblastic cells (hCTC). 
Furthermore, isolation protocols, phenotypic markers, and 
in vitro differentiation potential have been described for 
hAEC, hAMSC, and hCMSC [ 16 ]. 

 Characterization of hAEC has shown that these cells 
express molecular markers of pluripotency, and can dif-
ferentiate in vitro into cell types of all 3 germ layers [ 16 ]. 
More recently, comparative analysis of hAEC from amnion 
of early-stage pregnancies and from term amnion showed 
that expression of the stem cell-specifi c cell surface mark-
ers TRA1-60 and TRA1-81, and of the molecular mark-
ers of pluripotency Nanog and Sox2, are all signifi cantly 
higher in fetal amnion, while expression of Oct-4 mRNA 
is similar between cells obtained either from fetal or term 
amnion [ 20 ]. 

 hAMSC and hCMSC are defi ned as plastic-adherent cells 
that are capable of forming fi broblast colony-forming units 
and displaying a specifi c pattern of cell surface antigens 
comparable to that of bone marrow MSC (CD90 + , CD73 + , 
CD105 + , CD45 − , CD34 − , CD14 − , HLA-DR − ). These cells are 
also capable of differentiating toward one or more lineages 
including osteogenic, adipogenic, chondrogenic, and vascu-
lar/endothelial[ 16 ]. Furthermore, recent reports suggest that, 
like the amniotic epithelial fraction, the human amniotic 
mesenchymal region also harbors a multipotent side popu-
lation showing multilineage differentiation potential [ 21 ]. 

 Recent advances regarding the differentiation potential 
of placenta-derived cells have shown expression of major 
cartilage components by hAMSC after chondrogenic induc-
tion, with deposition of collagen II after implantation of 
these cells into the subfascial space of the abdominal mus-
cle of mice [ 22 ]. Mesenchymal cells from the amniotic and 
chorionic membranes have also been recently shown to dif-
ferentiate in vitro into a range of neuronal and oligoden-
drocyte precursors [ 23 ]. In addition, use of amniochorionic 
membrane as a scaffold has been proposed for improving 
osteogenic differentiation of chorionic membrane-derived 
cells (Mohr S. et al., submitted 2009). Meanwhile, it has been 
recently shown that hAEC display bifunctional hepatic dif-
ferentiation potential in vitro, with the ability to differentiate 
into both parenchymal hepatocytes as well as cells express-
ing a molecular marker profi le consistent with biliary cells 
and which form tubular 3D structures reminiscent of bile 
ducts when cultured on extracellular matrix [ 24 ]. However, 
discrepant results have been reported for osteogenic and 
adipogenic differentiation of hAEC and hAMSC [ 25 , 26 ], indi-
cating the heterogeneous nature of these cell populations, 
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immunomodulatory effects of these cells on lymphocytes 
even when the 2 cell types were separated by a semiperme-
able membrane (transwell system) [ 44 ]. Although the fac-
tors involved remain to be identifi ed, it has been proposed 
that these may include indoleamine 2,3-dioxygenase (IDO), 
transforming growth factor β (TGF-β), and interleukin-10 
(IL-10) [ 41 , 49 , 50 ]. Along this line, a recent comparative study 
demonstrated that at the fetomaternal interface, fetal MSC 
have a stronger inhibitory effect on T-cell proliferation com-
pared with adult MSC, which is probably related to higher 
IL-10 production by the fetal cells [ 50 ].

Despite these interesting in vitro fi ndings, some caution 
must be taken when extrapolating such results toward an in 
vivo setting. In particular, in vitro cell proliferation or stim-
ulation experiments usually investigate interplay between 
placenta-derived cells and a “single” specifi c cell population 
(eg, DC, T cells), whereas in vivo, “multiple” distinct cell 
populations act together in initiating, maintaining, or sup-
pressing immune reactions. In this context, it is unlikely that 
the placental cell:T-cell ratios used in in vitro experiments 
(eg, 1:1 to 1:10) would be paralleled in vivo. Furthermore, iso-
lation and expansion protocols for placental cells might also 
infl uence their immunomodulatory properties. For example, 
expansion of amniotic mesenchymal cells without prior 
removal of the HLA-DR +  subpopulation [ 44 ] may result in 
partial abrogation of the immunosuppressive effects of these 
cells in vitro or in vivo. 

 Several preclinical studies have already reported pro-
longed survival of human placenta-derived cells after 
xenogeneic transplantation into immunocompetent ani-
mals including rats [ 45 , 51–54 ], swine [ 45 ], and bonnet mon-
keys [ 55 ], with no evidence of immunological rejection. 
Furthermore, co-transplantation of cord blood and placental 
MSC has been shown to result in enhanced cord blood cell 
engraftment and improved homing of CD34 +  cells [ 56 , 57 ]. 
Migration to various organs and specifi c differentiation have 
also been observed after in utero transplantation of human 
placenta-derived MSC into fetal rats [ 58 ]. 

 Although clear immunosuppressive effects have been 
observed for placenta-derived cells in vitro, as well as prom-
ising results (ie, survival) following transplantation in vivo, 
it should be noted that in a recent study, murine placenta-
derived cells failed to survive following transplantation 
under the kidney capsule of allogeneic hosts due to recog-
nition and rejection by the recipients’ immune system [ 59 ]. 
Such immune-mediated rejection, which has also been 
observed with bone marrow MSC in an allogeneic setting 
[ 60–63 ], constitutes a major challenge for the development of 
future clinical applications [ 64 ].  

  Preclinical Evidences and Functional Mechanisms 

Supporting the Utility of Placenta-Derived Cells 

for Treating Infl ammatory Diseases 

 In 1910, Davis was the fi rst to report the use of fetal mem-
branes in skin transplantation [ 65 ], prompting subsequent 
applications that demonstrated the utility of these mem-
branes for treating other conditions including leg ulcers 
[ 66 , 67 ] and burns [ 68 , 69 ], as well as for applications in oph-
thalmology [ 70–72 ]. One century later, although fetal mem-
branes in toto continue to be applied therapeutically in some 
settings, the focus of scientifi c investigations has turned to 

differentiation potential for up to 87 population doublings, 
as well as similar or reduced immunogenic/immunosup-
pressive properties [ 37 ]. Alternatively, it has also been 
shown that in vitro life span can be dramatically extended 
by optimizing expansion conditions. For example, when 
cultured with animal-free culture supplements such as 
human platelet lysate (PL), a suitable alternative to fetal 
calf serum (FCS) for MSC cultures [ 38 , 39 ], hAMSC have 
been shown to exhibit an increased proliferation potential 
and in vitro life span compared to cells cultured with FCS 
(Wolbank, unpublished data). However, although different 
culturing methods may infl uence cell behavior, it should be 
noted that in vitro culture itself can also cause some altera-
tions, as highlighted by a study in which hAEC displayed 
reduced osteogenic potential associated with a phenotypic 
shift after culturing [ 25 ]. 

 Finally, recent attempts to improve cryopreservation of 
placenta-derived cells have demonstrated that vitrifi ca-
tion, which uses a high cryoprotectant concentration and 
does not require a programmable temperature-decreasing 
container, represents a fast preservation method. This has 
proved reliable and effective for long-term preservation of 
hAMSC, showing retention of surface marker expression 
and differentiation potential after thawing [ 40 ]. 

 In summary, since the fi rst studies on placenta-derived 
stem cells were published, much knowledge has been 
gained regarding the characteristics, handling methods, 
and potential of these cells. However, to maintain unifor-
mity and clarity in the fi eld, precise descriptions of the pla-
cental regions from which different cell populations are 
isolated are paramount, along with extensive phenotypic 
analyses of these cells.  

  Immunomodulatory Properties of 

Placenta-Derived Cells 

 Based on their role in maintaining fetomaternal toler-
ance during pregnancy, multiple reports have investigated 
the immunomodulatory properties of placenta-derived cells 
with the aim of validating their applicability in cell therapy-
based treatments. 

 Like human bone marrow-derived MSC, cells derived 
from different placental regions are poor antigen-present-
ing cells due to their low or limited expression of MHC 
class II and co-stimulatory molecules [ 16 , 41 ]. Moreover, in 
vitro studies show that amniotic and chorionic membrane-
derived cells not only fail to induce an allogeneic or xenoge-
neic immune response in mixed lymphocyte reactions, but 
also strongly suppress lymphocyte proliferation induced by 
mitogens or alloantigens, often in a dose-dependent man-
ner [ 42–46 ]. Moreover, amniotic membrane-derived cells 
exert immunomodulatory effects on antigen-presenting 
cells, as demonstrated by their capacity to block maturation 
of monocytes into dendritic cells (DC), preventing expres-
sion of the DC marker CD1a and reducing expression of 
HLA-DR, CD80, and CD83. This monocyte maturation block 
also resulted in impaired allostimulatory ability of these 
cells on allogeneic T cells [ 47 ]. 

 The immunomodulatory properties of placenta-derived 
cells may involve direct cell-to-cell contact [ 48 ], although 
equally compelling evidence implies a mechanism 
based on secretion of soluble factors, as demonstrated by 
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  Neurological disorders 

 Neurological disorders represent a signifi cant burden to 
western societies, highlighting the need to develop effective 
therapies. Cell replacement therapy has been proposed as a 
basis for new treatment strategies for a broad range of neu-
rological diseases; however, the paucity of suitable cell types 
has so far hampered the development of this promising ther-
apeutic approach [ 87 ]. In this context, placenta-derived cells 
have been investigated for their potential to confer benefi cial 
effects in a range of neurological disorders. 

 In preclinical studies using animal models of Parkinson’s 
disease [ 52 , 88–90 ] and ischemia [ 53 ], hAEC have been 
found to offer neuroprotection and functional recovery. The 
observed therapeutic effects are likely mediated by secretion 
of diffusible factors, including neurotransmitters [ 91–93 ] and 
many neurotrophic and growth factors [ 94 , 95 ]. 

 The potential utility of placenta-derived cells has also 
been investigated for treatment of spinal cord injury (SCI), 
a condition in which infl ammation-mediated “secondary 
injury,” rather than the primary physical force, has been 
implicated for many of the devastating effects observed 
[ 96 ]. Therefore, counteracting these cell death cascades with 
a suitable therapy at the earliest possible time postinjury 
would likely translate into a successful treatment. Similarly, 
the tissue damage caused by the host’s immune response 
following injury may be suppressed by the anti-infl am-
matory properties of placental cells, which further make 
them attractive candidates for SCI treatment. Indeed, hAEC 
transplantation has been shown to produce benefi cial effects 
after transection SCI in bonnet monkeys and rats [ 55 , 97 ] with 
functional improvement observed in rats. Similarly, when co-
transplanted with neural stem cells, AEC have been shown 
to enhance recovery after contusive SCI in rats [ 51 ]. Despite 
these promising data, however, there still appear to be crit-
ical gaps in the knowledge that would be required to allow 
commencement of clinical trials using placental stem cells 
for SCI repair. For example, of the many placental cell types 
showing stem cell features [ 16 , 98 , 99 ], only hAEC have been 
tested for SCI repair to date and much work is still required 
to fully prove their effi cacy and the mechanisms underlying 
their functional benefi ts in this setting. Meanwhile, a study 
in which hAMSC were transplanted into an experimental 
model of SCI showed chondrogenic differentiation of these 
cells (Sankar et al., unpublished data). This could be due to 
release of TGF-β by host cells as part of the infl ammatory 
reaction following SCI [ 100 , 101 ], which is also known to be a 
powerful inducer of stem cell chondrogenic differentiation 
[ 102 ]. Therefore, as for all applications in which placenta-
derived cells have been proposed for therapy, use of these 
cells for SCI treatment clearly requires further validation. 

 Stroke is another serious neurological disorder repre-
senting a current unmet medical condition of signifi cance 
worldwide, and for which placenta-derived cells may offer 
new hope for therapy. In the United States, stroke is the third 
leading cause of death and the primary cause for disability. 

 Because infl ammation is a major contributor to the 
secondary cell death cascade following the initial stroke 
episode, transplanted cell-mediated abrogation of such 
infl ammatory deleterious side effects should directly alter 
stroke progression. A major caveat for this anti-infl ammatory 
mechanism to effectively mitigate cell therapy and stroke 
outcome is demonstrating robust and stable secretion of 

the various cell populations present in these membranes, 
with accumulating evidence now lending support to the 
hypothesis that placental cells may be useful for treating a 
range of pathologic conditions. 

  Ocular surface disorders 

 The fi rst clinical applications of amniotic membrane 
were reported for treatment of ocular surface disorders 
in the 1940s, and after a hiatus, use of this membrane was 
reintroduced to the fi eld in 1995 by Kim and Tseng [ 73 ]. 
Today, use of the stromal matrix of the amniotic membrane, 
rather than of cells derived from it, continues to represent 
the main strategy by which placental tissues are applied in 
ophthalmology. 

 Use of the amniotic membrane in this fi eld is based on 
several mechanisms mediated by various cytokines and 
enzymes, ultimately conferring benefi cial effects including 
enhanced epithelialization and wound healing, suppres-
sion of infl ammation and fi brosis, and inhibition of angio-
genesis. In this context, it is noteworthy that the angiogenic 
profi le secretome largely depends on the preparation 
method of amniotic membrane, which should therefore be 
considered when selecting an amniotic product for clinical 
application [ 74 ]. 

 The anti-scarring properties of amniotic membrane are 
mediated by the presence of fetal hyaluronic acid in the stro-
mal matrix, which suppresses TGF-β signaling, cell prolifer-
ation, and myofi broblastic differentiation of normal corneal 
and limbal fi broblasts, as well as of normal conjunctival and 
pterygium fi broblasts [ 75 ]. The amniotic stromal matrix also 
suppresses expression of infl ammatory cytokines originat-
ing from the ocular surface epithelia, including IL-1α, IL-1β 
[ 76 ], and IL-8 [ 77 ], and up-regulates the expression of IL-1 
receptor antagonist [ 76 ]. Such suppression of infl ammation 
is paramount for preventing corneal and conjunctival scar-
ring, neovascularization, and fi brosis. Several clinical appli-
cations in ocular surface reconstructive surgery have now 
been developed based on these properties [ 73 ]. 

 The most important ophthalmology-based application of 
amniotic membrane is as a temporary bandage after acute 
chemical burns of the ocular surface [ 78 ]. In this scenario, 
the membrane serves as an anti-infl ammatory agent during 
acute phases of chemical and thermal burns, limiting corneal 
and limbal infl ammation and angiogenesis [ 79 ] and reduc-
ing symblepharon formation. A possible anti-infl ammatory 
mechanism of the amniotic membrane may be trapping 
of infl ammatory cells infi ltrating the ocular surface after 
a chemical burn, whereby as these cells are caught in the 
membrane, they undergo apoptosis [ 80 ]. This hypothesis is 
in accordance with a study showing that both epithelial and 
mesenchymal cells of the amniotic membrane express Fas 
ligand (CD95), a cell surface receptor that mediates apopto-
sis [ 81 ]. 

 Additionally, various other studies report signifi cant 
reductions in infl ammation when transplantation of amni-
otic membrane is applied during treatment of ocular surface 
disorders, including pterygium surgery [ 82 ], fornix recon-
struction, and symblepharon repair [ 83 ], reconstruction of 
deep corneal ulcers and persistent epithelial defects in auto-
immune and infl ammatory disorders of the ocular surface 
[ 84 , 85 ], and in treatment of chronic pseudophakic corneal 
edema [ 86 ].  
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 Although both allogeneic or xenogeneic cells were detect-
able in the lungs of bleomycin-treated mice through DNA 
microchimerism and immunohistochemistry until Day 14, 
previous studies have shown that only a very small per-
centage of placenta-derived cells engraft and survive long 
term after transplantation [ 45 ]. Further studies are therefore 
warranted to elucidate the mechanisms of action of placenta-
derived cells in this model. In addition, the recent indication 
that MSC from both mouse bone marrow and human umbil-
ical cord blood produce factors that stimulate proliferation 
and matrix production by lung fi broblast cells [ 117 ], which 
could potentially exacerbate existing fi brotic damage, sug-
gests that caution should also be exercised when proposing 
placental mesenchymal cells for treatment of pulmonary fi -
brosis. Thus, although promising, the data discussed above 
represent preliminary evidence that would require further 
validation in order to verify whether transplantation of pla-
centa-derived cells does indeed represent a viable treatment 
option for pulmonary fi brotic disease.  

  Critical limb ischemia 

 Recently, Pluristem Therapeutics Inc. has investigated 3D 
expanded human term placenta-derived cells, termed PLX-
PAD, for their potential to treat critical limb ischemia [ 118 ], 
whereby cells were administered via local intramuscular 
injection 5 h after induction of hind limb ischemia in mice 
through a previously established method [ 119 ]. During a 
follow-up period of 21–28 days, blood fl ow in ischemic limbs 
of cell-treated mice was signifi cantly elevated compared to 
non-cell-treated mice, and this was accompanied by a signif-
icant decrease in the rate of cell necrosis in these animals. 
Furthermore, immunohistochemical analysis of tissues 
from limbs of cell-treated animals demonstrated a statisti-
cally signifi cant increase in the number of new capillaries 
supplying the limb, while reduced levels of nitrotyrosine, 
an indicator of oxidative stress, and also of VCAM-1, an 
indicator of endothelial infl ammation, were also observed 
in cell-treated animals compared to controls. Importantly, 
no treatment-related adverse effects were reported in PLX-
PAD-injected mice. Based on these results, PLX-PAD is now 
being assessed in clinical trials for critical limb ischemia in 
the United States and European Union.  

  Infl ammatory bowel disease 

 Chronic relapsing and remitting infl ammation of the 
intestinal tract is the hallmark trait of ulcerative colitis (UC) 
and Crohn’s disease (CD), collectively termed infl ammatory 
bowel diseases (IBD). In genetically susceptible individuals 
an aberrant immune response, probably triggered by com-
mensal bacteria or luminal antigens, is accompanied by 
impairments in tissue repair processes, ultimately leading 
to loss of tissue architectural organization, ineffective ulcer-
ation healing, and fi brosis [ 120 , 121 ]. 

 Current therapies, ranging from anti-infl ammatory drugs 
to immunosuppressive regimens, are often inadequate to 
control IBD and possess severe long-term side effects. As for 
other infl ammatory-based diseases, cell therapies based on 
the immunomodulatory properties of MSC have been pro-
posed for IBD and are currently under evaluation in phase 
III clinical trials for IBD manifestations using bone marrow- 
and adipose tissue-derived MSCs [ 120 ]. 

anti-infl ammatory factors by transplanted cells at the appro-
priate timing postinjury. Although infl ammation is shown 
to exacerbate stroke, early pathological infl ammatory cues, 
such as stromal derived factor-1, serve as a migratory guide 
for transplanted cells to reach the ischemic tissue [ 103 ]. These 
time-dependent positive and negative effects of infl amma-
tion may be circumvented by direct intracerebral transplan-
tation of cells into the ischemic penumbra; however, in the 
acute setting of stroke, a minimally invasive peripheral cell 
administration may be more practical. Thus, the challenge 
for cell therapy to reconcile the double-edged sword feature 
of infl ammation is to fi nd the optimal therapeutic window 
when elevated infl ammatory migratory signals can direct 
cell migration toward the ischemic brain and thereafter for 
the cells to subsequently suppress infl ammation. 

 Cell therapy has been proposed as a novel treatment 
for acute [ 104 , 105 ], subacute [ 106 , 107 ], and chronic stroke 
[ 108–110 ]. Transplantation of human placenta-derived cells 
has been shown to exert benefi cial effects in a rodent stroke 
model. Specifi cally, transplantation of hAEC or hAMSC at 
Day 2 poststroke attenuated both motor and neurological 
defi cits associated with occlusion of the middle cerebral 
artery at days 7 and 14 compared to the vehicle-infused 
stroke group. Following the last behavioral test at Day 14 
poststroke, histology via Nissl staining revealed transplan-
tation of hAEC or hAMSC at Day 2 poststroke increased the 
number of healthy looking cells (>75% of the intact brain) 
in the ischemic penumbra compared to the vehicle-infused 
stroke group. These positive behavioral and histological 
effects were achieved when 400,000 human placenta cells 
were transplanted directly into the presumed ischemic pen-
umbra in the absence of immunosuppression [ 111 ]. 

 That placenta-derived cells display transplantable cell 
properties including their ability to secrete anti-infl amma-
tory factors [ 112 ] will benefi t from optimizing the timing 
and route of cell delivery after transplantation.  

  Pulmonary fi brosis 

 In a mouse model of bleomycin-induced lung injury, 
treatment with a mixture of fetal membrane-derived mes-
enchymal and epithelial cells from either human or mouse 
have both been shown to cause a reduction in severity and 
extent of lung fi brosis [ 9 ]. These antifi brotic effects were ob-
served at Day 14 after bleomycin instillation, by which time 
maximal lung fi brosis is observed [ 113 , 114 ] and notably, these 
effects were seen regardless of the cell source (allogeneic or 
xenogeneic) or administration route (systemic: intravenous 
or intraperitoneal; local: intratracheal). 

 Treatment with placenta-derived cells also resulted in ev-
ident reductions in the numbers of infi ltrating neutrophils in 
the lungs of bleomycin-injured mice at Day 14, which could 
be partly responsible for the observed reduction in fi brosis, 
as the presence of neutrophils is known to be associated with 
poor prognosis in idiopathic pulmonary fi brosis in humans 
[ 115 ]. Whether the transplanted fetal membrane-derived 
cells released soluble factors that acted to down-regulate 
neutrophil recruitment remains to be elucidated, although 
this possibility is supported by reports that soluble factors 
released by these cells can inhibit T-cell proliferation [ 44 ] 
and dendritic cell differentiation and function [ 47 ] in vitro, 
while these cells also display anti-infl ammatory effects in 
clinical settings [ 116 ]. 
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 Finally, application of a human amniotic membrane frag-
ment onto the left ventricle of rats that had undergone is-
chemia through left anterior descending coronary artery 
ligation has been shown to signifi cantly reduce postischemic 
cardiac dysfunction [ 125 ]. Echocardiographic assessment of 
morphological and functional cardiac parameters performed 
over a 3-month period demonstrated that membrane-treated 
rats showed higher preservation of cardiac dimensions and 
improved cardiac contractile function in terms of higher left 
ventricle ejection fraction, fractional shortening, and wall 
thickening [ 125 ]. In this study, no engraftment of amniotic 
cells was detected in host cardiac tissues, again supporting 
the hypothesis also suggested by other reports that the ben-
efi cial effects observed are likely due to paracrine secretion 
by amniotic cells of soluble factors that promote protection 
and regeneration of host tissues, rather than differentiation 
of the transplanted cells themselves.   

  Regulatory Considerations: European and US 

Regulations for Transferring Cell Processing and 

Banking Into GMP 

  European situation 

 Despite the fact that the fi rst cellular attempts with 
bone marrow transplantation resulting in transient graft-
ing were published in the year 1957 by E.D. Thomas et al. 
[ 126 ], resulting in the fi rst successful syngeneic bone mar-
row transplantation [ 127 ] and the fi rst reporting of a suc-
cessful hematopoietic cell transplantation using placental 
(cord) blood stem cells by E. Gluckman in the year 1989 [ 128 ], 
no binding European Community legislation existed until 
the EU amended Directive 2001/83/EC concerning medici-
nal products for human use through the Directive 2003/63/
EC, to also cover somatic cell therapy (SCT) and gene ther-
apy (GT) medicinal products. Additionally, principles and 
guidelines of GMP for medicinal products for human use 
and investigational medicinal products for human use were 
published with Directive 2003/94/EC. 

 Only 1 year later, on March 31, 2004, the Cells and Tissues 
Directive (2004/23/EC) was adopted, ensuring the quality 
and safety of human cells and tissues. The scope of this 
Directive covers donation, procurement, testing, processing, 
preservation, storage, and distribution of human cells and 
tissues. Hence, all human cells and tissues that are used for 
application in the human body are covered, with the excep-
tion of blood and blood-derived products, human organs and 
any organs, tissues or cells of animal origin. Therefore, this 
Directive clearly applies also to hematopoietic peripheral 
blood, umbilical cord (blood) and bone marrow stem cells, 
reproductive cells (eggs, sperm), placental tissue, and cells 
thereof, as well as adult and embryonic stem cells. Directive 
2004/23/EC is further supported by 2 technical directives, 
2006/17/EC (requirements for donation, procurement and 
testing) and 2006/86/EC (traceability requirements, notifi -
cation of serious adverse reactions and events, and certain 
technical requirements for the coding, processing, preser-
vation, storage). Both aim to ensure adequate staffi ng and 
training, appropriate laboratory facilities, and standard 
operating procedures, controlled by a quality management 
system. The main pillar of the system is based upon quality 
assurance, which sets specifi cations for production, quality 
control, and release. It defi nes responsibilities and personnel 

 Recently hAMSC were shown to possess trophic effects 
upon intestinal epithelial cells, stimulating architectural 
organization and polarized differentiation (Lanzoni et al., 
unpublished data). These fi ndings suggest that hAMSC may 
be useful for treating IBD; while their angiogenic potential 
may aid in ameliorating perfusion and healing, the para-
crine activity of these cells may be benefi cial in inducing 
ulcer re-epithelialization. Finally, their immunomodulatory 
effects may facilitate in restoring a correct balance between 
infl ammatory cell activation and suppression in the intesti-
nal mucosa, thereby preventing further damage.  

  Liver-based metabolic diseases 

 Several preclinical studies reported to date provide prom-
ising evidence regarding the potential of human amniotic 
membrane-derived cells to perform hepatic functions in vivo. 
The fi rst such evidence came from a study whereby hAEC 
that had been transduced with the β-galactosidase gene were 
transplanted into the livers of SCID mice, resulting in detec-
tion of integrated transplanted α-fetoprotein- and albumin-
positive cells in the hepatic parenchyma at both 1 and 2 weeks 
after cell injection, suggesting that hAEC could serve as trans-
gene carriers after transplantation into the liver [ 90 ]. Later, 
it was shown that after transplantation of human amniotic 
membrane into the peritoneum of SCID mice, human albumin 
could be detected in the sera and peritoneal fl uid of these ani-
mals from Day 1 until Day 7 (duration of the study) [ 122 ]. In 
another study, transplantation of hAEC into immunodefi cient 
mice resulted in detection of human α-1 antitrypsin circulating 
in the serum of recipient animals, confi rming that hAEC can 
perform this important hepatic function in vivo [ 123 ]. 

 More recently, it has been shown that 2 weeks after 
transplantation of hAEC into the livers of SCID/Beige mice 
that had been pretreated with CCL4 in oil, human cytokera-
tin-positive cells could be detected in the bile ducts of these 
animals, with some bile ducts appearing to be completely 
humanized (Strom et al., unpublished data). 

 These studies provide compelling evidence in support 
of the bifunctional hepatic potential of hAEC in vivo, with 
demonstration of differentiation toward both parenchymal 
hepatocytes and cells with characteristics of bile ductular 
epithelial cells, thereby supporting the potential of hAEC as 
a useful tool for liver regeneration in the future.  

  Cardiac ischemia 

 Even though their ability to differentiate toward cardio-
myocytes is still debated [ 8 , 54 ], several lines of evidence sug-
gest that transplantation of isolated amniotic and chorionic 
cells can improve cardiac function. For example, Ventura et 
al. have reported improved myocardial function for up to 
4 weeks after intramyocardial injection of fetal membrane-
derived cells into infarcted rat hearts [ 8 ]. 

 In other studies, injection of rat amnion-derived cells into 
syngeneic animals with an acute infarcted left ventricular 
myocardium following permanent ligation of the proximal 
left coronary artery prevented ventricle dilatation, while 
contractile function was maintained between 2 and 6 weeks 
after transplantation. Histological assessment revealed that 
the amniotic cell-treated myocardium had reduced scar 
areas and fi brosis, with increased left ventricle myocardial 
wall thickness [ 124 ]. 
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use, are regulated solely under Section 361 of the Public 
Health Service Act (PHS Act; see 21 CFR 1271.10 for quali-
fying criteria), and thus do not require premarket approval. 
Higher-risk products that are more than minimally manip-
ulated, such as culture-expanded, encapsulated, or geneti-
cally modifi ed cell populations, are regulated as biological 
products and subject to Sections 351 and 361 of the PHS Act 
and the Food Drug & Cosmetic Act (FD&C Act). Premarket 
approval is required. 

 All human cells and cellular-based products are subject 
to 3 sets of regulations under 21 CFR 1271: Establishment 
Registration, Donor Eligibility, and Current Good Tissue 
Practice (CGTP). These rules are intended to prevent the 
introduction, transmission, or spread of communicable dis-
ease. While the aim of the Donor Eligibility regulations is 
to reduce the risk that donors harbor infections that could 
be transmitted to recipients, CGTPs reduce the risk of the 
spread of communicable disease by governing the recovery, 
processing, storage, labeling, packaging, and distribution of 
these products. Biological products are subject to the FD&C 
Act, in addition to the PHS Act, since most biologics also meet 
the defi nition of a drug (Section 201(g)(1)). Cells and cellular-
based products regulated as biological products must, there-
fore, be manufactured in accordance with both CGTPs (21 
CFR 1271) and Current GMP (CGMP; 21 CFR 210 and 211) 
(eg, pertaining to the placenta cell products PDA001, Celgene 
Corporation and PLX-PAD, Pluristem). The 2 sets of regula-
tions are intended to supplement each other. If a regulation in 
21 CFR 1271 confl icts with a requirement in parts 210 or 211, 
then the regulation more specifi cally applicable to the product 
will supersede the more general. Other important regulations 
that biological products are also subject to, but are not limited 
to the 21 CFR 600 Biological Products regulations, include 312 
Investigational New Drug Application, and 201.57(a) for label-
ing and 314.81.b.3.i for advertising and promotion.  

  General challenges for GMP-conforming processing 

and banking of placenta-derived stem cells 

 Besides the application, implementation, inspection, and 
certifi cation processes for GMP conformity, some additional 
challenges need to be met. Facility and equipment as well as 
personnel and their training cause increased expenses. All 
processes become more time-consuming not only because 
of associated necessary clothing and working rules but also 
because of more extensive testing and documentation, train-
ing, and maintenance. 

 Furthermore, procedures need to be upscaled from lab-
oratory to production size, for example, large-scale bioreac-
tors, providing a robust and relatively inexpensive platform 
for cell culture growth and assuring stable and qualifi ed cell 
production processes. The use of bioreactors (eg, as applied 
for PLX-PAD, Pluristem) allows for online culture control, 
optimization, standardization, scale-up, and a “hands-off” 
operation making the end product dependable, predictable, 
and with minimum risk of contaminants, therefore suitable 
for human use and therapeutic applications.   

  Conclusions 

 Besides having an essential and unique role in fetal devel-
opment and preparation for life outside of the womb, mount-
ing evidence now suggests that the placenta may also hold the 

qualifi cation and controls compliance with approved proce-
dures and qualifi ed equipment and clean rooms. Depending 
on the type of product, certain prerequisites regarding prem-
ises and equipment need to be fulfi lled, including defi ned 
pressure cascades, temperature, and humidity levels in the 
clean rooms. Furthermore, environmental monitoring and 
alerting are mandatory (microbiology, airborne particles) 
and essential for product release. 

 The production of a GMP-conforming cell or tissue prod-
uct represents a multilevel process, starting with donation 
and transportation. Each cell or tissue donor needs to sign 
an informed consent form. Additionally, the donor’s medi-
cal history as well as the donation itself and transport and 
delivery need to be recorded in writing. In addition, the 
donor is tested with regard to infectious agents. 

 Preparation and storage as second level of a produc-
tion process need to be performed under defi ned con-
ditions regarding equipment and clean room, using 
GMP-conforming produced reagents only. Besides an oblig-
atory written documentation of preparation, the product 
must be packaged, labeled, and stored adequately. 

 Once all quality control results are available (eg, virol-
ogy, microbiology, cell count, CFUs, viability, genetic stabil-
ity, etc.), the cell or tissue product will be evaluated, released, 
and provided for clinical application. 

 In November 2007, the EU published Regulation (EC) 
No 1394/2007 on Advanced Therapy Medicinal Products 
(ATMP) (valid for placenta-derived cell product such as PLX-
PAD, Pluristem, Israel), amending Directive 2001/83/EC and 
Regulation (EC) No. 726/2004, which has been enforced 
starting from December 30, 2008. ATMP are divided into 
3 classes: tissue engineered (TE), SCT, and GT medicinal 
products. Cells and tissues will be considered “engineered” 
if they have been subjected to “substantial manipulation,” 
such as cell expansion, selection, or functional activation, 
or if their intended use differs from the function that the 
cells normally carry out in the donor tissue. A list of pro-
cedures that are not considered substantial manipulation is 
provided in Annex I of the regulation. TE medicinal prod-
ucts are intended for regeneration, repair, or replacement 
of damaged tissues, whereas SCT medicinal products are 
defi ned as autologous, allogeneic, or xenogeneic cells manip-
ulated in order to promote their functions toward treatment, 
prevention, or diagnosis of a disease. However, cell therapy 
with ex vivo genetically modifi ed cells will be considered a 
GT medicinal product and will therefore be regulated under 
the specifi c set of rules for this class. All ATMP-containing 
human cells and tissues shall also refer to Directive 2004/23/
EC for the donation, procurement, and testing of cells and 
tissues for therapy.  

  US situation 

 In the United States, the regulation of human cells and 
cellular-based products is a tiered approach with risk and 
intended use determining the level of regulation. Lower-
risk products, such as privately banked human umbilical 
cord blood, peripheral blood, or cells that are intended for 
homologous use (defi ned as repair, reconstruction, replace-
ment, or supplementation of a recipient’s cells or tissues 
with HCTP that performs the same basic function in the 
recipient as the donor), autologous use, allogeneic use in 
fi rst or second degree blood relatives, or for reproductive 
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key to treating several conditions that arise during life itself 
whereby tissue or organ function has been compromised due 
to disease or injury. Whether the benefi cial effects of placen-
ta-derived cells are due to differentiation of the transplanted 
cells themselves or to paracrine actions on the surrounding 
host tissue in order to reduce infl ammation and promote re-
generation remains to be fully elucidated, although current 
evidence seems to lend greater support to the latter of these 
hypotheses. In any case, the promising data obtained to date 
constitute compelling evidence regarding the potential utility 
of these cells for clinical application. Further studies to vali-
date the effi cacy of placental cells for treating a wide range of 
conditions, as well as the development of strategies for GMP-
conforming production of these cells, represent fundamental 
steps that will be required in the future to allow translation 
of the promising fi ndings that have been discussed here into 
effective therapeutic approaches.   
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