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SUPPLEMENTAL METHODS 

In the following, we give a concise summary of the PCCT technique and its physical 

fundamentals, based on previous publications. The description of the physical basics of 

attenuation imaging is oriented at the textbook by Barrett and Swindell [barrett1981].  

 

Attenuation and phase (refraction) projection. The transmitted x-ray intensity behind 

an object is given by 
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where I0 is the intensity of the incident beam, (x,y,z) is the linear attenuation 

coefficient for x rays inside the object, and the integral over coordinate s is along the 

propagation direction of the x-ray beam. (Compare Fig. 1a in the article.) In 

conventional CT, we measure I and I0, from which the projection of the linear 

attenuation coefficient given by 
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is calculated.  
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The refraction angle  of x-rays, additionally measured in differential phase-contrast 

CT methods, and so in PCCT, is essentially given by  
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where (x,y,z) is the local deviation of the real part of the complex refractive index 

(compare below) from unity. The integration in Equation (3) is performed along 

coordinate s, i.e., along the x-ray propagation direction, just like for the attenuation 

projection in Equations (1) and (2). The directional derivative is taken along the t-

direction perpendicular to the grating structures (see Fig. 1b). Thus, the refraction angle 

in the plane spanned by x-ray propagation direction and t-axis is measured. In all above 

equations, we have assumed that the deviation from the straight ray due to the minute 

beam deflection is negligible and causes no image blur. 

Both  and  depend on the x-ray wavelength (compare below). Hence, to incorporate 

the effect of an x-ray spectrum, the measured intensity in (1) must be weighted with the 

spectral distribution function and integrated over all wavelengths. Similarly, the 

deflection angle in (3) needs to be weighted with the spectral intensity distribution that 

contributes to the phase signal. Due to the x-ray-energy dependent efficiency of the 

Talbot interferometer [engelhardt2008], the phase measurement corresponds to an 

effective x-ray energy spectrum that differs from that of the simultaneously conducted 

conventional attenuation measurement (compare [herzen2009]). A broad x-ray spectrum 

can introduce beam-hardening artifacts in the attenuation reconstruction, and can also 

influence the phase reconstruction. Although, we found that the artifacts are much less 

pronounced for the phase images (compare article).  

The projections acquired in our measurement are two-dimensional images of the 

form p (t,z) and  (t,z), recorded for projection angles , where the sample rotates 

around the z axis (Fig. 1b). Using tomographic reconstruction algorithms (see Methods 
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in the article), we recover the linear attenuation coefficient (x,y,z) from p (t,z) and the 

refractive index decrement (x,y,z) from  (t,z), where the xyz coordinate system is the 

sample coordinate system, rotated around the z axis by the angle .  

Projections from interferometer phase scans. To measure the projection images p 

(t,z) and  (t,z) with the grating interferometer, we apply a Moiré phase-stepping 

technique [creath1988,weitkamp2005]. Translation of one of the interferometer 

gratings, in a direction perpendicular to the grating structure, causes an intensity 

oscillation in the Moiré pattern measured by the detector. To a first order 

approximation, we may assume the intensity oscillation recorded in each pixel to be of 

the form, Ij = Î + I1 cos(2 j/N +  ). Where j is an integer phase-step index running 

from 1 to N for a measurement, with N phase steps over one period. Calculating the 

discrete Fourier transform (DFT) of the recorded phase-stepping scan for each pixel 

provides the Fourier coefficients aj, with j = 0, ..., N – 1. The mean oscillation intensity 

is simply given by Î = a0 and the oscillation amplitude is I1 = 2|a1|, where the factor 2 

accounts for the corresponding negative frequency element (j = N – 1) of the DFT. The 

phase shift is obtained as  = atan2(a1), where atan2() is the function that returns the 

phase of the complex number a1, with values in the range from – to +  

To calculate the projections, a reference phase-stepping scan without the object in 

the beam path is recorded. In analogy to the above, Îr, I1,r, and r are determined for the 

reference scan. The attenuation projections are then calculated as p = –ln(Î/Îr) and the 

refraction angles (differential phase-contrast projections) as  = /(2S). Here, we 

introduced the angular sensitivity S = d/p2 of the grating interferometer [donath2009], 

where p2 is the period of Grating G2, d is the distance between gratings G1 and G2, and 

the difference of angles – r is measured modulo 2 in the range from – to +. 

We have neglected the small decrease in sensitivity caused by the additional distance of 

the sample from the G1 grating (compare [engelhardt2007] and [donath2009]).  
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The phase signal is contained only in the oscillating fraction of the recorded 

phase-stepping scan, which should be as high as possible. As a measure of quality for 

the interferometric phase images, we define the visibility V = I1/Î, which gives the 

fraction of intensity that contributes to the intensity oscillation in the phase-stepping 

scan. The visibility will generally depend on the quality of the interferometer gratings 

being used, the geometry of the interferometer setup, and the x-ray spectrum.  

 

Complex refractive index. The complex refractive index n = 1 –  + i can be used to 

describe attenuation and phase shift caused by a sample. The complex refractive index 

is a convenient number for the calculation of the propagation of wave fields. The 

complex amplitude U of an attenuated plane wave of wavelength , propagating along 

direction x, in a homogeneous medium with complex refractive index n = 1 –  + i, can 

be described as U = A0 exp[in(2/)x)] = A0 exp[(2/)x] exp[–i(2/)x] exp[–

(2/)x].  

The refractive index decrement  of the homogeneous sample of thickness d thus 

causes a phase shift  = –(2/)d on the x-ray wave. In the general case of an 

inhomogeneous sample with refractive index distribution (x,y,z), the phase shift 

becomes  ),,(2 zyxds
 .  

The intensity of the plane wave field |U = |A0|
 exp[-2 (2/)x] decays with 

attenuation coefficient  = 2 (2/) along x. Note that  , and not , is obtained from 

the measurement. Conversion of measured  values into  values requires knowledge of 

the x-ray wavelength , which, in most measurements and especially in measurements 

with a broad x-ray spectrum, is not well defined. Conversion should thus be avoided. 

Consequently, we keep and present our results in form of the measured pairs of  and   

(rescaled to HU-P and HU numbers).  
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Refractive index decrement and linear attenuation coefficient. The refractive index 

decrement  is related to the wavelength and the electron density inside the sample. For 

a mixture containing M types of atoms it can be expressed as  
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for given x-ray wavelength , classical electron radius re = 2.82·10-15m, the atomic 

density Ni in atoms per unit volume for type i atoms, and the real part of the atomic 

scattering factor 1
if  in the forward direction. The approximation on the right is valid, if 

the photon energy (E -1) of the incident x-ray radiation lies considerably above the 

binding energy of the contributing elemental absorption edges (compare [james1962: 

Chapter IV, 2(a)]). In this case, we may put 1
if  ≈ Zi, where Zi is the total number of 

electrons of a type i atom and the sum over elements in the above equation becomes 

approximately equal to the electron density e inside the sample. The refractive index 

decrement  of a homogeneous sample of thickness d thus causes a phase shift  = 

(2/)d ≈ reed, which is proportional to the electron density and the x-ray 

wavelength. For biological samples and clinically relevant x-ray energies, the x-ray 

energy is significantly above the absorption edges and, so, the phase signal is 

proportional to the electron density; e. 

The linear attenuation coefficient  for a substance depends on the photon energy, 

the elemental composition of the substance, and its mass density. In the relevant photon 

energy range, is dominated by the photoelectric absorption PE and Compton 

scattering C terms [barrett1981], with ≈PE + C. As a rule of thumb, we have that 

PE   Z4 E-3, where Z is the atomic number of the material [barrett1981].  
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