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Detecting objects in complex scenes while recovering the scene layout is a critical functionality in many

vision-based applications. In this work, we advocate the importance of geometric contextual reasoning for

object recognition. We start from the intuition that objects' location and pose in the 3D space are not

arbitrarily distributed but rather constrained by the fact that objects must lie on one or multiple supporting

surfaces. Wemodel such supporting surfaces bymeans of hidden parameters (i.e. not explicitly observed) and

formulate the problem of joint scene reconstruction and object recognition as the one of finding the set of

parameters that maximizes the joint probability of having a number of detected objects on K supporting

planes given the observations. As a key ingredient for solving this optimization problem, we have

demonstrated a novel relationship between object location and pose in the image, and the scene layout

parameters (i.e. normal of one or more supporting planes in 3D and camera pose, location and focal length).

Using a novel probabilistic formulation and the above relationship our method has the unique ability to

jointly: i) reduce false alarm and false negative object detection rate; ii) recover object location and

supporting planes within the 3D camera reference system; iii) infer camera parameters (view point and the

focal length) from just one single uncalibrated image. Quantitative and qualitative experimental evaluation on

two datasets (desk-top dataset [1] and LabelMe [2]) demonstrates our theoretical claims.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Whenwe observe a complex scene such as an office or a street, it is

easy for our visual system to recognize the objects and infer their

spatial organization in the environment. Objects do not appear in

arbitrary locations: it is very unlikely to observe a monitor floating in

the air or a car hanging from a building. Objects are rather organized

in the physical space in consistent geometrical configurations: their

locations and poses obey the law of physics (objects lie on supporting

planes in stable configurations) and follow the conventions of human

behavior. It is clear that when humans observe the environment, such

constraints will help reinforce the process of joint recognition and

scene layout recovery [3,4]. The recognition of objects with the

estimate of their locations, scales and poses helps infer the spatial

properties of the environment (e.g., the location and orientation of the

surface where objects lie), and in turn the scene layout provides

strong spatial contextual cues as for where and how objects are

expected to be found. Contributions in computer vision for the past

decade have followed the common paradigm of recognizing objects in

isolation [5–9], regardless of the geometrical contextual cues. It is

indeed true that objects can be in general recognized even when no

information about the scene layout is provided. However, we claim

that joint object recognition and scene reconstruction are critical if

one wants to obtain a coherent understanding of the scene as well as

minimize the risk of detecting false positive examples or missing true

positive ones. This ability is crucial for enabling higher level visual

tasks such as event or activity recognition and in applications such as

robotics, autonomous navigation, and video surveillance.

The intuition that recognition and reconstruction are mutually

beneficial has been initially explored in early works of computer

vision [10–15], and recently revitalized in [16–27]. In Hoiem et al.

[16], the process of detecting objects in a complex scene is enhanced

by introducing the geometrical contextual information of the scene

layout [28] (e.g., vertical surfaces, ground horizontal planes, etc.).

More explicit reasoning on the relationship between supporting

planes and objects hasbeen investigated in Hoiem et al. [29] and

Hedau et al. [17,18]. Hedau et al. [17,18] introduced a flexible

methodology for estimating the layout of indoor scenes by modeling

the scene using a3D cube representation. Following our preliminary

study [30], we too advocate the importance of geometrical contextual

reasoning for object recognition and focus on demonstrating that the

contextual cues provided by object location and pose can be used, in

turn, to reinforce the detection and prune out false alarms (Fig. 1). Our

key idea is that objects' locations and poses in the 3D space are not

arbitrarily distributed but rather constrained by the fact that objects

must lie on one or multiple supporting surfaces. We model such
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supporting surfaces by hidden parameters (i.e. not explicitly ob-

served) and seek a configuration of objects and supporting surfaces in

the 3D space that best explains the observations, including the

estimation of each object's location, scale and pose. To this end, we

leverage on recent methods for detecting multi-category objects and

estimating their poses accurately from a single image [31–36]. Unlike

[16], where contextual information was partially provided by the

explicit estimation of surface orientation using the geometric context

operator [28], we only use the objects themselves for extracting

contextual cues. Thus, we do not require supporting planes or other

scene surfaces to be visible or detectable in order to perform the joint

recognition and reconstruction. Rather, supporting planes are implic-

itly estimated from the observation of the object location and pose in

the image. Moreover, our camera representation is general: We only

hypothesize that the camera has zero skew and unit pixel ratio (but

unknown focal length). Most importantly, we do not make the

assumption that the camera is at fixed distance from the ground plane

and has a fixed view angle. Because of these properties, our algorithm

can be successfully applied in both outdoors and indoors scenarios.

Notice that Hedau etal. [17,18] use cues such as vanishing lines that

are complementary to ours and could be nicely integrated into our

framework. Also notice that physics-based constraints such as those

introduced in Gupta et al. [26] enable different ways for modeling the

interaction between scene and objects wherein, in this case, objects

are mostly identified as urban elements (i.e., buildings and houses).

Finally, in Payet et al. [27] the analysis of textures is introduced to

provide scene-specific constraints among objects.

The main contributions of our work include: 1. A novel repre-

sentation that can jointly model 3D objects locations and 3D sup-

porting surfaces (planes) from the observations in a single image.

Concretely, the problem of joint scene reconstruction and object

recognition is formulated as finding a set of parameters that maximize

the joint probability of having a number of detected objects on K

supporting planes given the observations (Section 2). 2. A relationship

that connects the 2D image observation of object location and zenith

angle pose with the normals of the supporting planes and with the

camera focal length parameter. We prove that this relationship yields

necessary conditions for estimating the camera focal length and the

supporting planes' 3D orientations and locations (in the camera

reference system) from the locations and zenith poses of at least 3

objects in the image. The relationship is general in that objectsdo not

necessarily need to lie on the same supporting plane as long as their

supporting planes are parallel with respect to each other and the

objects are not collinear (Section 3.1). 3. A framework that uses the

above relationships and a novel probabilistic formulation to jointly

detect objects (so as to reduce false alarm and false negative rates)

and recover (within the camera reference system) the objects' 3D

locations, the 3D supporting planes, and the camera focal length

parameter. All of the outcomes mentioned above are merely based on

one single semi-calibrated image (Section 2). Experimental evalua-

tion on two datasets (desk-top dataset [1] and the car and pedestrian

Label-Me dataset [2]) demonstrates our theoretical claims (Section 4).

2. Modeling objects and scene layout

Given an image portraying a number of objects, our work proposes

a newmodel for jointly recognizing objects in the scene and recovering

the scene layout that best ”explains” the evidence measured in the

image. In this paper, the term “scene layout” indicates: i) the objects'

3D locations and poses in the camera reference system; ii) the 3D

locationand orientation of their supporting planes in the camera

reference system; iii) the camera focal length. In this section we will

first introduce notations and assumptions and then formulate the

problem.

2.1. Assumptions and notations

We assume that each object lies on a supporting plane at an up-

right pose. This assumption is satisfied in most real world scenes. For

example, a car is usually touching the ground by four wheels rather

than only two and awineglass is usually standing vertically rather than

obliquely (Fig. 2). This is consistentwith the common observation that

objects rarely float in the air or appear in unstable poses. Furthermore,

if multiple supporting planes co-exist in one image, we assume that

these planes are all parallel to each other. This parallel relationship of

planes holds formost daily-life scenes. Notice thatwe are not assuming

the cameramust be “up-right”with respect to the supporting surfaces.

a) Original Image b) Detection Candidates

c) 3D Scene Layout

d) Supporting Plane and Improved Detections

Fig. 1. A conceptual illustration of the flowchart of our algorithm. (a) Original input image with unknown camera parameters; (b) Detection candidates provided by a baseline “cup”

detector; (c) The 3D layout. The figure shows the side view of the 3D reconstructed scene. The supporting plane is shown in green. Dark squares indicate the objects detected and

recovered by our algorithm; light squares indicate objects detected by the baseline detector and identified as false alarms by our algorithm; (d) Our algorithm detects objects and

recovers object locations and supporting plane (in gold color) orientations and locations within the 3D camera reference system from one single image. We show only a portion of

the recovered supporting plane for visualization purposes.
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2.1.1. Plane in 3D

A plane in 3D has three degrees of freedoms. Hence, it can be

parameterized by its surface normal n (Fig. 4) and its distance h to the

origin of the coordinate system (i.e. the camera).

2.1.2. Object in 3D

We define the parametrization to identify an object's location and

pose in 3D coordinate system. Assuming that an object is enclosed by

the tightest bounding cube lying on the supporting plane (Fig. 3(a)),

the object 3D location O can be specified by knowing the centroid of

the 3D bounding box. Furthermore the object's pose can be defined by

the three bounding box's perpendicular surfaces' normal n, q and t

(Fig. 3(a)). As discussed above, we assume all objects' up direction n

should be the same as the normal of the supporting plane. Let the unit

view sphere associated to an object be the collection of viewpoints

equally distant from the object. In the view sphere of an object, let r be

the ray that connects O and the camera center (Fig. 3(b)). Let zenith

angle ϕ be the angle between the ray r and n (Figs. 3(b) and 4). Define

azimuth angle θ be the angle formed by object's frontal vector q and a

vector rs. rs is the projection of the ray r onto the plane perpendicular

to n (i.e. supporting plane). We denote by ϕ the measured zenith pose

from image, and by ϕ̂ the estimated zenith pose consistent with the

underlying surface layout. We will explain in details how to compute

ϕ̂ and measure ϕ in Section 3.1.

2.1.3. Object in 2D

An object in the image plane is uniquely identified by a bounding

box bbox tightly enclosing the object in 2D. We define bbox by its

center (u, v), the height h, and widthw in image coordinate (Figs. 3(b)

and 7).

2.1.4. Candidate detection

We assume a number of object class detectors are available and

each detector returns a number of candidate detectionsm, where each

m is defined by a bounding box bbox and the estimated object pose

Fig. 2. If the normal of a plane is n, objects lying on this plane tend to share the same normal direction n1//n. Objects whose normal is not parallel to n (e.g. n2 and n3) are unlikely to sit

on that supporting plane.

a) Object in 3D b) Object’s pose in view sphere

Fig. 3. (a): Three perpendicular directions characterize the pose of a rigid object in a given reference system. n is defined as the object's normal. (b): Definition of zenith angle ϕ and

azimuth angle θ, given the object's pose in the camera reference coordinates.

Fig. 4. Geometric relationships of ϕ, r, d, h and n.
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represented by the zenith angle ϕ and azimuth angle θ. Thus, m=

{bbox, ϕ, θ} (Figs. 3(b) and 7).

2.1.5. True-positive flag

We assign a true-positive flag t to each detection result. t=1 if a

candidate detection is associated to the true object category, and t=0

if a candidate detection indicates the presence of an object from an

incorrect category or just background. Given an image measurement

(i.e. portion of the image that is used by detector to assess whether an

object class has been detected andmay yield a detectionm or not), the

detector returns a confidence score indicating how likely a detection

is a true positive, i.e. t=1.

2.2. Joint model of objects and supporting planes

We propose a probabilistic model which incorporates the

interaction between objects and supporting planes. The key idea is

that the estimation of both candidate detections and the underlying

geometry is more accurate than estimating each term independently.

For simplicity, we denote scene information S={n, h, f} where n and h

are supporting plane's parameters and f is the camera focal length.We

formulate the joint probability of the candidate detections o={oi}=

{mi, ti}, image evidence E={ei}, and scene information S following the

graphical model in Fig. 5 as

p o; E; Sð Þ = p Sð Þ ∏
N

i=1

p oi jSð Þp ei joið Þ

p(oi|S) is the probability of an object given scene information. p(oi|S)

can be further decomposed as p(oi|S)=p(ti|mi, S)p(mi|S)∝p(ti|mi, S)

because the probability of a bounding box given only geometrical

constraint p(mi|S)is a constant. Consequently,

p o; E; Sð Þ∝p Sð Þ ∏
N

i=1

p ti jmi; Sð Þp ei jmi; tið Þ

Each term is described as follows:

p(S) is the scene prior which can be modeled as uniform

distribution within a range of n, h and f. Details of the selection of

range values for these parameters are in Section 4.

p(e|t,m) is related to thedetection result's confidence. Assumep(m, t)

and p(e) follow a uniform distribution, we have

p e jt;mð Þ = p t;m jeð Þp eð Þ= p t;mð Þ∝p t;m jeð Þ

where p(t,m|e) is the detection's confidence returned by the detector.

p(t|m, S) is the probability that the detection is a true positive,

given the candidate detection m and the scene information S.

One contribution of our work is to estimate p(t|m, S) with the help

of two geometrical relationships: 1. Relationship between focal length

f, zenith angle ϕ and supporting plane normal n. 2. Relationship

between the object-to-plane distance d, the object's 3D coordinates O,

Fig. 5. Graphical model of conditional independence for supporting plane parameters

and detection result, where oi is partially observed and ei fully observed. Details are in

Section 2.2.
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the plane's normal n, and the camera-to-plane distance h (Fig. 4). In

Section 3 we will explain in details these relationships. Here, we

formulate

p t = 1 jm; Sð Þ∝p t = 1 jdð Þp t = 1 jϕ− ϕ̂
� �

ð1Þ

That is to say rather than using S directly, we use d and ϕ̂ to

determine if the candidate detection m is true. We assume Gaussian

distribution p(t=1|d)=N(d;0, σd), and p t = 1 jϕ− ϕ̂
� �

= N ϕ− ϕ̂;
�

0;σϕÞ, where ϕ̂ is the inferred zenith and ϕ is the measured zenith

from image. Thus, ti=1 is highly likely when the scale of the bounding

box and the predicted pose by detector are consistent with the

supporting plane.

To simultaneously estimate the scene information S, and the true-

positive flag {ti} of each candidate detection, we want to find S and {ti}

such that the joint probability p(o, E, S) is maximized. Unknowns are

{ti}, S, and measurements are {mi} and {p(ei|oi)} given by detector. The

problem is equivalent to find S and {ti} by means of the following

optimization problem:

S; tif gf g = argmax
S; tif g

ln p Sð Þ + ∑
N

i=1
ln p ti jmi; Sð Þ + lnp ei jti;mið Þ½ � ð2Þ

2.3. Solving the optimization

In this section we solve the optimization problem of Eq. (2) in

Section 2.2. Define z(S) as

z Sð Þ = max
tif g

∑
N

i=1
ln p ti jmi; Sð Þ + ln p ei jti;mið Þ½ �

= ∑
N

i=1
max

ti
ln p ti jmi; Sð Þ + ln p ei jti;mið Þ½ �

� 	

For a fixed value of S, the value of each term in the above summation

can be calculated independently. Hence, the best global configura-

tion of {ti} given S can be foundafterN comparisonsof ln p(ti=1|mi, S)+

ln p(ei|ti=1,mi) with ln p(ti=0|mi, S)+ ln p(ei|ti=0,mi). Therefore, {ti}

can be computed as a function of S:

t⁎i = arg max
ti

ln p ti jmi; Sð Þ + ln p ei jti;mið Þ ð3Þ

Having estimated ti, to find S is equivalent to

S = argmax
S

ln p Sð Þ + z Sð Þ½ � ð4Þ

We propose to solve Eq. (4) by searching on a large but finite set S

to find the optimal S . This can be computed almost in real-time by

CUDA parallel programming. Let F∈R be the set of all the possible

values of the focal length f. Let N∈R3 be the set of all possible values of

the plane normal n. Let H be the set of all possible values of the plane

height h. The search space is S=F×N×H. The details can be found in

Algorithm (2.4).

2.4. Extension to multiple planes

The above approach estimates the single most likely supporting

plane by obtaining the highest log likelihood score. This approach can

be extended to handle the case of multiple supporting planes by using

an iterative procedure. Denote by K the number of already estimated

planes. Denote by A the set of active object detection candidates. At

the beginning, K=0 and A is all object detection candidates. First, we

employ this approach to find the best plane configuration S. Then we

determine the objects that sit on plane S and remove them from A.

Next, the algorithm processes the remaining detection candidates.

The algorithm ceases after K is larger than a predefined threshold.

Notice that, since all the supporting surfaces are assumed to have the

same normals, the “at least three objects” requirement (Section 3.1) is

no longer necessary for other planes except the first one. The

procedure is described in Algorithm (2.4)

Algorithm 1. Estimating scene layout from images

1. Set the number of already estimated planes K=0. Set the active

object detection set A to be the set of all object detection candidates.

2. If K=0, enumerate S j∈F×N×H; else enumerate S j∈ f×n×H

where f and n are the already estimated focal length and plane

normal.

3. For each enumeration Sj, estimate the flag ti
j for all objects oi∈A by

Eq. (3)

4. Given the estimated {ti
j} for all enumerations {S j}, find S⁎∈{S j} by

Eq. (4).

5. Take S⁎ as one estimated supporting surface. Remove the objects

that have true flag ti=1 from A. Set K=K+1.

6. if K is larger than a predefined threshold, then stop. Otherwise

goto 2.

3. Relating camera measurements and supporting planes

In this section we derive the relationship among the estimated

zenith angle pose ϕi of an object in the image plane, the supporting

plane normal n and the camera focal length f. We show that by

measuring ϕi for at least three non-collinear objects, we can estimate f

and n from a single image. Notice that in order for this result to be

true, objects are not necessarily required to lie on a single supporting

plane, but each object can have its own supporting plane as long as all

the planes are parallel. This result is one of the main contributions of

our paper and provides sufficient conditions for estimating p(ti|mi, S).

In Section 3.2, we will explain how to locate an object O in 3D and

establish a relationship between O, h, d and n.

3.1. Relationship between focal length and supporting plane normal

We adopt homogeneous coordinates to represent objects in 3D and in

the image plane coordinates. Let ũ; ṽ;1
� �

be the homogeneous co-

ordinates of the object projection in the image plane.We assume that the

camera is semi-calibrated. That is, we assume that the camera center (u0,

v0) is known, the pixel ratio α=1 and the camera has zero-skew. These

are reasonable assumptions that hold in most practical cases. By

translating any point in the image plane by ui; við Þ = ũi; ṽi
� �

− u0;ð
�

v0ÞÞ
T , we write the camera intrinsic parameter matrix as K=diag(f, f, 1).

Let ri be the line of sight connecting the camera center and an

object Oi, which passes through an object's location (ui, vi, f) in the

image. Then the direction of the line of sight ri in camera coordinates

is (ui/f, vi/f, 1). Let n=(n1, n2, n3) denote the normal of the supporting

plane in camera coordinates. si and n are shown is Fig. 4. If we enforce

n to have unit norm, then n1
2+n2

2+n3
2=1. Thus:

ui; vi;1ð Þ
n1

n2

n3f

0

@

1

A = −cosϕi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
1 + v21 + f 2

q

ð5Þ

Using Eq. (5), the key term ϕ̂ in Eq. (1) can be computed given n1,

n2, n3, and f, i.e. part of S.

3.1.1. Measuring zenith angle from single image

It is clear that our formulation relies on the measurement of the

objects' zenith angles in the image plane. Recently, a number of

techniques such as [33,32,31,35] have been proposed to estimate

object pose from single images. We used an adapted version of [33] to
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measure zenith angles ϕ from the image. Quantitative experimental

analysis on our in-house dataset shows that our detector is capable of

generating zenith pose classification results that are compatible with

our sensitivity analysis (Section 3.1.3 and Fig. 6).

3.1.2. Estimating 3D plane orientation via object zenith angles

In this section, we show that the normal of the supporting planes

and the focal length of the camera can be estimated from the objects'

zenith angles phii and their locations from just one single image. If a

total number of N measurements ϕi, ui, vi (i=1…N) are available,

following Eq. (5) we obtain:

u1 v1 f
u2 v2 f
u3 v3 f

⋮
uN vN f

2

6

6

6

6

4

3

7

7

7

7

5

n1

n2

n3

0

@

1

A =

−cosϕ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
1 + v21 + f 2

q

−cosϕ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
2 + v22 + f 2

q

−cosϕ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
3 + v23 + f 2

q

⋮

−cosϕN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
N + v2N + f 2

q

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

A

ð6Þ

This equation allows us to solve { f, n1, n2, n3} from the objects'

measurements ϕi, ui, vi (i=1…N) in just one single image. The

following proposition gives the conditions for the existence of a

solution of Eq. (6).

Proposition 1. Eq.(6)admits one or at most two non-trivial solutions for

{f, n1, n2, n3} if at least three non-aligned observations (ui, vi) (i.e. non-

collinear in the image) are available. If the observations are collinear,

then Eq.(6)has an infinite number of solutions.

Proof. Suppose at least three objects are not collinear in an image,

then the rank of the left matrix on the left-hand side of Eq. (6) is 3.

Therefore Eq. (6) provides 3 independent constraints. The unknowns

in Eq. (6) are n1, n2, n3, f. With these constraints, each of n1, n2, n3 can

be expressed as a function of f, i.e. ni=ni(f). Because ‖n‖=1, we

obtain an equation about f:

∑
i=1…3

n
2
i fð Þ = 1

In the above equation, f appears in the form of f2 and f4. Therefore,

there are at most two real positive solutions for f. Given f, {n1, n2, n3}

can be computed as ni=ni(f).

If all objects are collinear in the image, then an infinite number of

solutions exist for Eq. (6). If all objects are collinear, the rank of the left

matrix in the left-hand side of Eq. (6) is 2. Without loss of generality,

assume (u1, v1)≠0. In such a case, after using Gaussian elimination,

Eq. (6) will be in the following form:

α β f
γ � 0
0 0 0

⋮

2

6

6

4

3

7

7

5

n1

n2

n3

0

@

1

A =

ζ
η
0
⋮

0

B

B

@

1

C

C

A

ð7Þ

If f̂ ; n̂1; n̂2; n̂3 is a solution, then f̂ ; n̂1 + km1; n̂2 + km2;

n̂3 + km3 is also a solution of Eq. (7), where (m1, m2, m3) is the

non-trivial solution the following equation:

α β f
γ � 0

� � m1

m2

m3

0

@

1

A = 0

Hence, Eq. (6) admits an infinite number of solutions. □

Eq. (6) guarantees that as long as at least 3 objects do not lie on the

same line in the image, it is possible to express the focal length of the

camera and the normal of the supporting planes as a function of the

objects' locations and zenith pose measurements in the image. Notice

that this equation does not assume that all objects are placed on one

unique plane and it also does not make the assumption that the

camera has no in-plane-rotation (tilt).

3.1.3. Error analysis

We use a numerical simulation to analyze the robustness of the

estimation of f and n in solving Eq. (6) as a function of noise in the

measurements ϕ. For a total number N of objects, first a random set of

object's bounding box {ui, vi}, plane's normal n and focal length f are

synthetically generated. Then the corresponding object's zenith angle

ϕi is computed by Eq. (5). Next we add Gaussian noisew of variance σ

to the object's zenith ϕ̃i = ϕi + w. Consequently, given ϕ̃i

n o

and {ui, vi},

we compute the normal of the plane n̂ and the focal length f̂ , by solving

Eq. (6) using the Levenberg-Marquardt method. Fig. 6(b) and (c) show

the mean value of the absolute errors v.s. the number of objects and the

noise level (see figure captions for details). These plots relate the

accuracy in estimating n and f as a function of the error inmeasuring the

zenith angle ϕ. Given that our detector returns ϕ with an error of about

10∘ (Fig. 6(a)), Fig. 6(b) and (c) show that the corresponding error in

estimating n and f is reasonably low.

3.2. Locating objects in 3D

In this section, we explain the relationship between S and d and

how to locate objects in the 3D camera reference system. Denote by

‖r‖ the distance between the object location O and the camera. It is

impossible to estimate ‖r‖ without any prior knowledge about the

camera or the object if only a single image is available. However,

assuming that we have some prior knowledge about the real size of

the 3D object, the object distance ‖r‖ can be estimated from the object

scale in the image by means of an inversely proportional relationship.

Specifically, if an object's image bounding box's height andwidth are h

and w, its category is c, and its estimated pose is θ and ϕ, we

approximate its distance ‖r‖ by the following linear combination in
1

w

and
1

h

‖r‖≃ α θ;ϕ; cð Þ
1

w
+ β θ;ϕ; cð Þ

1

h

� �

·f ð8Þ

where α and β are function of the object's pose and class label and f is

the focal length. α and β are related to the physical 3D shape of the

object category. A more precise modeling of this relationship goes

beyond the scope of this paper. We instead use linear regression to

learn α and β for each set of θ, ϕ, c in the training set where ground

truth pose and distance ‖r‖ are available (Fig. 7). As a result, given

candidate objectm={bbox, θ, ϕ} and its category c, its 3D coordinates

can be estimated in the camera coordinates as follows:

O≃
‖r‖

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u= fð Þ2 + v= fð Þ2 + 1
q

u = f
v= f
1

0

@

1

A

This allows us to relate the 3D coordinates of candidate object O,

the supporting plane parameters (n, h), and the distance d between

object and the supporting plane as d=OTn+h (Fig. 4).

4. Evaluation

In this section we qualitatively demonstrate the ability of our

framework to jointly estimate the scene layout (camera location,

supporting plane orientation and object location in the 3D space) as

well as improve the accuracy in detecting objects. We test our

algorithm on a novel indoor desk-top database [1] as well as on the

LabelMe [2] outdoor pedestrian and cars dataset. We use the Graphic
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Processor Unit to implement the optimization procedure. In our

implementation of the optimization function, the range of values for

each unknown parameter is set as follows: i) plane normal has 20

discretized values for tilt direction from 15° to 17° and 5 discretized

values for camera-rotation from −10° to 10°, ii) plane height has 20

discretized values from 30 cm to 80 cm for office dataset and from

1.5 m to 2 m for street dataset. iii) camera focal length has 20

discretized values from 0.8 to 1.25 fraction of the initial value of the

camera focal length. The average optimization time for one 640×480

image is 0.2 seconds. Using the LabelMe dataset, we compare our

algorithm with Hoiem et al. [16]. The comparison indicates that our

method achieves competitive results in pruning out false positives
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Fig. 8. Experimental results on our desk-top dataset. Y axis is the proportion of test images associated to an error interval (X axis). (a) shows the error when estimating the focal

length on 50 test images: the ground-truth focal length fgt
i is known and the fest

i is the estimated value. The error is computed as ef
i=(fest

i − fgt
i )/fgt

i . (b) is the error when estimating

the camera height on 50 test images. The ground truth value of camera height hgt
i ranges from 35 cm to 60 cm, and the estimated value is hest

i . The error is computed as eh
i =hest

i −hgt
i .

(c) shows the error when estimating the plane normal on 50 test images. The ground truth normal is ngt
i and the estimated value is nest

i . The error is defined as en
i =arccos(nest

i ngt
i ).
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and estimating layout properties such as the horizon line. We also

show successful anecdotal results on a number of images downloaded

from the web.

4.1. Desk-top scenario

We test our framework on a novel desk-top database [1] where

ground truth information about the geometry of the scene is available.

This dataset comprises three object categories (computer mouse, mug

and stapler). Each image in the dataset portrays 3 to 5 object instances

located at randomly selected positions and with random poses on one

(or two) supporting plane(s) (Fig. 11). Training and testing sets

contain 80 and 75 images respectively. For each image we have the

available ground truth values for the camera focal length and the

normal of the supporting plane in the camera reference system aswell

as the ground truth locations of the objects in the image. These are

used for training the distance function (Eq. (8)) and for evaluating our

algorithm's performance. We learn our modified version of the object

detector and pose estimator in [33] on the 3-object category training set.

We apply the learnt detector to the testing set and obtain a number of

detected objects. This provides the baseline object detection result (e.g.

“baseline” in Fig. 9(a) and (b)). For each detection we also estimate the

azimuth and zenith pose of the object. Examples of detections are in

Fig. 11. Among these detectionswe can find a number of false alarms. So
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Fig. 11. Desk-top dataset: In each sub-figure we show the baseline detector results on the left; our algorithm's object detection and support plane estimation results in the middle;

our algorithm's 3D scene layout reconstruction on the right. Baseline detection results are in red; dashed red boxes indicate false alarms. Our improved detection results are in green;

dashed green boxes indicate false alarms. Our estimated supporting plane is superimposed in yellow. Notice that most of the supporting planes estimations are visually convincing.

The 3D layout shows the side view of the 3D reconstructed scene (the camera is located at (0, 0) pointing to the right). The estimated supporting plane is in green and the ground

truth supporting plane in blue. Green dots are the objects detected and recovered by our algorithm (in the 3D camera reference system); red squares are objects detected by the

baseline detector. Notice that our algorithm works even when there are multiple supporting planes existing in a scene.
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we run our algorithm and use such detections (along with pose

measurements) to jointly estimate the supporting plane normal, the

camera focal length and the locations of the objects (among all

detections returned by the detector) that are consistent with the

estimated scene layout. Results are shown in Figs. 8 and 9.We testedour

algorithm on images where one plane or two planes exist in the scene.

Our testing set contains 50 images of one-plane case and 25 images of

two-planes case. Fig. 9(a) shows the object detection precision-recall

curve. In the one-plane case, the baseline detector average precision is

64% compared to 70% with our method. In the two-planes case, the

baseline detector average precision is 56% compared to ours 61%.

Furthermore, we evaluate the detection accuracy as function of the

number of instances appearing in the scene per test image.We showour

results in Fig. 9(b). The object detection performance improvement is

obtained by using the estimated supporting plane to prune out false

alarms and recover missed positives. The estimation of the supporting

plane is affected by the observation noise (location and pose) associated

to each object instance. As the number of observations increases, the

contribution of the noise is averaged out which explains the reason the

object detection performance increases with the number of instances.

4.2. Experiments on LabelMe dataset

We compare our algorithm with another state-of-the-art method

that uses geometrical contextual reasoning for improving object

detection rates and estimating scene geometric properties such as the

horizon line [16]. We use the LabelMe database on cars and pedestrians

to compare the algorithms. Since one necessary condition for our

algorithmtowork is that at least three objects coexist in the same image,

we use a subset of the dataset provided by [16]. We remove images

containing less than three instances (pedestrians or cars). We test our

algorithm on 100 randomly selected images and compare our method

with [16] by using the same baseline pedestrian and car detector as in

[16]. Examples of detections are in Fig. 12. Fig. 10(a) compares the ROC

curve for car and pedestrian detection by our algorithm to that of [16].

Fig. 10(b) shows the histogram of the relative error of our algorithm in

estimating the horizontal vanishing line. Notice the median absolute

error in estimating the horizontal vanishing line reported in [16] is

0.038. Detection rate and accuracy in estimating the horizon line are

comparable between ours and [16]. However, notice that [16] heavily

relies on: i) estimating surface geometry [28] by determining ”ground”,

”vertical” and ”sky” regions in the image; ii) assuming that the camera

has a fixed distance from the ground plane (the distance is roughly the

height of a person); iii) assuming that no multiple ground planes (at

different heights) are present in the image. On the contrary, our

algorithm: i) doesnot rely on estimatinghorizontal or vertical regions as

it extracts spatial contextual information from the objects themselves

(thus, our algorithmworkseven if the ground region is not visible at all);

ii) doesnot assume fixed distance from the ground plane which can be

located anywhere in the 3D space; iii) it works even if objects are

supported by multiple planes located at different heights. For that

reason our algorithm is particularly suitable to work in indoor settings

where most of the assumptions of [16] are violated.

4.3. Anecdotal detections and reconstructions

We conclude this section by presenting a number of anecdotal

examples. Fig. 13 shows joint detection and scene layout estimation on

images taken fromvarious sources including ETHZ [37] and the Internet.

5. Conclusions

We have presented a novel method that can jointly model object

locations and supporting surfaces (planes) in the 3D space along with

camera focal length in a single camera.We havemodeled the problem

of joint scene reconstruction and object recognition as the one of

finding the set of parameters that maximizes the joint probability of

detecting objects on several supporting planes. Experimental results

have demonstrated the validity of our intuitions and assumptions. We

see this work as a promising starting point for achieving coherent

scene interpretation and object recognition. For instance, we believe

that, by combining our approach with that of Hoeim et al. [16], the

joint recognition-reconstruction paradigm may be further enhanced.
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