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Abstract 

Standard techniques for segmenting color images are based on finding normalized RGB discontinuities, color histo­

gramming, or clustering techniques in RGB or CIE color spaces. The use of the psychophysical variable hue in 

HSI space has not been popular due to its numerical instability at low saturations. In this article, we propose the 

use of a simplified hue description suitable for implementation in analog VLSI. We demonstrate that if the inte­

grated white condition holds, hue is invariant to certain types of highlights, shading, and shadows. This is due 

to the additive/shift invariance property, a property that other color variables lack. The more restrictive uniformly 

varying lighting model associated with the multiplicative/scale invariance property shared by both hue and normal­

ized RGB allows invariance to transparencies, and to simple models of shading and shadows. Using binary hue 

discontinuities in conjunction with first-order type of surface interpolation, we demonstrate these invariant proper­

ties and compare them against the performance of RGB, normalized RGB, and CIE color spaces. We argue that 

working in HSI space offers an effective method for segmenting scenes in the presence of confounding cues due 

to shading, transparency, highlights, and shadows. Based on this work, we designed and fabricated for the first 

time an analog CMOS VLSI circuit with on-board phototransistor input that computes normalized color and hue. 

1 Introduction 

The primary goal of color segmentation in machine 

vision is to determine where changes of material occur 

in a visual scene. While a material's surface properties 

are associated with its spectral reflectance signature, 

it is only the image radiance-spectral reflectance mul­

tiplied by the illumination-that is available for infor­

mation processing (see figure 1). The measurement of 

surface color from the image radiance is an approxi­

mation to obtaining the spectral reflectance signature. 

Nevertheless, for a standard reference illumination the 

measurement of relative color differences calculated 

from the image radiance will relate to material change. 

Much work on color segmentation has been based 

on physically based models. Rubin and Richards (1982) 

describe an approach based on assigning material dif­

ferences to spectral crosspoints. Gershon, Jepson, and 

Tsotsos (1986) incorporate that idea in a double­

opponent center surround operator to distinguish mate­

rial changes from shadow boundaries. Other approaches 

involve separating image radiance into surface reflec­

tion and body reflection. For example, Klinker, Shafer, 

and Kanade (1988, 1990) discuss a physically based 

color reflection model-the dichromatic model (Shafer 

1985)-that accounts for highlight reflection and matte 

shading to improve segmentation. Their method is 

based on evaluating planar clusters in 3-D color space 

while considering camera limitations. Similarly, Healy 

and Binford (Healey 1987; Healey & Binford 1989) 

describe a reflectance model of materials to classify 

metals and dielectric surfaces. 

Nonphysically based segmentation models, in partic­

ular those that utilize hue, have been few and far be­

tween. Oblander (1976) uses recursive thresholding on 

9 parameter color-space (RGB, HSI, YIQ) histograms 

for his segmentation algorithm. Ohta (1980) evaluates 

the performance of 7 different color spaces (21 param­

eters, 3 of which were HSI) utilizing Oblander's algo­

rithm. In recent times, Celenk (1990) utilizes the peaks 

of the 1-D histograms of the equivalent hue-saturation­

intensity (HSI) coordinates in the CIE (L*a*b*) uniform-
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Albedo or Bidirectional 

Reflectance 

Fig. 1. The geometry of image furmati9n. The surface property, albedo, is contained in the radiance signal-viz. Radiance(!-) = irradiance(A) * 
albedo(!-). (Alternate variables i, e, g are utilized in the dichromatic model (Shafer 1985). 

color coordinate system to identify cluster regions 

and then projects the clusters onto a line for one­

dimensional thresholding. Similarly, Tominaga (1990) 

utilizes iterative histogramming on the principal com­

ponents of the CIE (L*a*b*) color space to identify 

cluster regions, and then applies a grouping operation 

dependent on hue difference thresholds. 

Bajcsy (1990) uses a physically based model to con­

struct HSI from an orthogonal basis space whereupon 

shading, highlights, shadows, and interreflections are 

discounted. Nevertheless, clustering, histogramming, 

and thresholding are applied to the hue parameter. 

All these methods use classical pattern-recognition 

techniques-histogram thresholding, linear discrimi­

nant function, recursive region masking, clustering, 

etc.-which require heavy computational resources. 

These techniques represent neither plausible schemes 

for naturally evolved, efficient, biological systems nor 

lend themselves very easily to dedicated analog "vision 

chips." We investigate methods for color segmentation 

based on a simple hue space, discuss its properties, and 

show its similarity to other measures of hue. Our 

research is fueled by the desire to understand the basis 

of color segmentation in primate cortex as well as to 

imitate those structures in analog CMOS VLSI circuits 

(see for example Harris (1990a), Koch (1991), and Perez 

(1992a)). In particular, the low accuracy and inhomo­

geneity of the circuit components we are using (Mead 

1989) forces us-similar to biological evolution-to 

consider simple and robust implementation of vision 

algorithms. Accordingly, we reevaluate and justify a 

simplified hue description, propose an algorithm for 

hue segmentation, and demonstrate its adaptation to the 

first version of an analog VLSI hue chip. 

l.l Why Hue? 

In this study, the psychophysically based parameters hue, 

saturation, and intensity were used as the starting point 

for color segmentation. Electrophysiological studies 

suggest that hue is computed at a high level in the ner­

vous system. An examination of the spectral response 

curves in area V4 of the monkey visual cortex bears this 

out (Desimone 1985; Zeki 1983). Also, anthropological 

studies indicate that hue ordering and color naming are 

universal and not culturally unique (Berlin 1969). 

These results suggest that hue is a high-level var­

iable. The motivation for its selection in image seg­

mentation is that material boundaries correlate more 
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strongly with hue than with intensity differences. 

Shadow boundaries are strongly associated with inten­

sity edges, and less so with hue boundaries. The same 

is true for highlight boundaries and transparency boun-

. daries. This fact is borne out in this study (see also the 

study ofBajcsy (1990)). Furthermore, segmentation in 

the 1-D hue space is computationally less expensive 

than in the 3-D red-green-blue (RGB) space. In com­

parison to other techniques, the method developed here 

is simpler, yet as effective in removing confounding 

cues as the color clustering and histogram thresholding 

methods developed for color image segmentation. 

The history of hue as a computational variable for 

image segmentation has not been favorable. Kender's 

1976 study showed that nonlinear color transforms such 

as HSI and normalized color have essential singulari­

ties, and spurious modes due to the digitizing nature 

of the nonlinear transforms (Kender 1976). Kender's 

recommendation was to use linear spaces. Still, re­

searchers have used (Healey 1989; Hurlbert 1989; 

Nevatia 1977; Poggio 1988; Rubin & Richards 1984) 

normalized color as the basis of an illumination­

independent color space. In section 3 we evaluate the 

advantages and disadvantages of the hue space, and how 

it compares to normalized color. But first, we examine 

the competing color spaces. 

2 Color Space Comparison 

The different color spaces in use today include: RGB, 

normalized RGB (Nrgb), YIQ HSI, Opponent color, 

Munsell , and various CIE spaces (Daily 1989; Foley 

1990; Joblove 1978; Ohta 1980; Schwarz 1987; Smith 

1978; Wyszecki 1982). The existence of many different 

color spaces is mainly a result of color scientists at­

tempting to construct perceptually uniform color organ­

ization. The spaces examined in this study are the RGB, 

Nrgb, CIE (L*a*b*), and HSI color spaces. 

2.1 RGB Space 

The red , green, and blue colors represent the tristi­

mulus components (Wyszecki 1982) and define the basic 

color space. Each of these components corresponds to 

a filtered spectral mapping from image space to a 3-D 

sensor space. The equation governing this transforma­

tion is 

C = !>-. E(A)Sc(A) dA for C = (R, G, B) (1) 

where Care the tristimulus values, £()...) is the incoming 

light intensity or radiance, and Sc are the three hypo­

thetical color filters . 

The RGB images of the original color images in fig­

ure 2 are shown in figure 3. These images were chosen 

because they contained some attributes of shading, 

(a) 

(b) 

Fig. 2. Original color images of (a) shadowed Mondrian and (b) pep­

pers. In both images a projector lamp was used for direct illumination 

while fluorescent light provided ambient illumination. 
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(a) 

(b) 

Fig. 3. Red, green, and blue components of (a) Mondrian and (b) peppers. 

transparency, highlights, and shadowing. Figure 2a is 

a simplified Mondrian consisting of four patches with 

the shadow of a camera tripod head cast upon it. Figure 

2b is a group of peppers in a semitransparent bowl. 

The major problem of the RGB space is that segmen­

tation needs to be performed in 3-D space. Interesting 

attempts to combine information across these spaces 

(besides intensity) have been made, such as Wright's 

study of fusing R, G, and B images using Markov ran­

dom fields (Wright 1989). Still, each of the components 

in the RGB space are highly correlated and not indepen­

dent of each other. This result is also confirmed in the 

principal-component analysis study of Ohta (1980). 

2.2 Normalized RGB Space 

Nrgb gives a space that is independent of uniformly 

varying lighting levels. The transformation to normal­

ized colors is given by 

c 
Nc = (R + G +B) 

for C = (R, G, B) (2) 

But, since Nrgb in equation (2) is redundant (viz. N8 

= 1 - NR - N0 ), the preferred normalized color 

space is typically formulated (Hurlbert 1989, Kender 

1976, Nevatia 1977) as 

Y = c1R + c2 G + c3B 

R 

(R + G +B) 

G 
T2 = (R + G +B) 

(3) 

where ci> c2, and c3 are chosen constants such that 

c1 + c2 + c3 = 1. Y is interpreted as the image lumi­

nance of the image pixel and T1 and T2 are chromatic 

variables which are approximately independent of illu­

mination (Nevatia 1977). The Nrgb images of the Mon­

drian and the peppers are shown in figure 4. 

2. 3 HSI Space 

Of the many similar spaces that achieve hue-saturation­

intensity (HSI) characteristics, that is, color-ordering 
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(a) 

(b) 

Figure 4. Normalized red, green, and blue components of (a) Mondrian and (b) peppers. 

systems that are based on human color perception, the 

Munsell color system is remarkably popular (Wyszecki 

1982). This system characterizes color in terms of hue, 

chroma (or saturation), and value (or intensity) com­

ponents and has been shown to achieve favorable hue 

segmentation (Tominaga 1987). 

Many transforms from RGB to HSI type spaces have 

been presented in the computer graphics (Foley et al. 

1990; Joblove 1978, Smith 1978) and computer vision 

(Gershon 1985 ; Jain 1989; Kender 1976; Tominaga 

1987) literature. The transformation to HSI from RGB 

used in this study is currently implemented with 

special-purpose digital hardware (Genz 1990) and is 

given by 

int = -'-(R_+---=-G_+_B--'-) 
3 

1 
min (R, G, B) 

sat = - --:...,..:.-'--~ 

lnt 

[ 
..J3(G- B) J 

hue = arctan (R _ G) + (R _ B) (4) 

where arctan (ylx) utilizes the signs of both y and x to 

determine the quadrant in which the resulting angle lies. 

Generally, hue is thought of as the angle between a ref­

erence line and the color point in the RGB system. The 

physical model used to determine the hue angle is based 

on the diagram shown in figure Sa. If the R, G, B radial 

basis vectors are equally spaced 2h 1r apart on the unit 

circle, the x and y component of an arbitrary point can 

be calculated from basic trigonometry and are given by 

G+B 1 
x = R - -- = - [(R - G) + (R - B)] 

2 2 

..[3 
y =- (G- B) 

2 

This results in the hue angle shown in equation (4) . 

Conceptually, one can think of the HSI space as a cylin­

drical one (figure 5b), where the coordinates r, (), z 
respectively correspond to saturation, hue, and inten­

sity. The resulting HSI components for the Mondrian 

and the peppers are shown in figure 6. 
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(a) 

lso-Nonnalized RGB 

!so-hue plane 

(b) 

Fig. 5. Details of hue space. (a) Physical model for simplified hue based on weighted average of RGB vectors. (b) Comparison of normalized 

color in HSI space. The nontilted hue planar structure is a simplification of the dichromatic planar hypothesis of Klinker et al. (1990) without 

the added complexity of color clustering and histogramming. 

2.4 CIE Spaces 

For completeness we describe the CIE "uniform" per­

ceptual spaces involved in human color perception. The 

concept of "uniform perceptual distance" is an anthro­

pormorphic one in that these spaces were set up so that 

traversals of a unit distance in any direction in the space 

is perceived by human observers to have the same 

"color difference." Computing the CIE representation 

of color involves a linear intermediate transformation, 

followed by a nonlinear transformation. First, the 

tristimulus values R, G, and Bare transformed to an­

other tristimulus set: X, Y, and Z. 

[
X] [ 0.490 0.310 0_200] [R] 
Y = 0.177 0.813 0.011 G 

Z 0.000 0.010 0.990 B 

(5) 

For other arbitrary RGB sensor inputs, the transfer 

matrix must be determined empirically. In particular, 

the transform for the NTSC receiver primary system is 

[
X] [ 0.607 0.174 0.200] [R] 
Y = 0.299 0.587 0.114 G 

Z 0.000 0_066 1.116 B 

(6) 

Once the XYZ tristimulus coordinates are computed, 

a number of different CIE spaces can be constructed. 
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(a) 

(b) 

Fig. 6. Hue, saturation, and intensity components of (a) Mondrian and (b) peppers. 

We use the CIE (L*a*b*) space, because it appears to 

have more uniform perceptual properties and gives 

better results than the CIE (L*u*v*) space in segment­

ing color pictures (Ohta eta!. 1980). The CIE (L*a*b*) 

space is represented by 

L* = 116 [~]
1 1 3 

16 

a*- 500 - - -_ [ [ X J 113 [ y J 113 J 
Xn Yn 

b*- 200 - - -- [ [ y J 1/3 [ z J 1/3 J 
Yn Zn 

(7) 

with the constraint that X!Xm Y!Yn, Z/Zn > 0.01. 

Chroma in this space is defined by 

chroma = [(a*i + (b*)2
]

112 (8) 

and hue by 

hue = arctan [ :: J (9) 

The CIE (L*a*b*) hue, chroma, and lightness images 

of the Mondrian and peppers are shown in figure 7. 

Both CIE (L*u*v*) and CIE (L*a*b*) spaces require 

an intermediate transform to the XYZ system from the 

system dependent RGB system, and then either a nor­

malization or a cube-root transformation. In compari­

son, the hue transformation given by equation (4) is 

substantially simpler. This added complexity is not war­

ranted since we will show that the simplified hue for­

mulation gives satisfactory results . Furthermore, CIE 

spaces were developed for the psychophysical need to 

have perceptual uniformity for the standard human 

observer. We are concerned with the use of color seg­

mentation for analog vision sensors and not in matching 

human perception. 

3 Properties of Hue 

In this section we describe the fundamental properties 

of hue and compare it to normalized color. We show 

some of its problems, and some of its advantages for 

locating material changes in images. 
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(a) 

(b) 

Fig. 7. CIE (L*a*b*) hue, chroma, and lightness components of (a) Mondrian and (b) peppers. RGB inputs are based on the NTSC receiver 

primary system governed by the transform in equation (6) . While hue and lightness in this figure are directly related to hue and intensity of 

figure 6 chroma is unrelated to saturation. Note also that the CIE hue angle is slightly shifted when compared to simplified hue of figure 6. 

3.1 Hue Compared to Normalized Color 

Both Nrgb and HSI have the desirable property of 

multiplicative/scale invariance, that is, uniform varia­

tion of the tristimulus components will not change the 

measured quantity. This property is illustrated by the 

following relationships: 

hue (R, G, B) = hue (cxR, cxG, cxB) 

Nc(R, G, B) = Nc(cxR , cxG, cxB) (10) 

where Vex > 0 and (cxR, cxG, cxB) E [0, 1] . These 

results can be verified by examining the constituitive 

equations (2) and (4). 

Additionally, hue has additive/shift invariance which 

N rgb lacks : 

hue (R, G, B) = hue (R + {3, G + {3 , B + {3) 

Nc(R, G, B) ,c. Nc(R + {3, G + {3, B + {3) (11) 

where vf3 such that (R + {3, G + {3, B + f3) E [0, 1] . 

This property of additive/shift invariance gives isohues 

a greater span in the color space. The comparison 

shown in figure Sb between normalized color and hue 

in the HSI space illustrates that isohues occupy plane 

segments while iso-Nrgb occupy line segments. An 

equivalent statement to equation (11) is that hue is in­

variant under saturation changes, while normalized 

RGB is not. Another interpretation is that hue is invar­

iant to white-color vector additions. (y{e generalize this 

to the integrated white condition in section 3.4.2.) 

Originally, these multiplicative/scale and additive/shift 

invariance properties were used by Kender (1976) to 

analyze hue instabilities. In this study, we show their 

advantages. 

3. 2 Hue in CJE Spaces 

Similarly, hue in the CIE (L*a*b*) space defined by equa­

tion (9) show multiplicative/scale invariance. This prop­

erty follows from a straightforward evaluation of equa­

tion (9) in the invariance relationship of equation (10). 
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However, the CIE hue lacks strict additive/shift invari­

ance. It only approximates additive/shift invariance due 

to its nonlinear cube-root transformation and normaliza­

tion. Our approach is to avoid the CIE color spaces 

because of their added complexity in matching human 

perception. 

3. 3 Problems of HSI 

Kender's 1976 study of the properties of nonlinear color 

transforms revealed certain problems associated with 

the use of HSI space. In particular, the HSI transform 

has the unfortunate property of an unremovable singu­

larity at the axis of the color cylinder, where R = G 

= B (saturation = 0). We can see this by examining 

the hues of totally saturated pixels along the red-green 

segment of the color wheel, that is, hue {R = (1 - r)x; 

G = r.x; B = 0}, where 0 ::5 r ::5 1. This situation 

corresponds to int = x/3 and sat = 1). It then follows 

from equation ( 4) that 

lim hue {(1 - r)x, r.x, 0)} = arctan [ -J3r J 
x--+0 2 - 3r 

Thus, hue varies continuously from 0 (when r = 0) 

to 27r/3 (when r = 1). In addition, hue near its singu­

larities is intrinsically unstable. Thke for example, pixels 

whose values are hue {x, x, 0}, where x ~ 0. For 8-bit 

digital implementation (i.e., hue E [0, .255]) a minimal 

digital perturbation gives hue {x + 1, x, 0} which can 

result in changes up to 7r/3. This characteristic noise 

is prominent in the hue images in figure 6 (and in the 

hue edges shown in figure 11 ). Thus, the mapping from 

RGB to HSI is ill conditioned near the central axis and 

ill posed at the axis. 

The Kender study went as far as recommending not 

to use nonlinear color transforms such as HSI and nor­

malized color spaces but to use linear transforms such 

as YIQ and opponent color spaces. This recommenda­

tion has been heeded in the applied computer vision 

literature (Barth 1986; Ohta 1980). 

3.4 How Confounding Cues are Discounted in HSI 

In this section, we show that assuming reasonable mate­

rial properties and lighting conditions, hue information 

will discount intensity edges due to transparency, high­

lights, shading, and shadowing. 

3.4.1 Discounting Transparency. Why should trans­

parency be important? Many robust biological vision 

systems inhabit the underwater world. Furthermore, 

water's absorption coefficient shows a nearly uniform 

spectral transmission throughout most of the visible 

range (Wolfe 1985), thus, water approximates a neutral 

density filter. In practice, deep water attenuates red illu­

mination so that the neutral density-filter approximation 

is only valid for small distances. But a reasonable 

assumption for an object is that its material points are 

physically close to each other, thus, the transparency 

effects for viewing objects in aqueous environments will 

be negligible because relative transmission distances 

are small. 

The tristimulus equation with and without an ab­

sorbing medium is given by 

for C = (R, G, B) Xc = fA E(A.)Sc(A.)d'A 

Xc(d) = fA E(A.)Sc(A.)r(A.)d dA (12) 

where Xc are the tristimulus values, Xc(d) are tristi­

mulus values through transparent medium of distance 

d, E(A.) is the incoming radiance, Sc are the three 

hypothetical color filters, and r(A.) is the transmittance 

per unit distance in the medium. 

For a spectrally uniform transmitting medium, 

Xc(d) = (ro)d fA E(A.)Sc(A.) dA = (r0)dXc 

This case has the property of multiplicative/scale invar­

iance. Evaluating equation (2) for normalized color and 

equation (4) for hue results in 

hue (XR, X0 , X8 ) = hue (XR, Xa, X8 ) 

Nc(XR, Xa, XB) = Nc(XR, Xa, XB) 

Both normalized colors and hue discount image trans­

parency through a spectrally uniform media. 

3.4.2 Discounting Highlights and the Integrated 
White Condition. In this section we describe the Phong 

shading model, how it accounts for highlights and how 

utilizing hue can discount highlights. A similar analysis 

on other advanced models of shading such as the Cook­

Torrance model and the Dichromatic Reflection model 

gives comparable results (Perez 1992b). 

The Phong shading model (Phong 1975) is based on 

the empirical observation that the radiance from a high­

light reflection falls off sharply with increasing ex, 
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where a is the angle between the reflection vector and 

the viewpoint vector as shown in figure 1. The form 

adopted by Phong was cosn (a), where n varies from 

1 to 200 depending on the surface. The full equation 

for Phong shading is given by 

lpc 
lc = lackac + --k [kdc cos (0) + ks cosn (a)] 

r + 
(13) 

for C = (R, G, B), where, Ia and ka are the ambient 

intensity and ambient reflection coefficient. IP is the 

intensity of a point light source, r is the distance from 

the perspective viewpoint to the surface, k is a constant, 

kd is the diffuse reflection coefficient, and ks is a spec­

ular reflection coefficient. Both reflection coefficients 

ka and kd have three components for the tristimulus 

equations and assume a constant value between 0 and 1. 

In the Phong model the specular reflection coefficient, 

k
5

, is assumed to be constant and independent of sur­

face color. 

In the nonhighlighted (NH) region, the equivalent 

RGB tristimulus values become 

Ipc 
CNH = lackac + r + k [kdc cos (0)] (14) 

for C = (R, G, B). Then, if we assume a white light 

source (lpR = lpc = lp8 ), the equivalent RGB tristi­

mulus for the highlighted (H) region becomes 

~ 

C lpc k n C R 
CH = NH + r + k [ s cos (a)] = NH + tJ 

for C = (R, G, B) (15) 

We immediately see that this equation satisfies the 

additive/shift invariance condition. Thus, a computation 

based on hue will discount highlights due to the Phong 

shading model, while a computation on normalized 

color, in general, will not. An exception is the condi­

tion that the ambient illumination is proportional to the 

source illumination (i.e., /a(A.) = c/p(A.)). Now multi­

plicative/scale invariance holds and both normalized 

color and hue will discount highlights. 

The Phong shading model has been criticized within 

the computer graphics community because it gives an 

object a "plastic" appearance. Ironically, the figures 

used in the study by Klinker, Shafer, and Kanade (1988, 

1990) were composed of plastic objects. Furthermore, 

a simple hue transform on the image in figure 8 gives 

accurate segmentation while discounting highlights. 

(a) 

(b) 

Fig. 8. (a) Plastic objects with highlights (from Klinker et al. 1988 

and 1990), and (b) hue transform of the same image for intensities 

above 201255. Note that highlights are removed for most of the plastic 

objects. Although not considered in this article, we clearly see yellow 

interreflection on the blue doughnut within the hue space. 

The measurements for a horizontal slice through two 

highlight regions in the subsampled image are shown 

in table 1. For the central orange cup, a typical slice 

through the dominant highlight shows that hue varies by 

14.9 percent while intensity varies by 53.3 percent of 

the total range. As we cross the highlight, hue changes 

9.4 percent while intensity changes by 32.2 percent.' 
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Table 1. 

Top Left Doughnut (y = 36) 

X Hue Sat Intensity 

33 3 126 77 

34 2 98 88 

35 0 56 110 

36 253 57 111 

37 1 111 78 

38 3 140 71 

%span 2.4 32.9 15.7 

The hue map shown in figure 8 discounts most of the 

highlights in the intensity map. The reason for this is that 

typical plastic has embedded pigment particles within 

a substrate that is transparent or white (Cook 1981). 

Thus, light reflected off plastics will have a diffuse 

colored component and a specular white component. 

If we generalize the Phong shading model by assum­

ing that the reflectance coefficients are not constant but 

vary with wavelength we have 

1 ('A) 
/(A.) = /a(A.)ka(A) + / + k [kd(A.) cos (0) + ks cosn (a)] 

(16) 

This implies that from equation (1) the tristimulus 

values in the nonhighlighted region becomes 

CNH = J." la(A)ka(A)Sc(A) dA + 

~
0
~ (~ fA /p(A.)kAA.)Sc(A.) dA 

for C = (R, G, B) (17) 

For the highlighted region the equivalent tristimulus 

values become 

C = C + ks cosn (a) J 1 (A.)S (A) dA 
H NH r+k Ap C 

for C = (R, G, B) (18) 

We see that hue invariance due to highlights will 

work exactly if and only if the integrated white condi­

tion holds? namely if 

fA lp(A.)SR(A) dA = fA lp(A.)SG(A) dA 

= fA /p(A.)SB(A.) dA (19) 

This follows from an inspection of equation (18) and 

the fact that the additive/shift invariance condition of 

Orange Highlight Cup (y = 57) 

X Hue Sat Intensity 

63 7 73 109 

64 2 19 196 

65 225 6 245 

66 249 36 163 

67 4 64 117 

68 6 71 112 

% span 14.9 27.1 53.3 

equation (11) is reached. The multiplicative/scale invar­

iance condition of equation (10) cannot in general be 

reached for the generalized Phong shading model. The 

assumption of ambient illumination being proportional 

to source illumination will not simplify matters much. 

But, how reasonable is the integrated white assump­

tion? For white light illumination, /p(A.) is independent 

of A.. This implies that the integrated white condition 

simplifies to 

For artificial systems, this feature may be accommo­

dated by selecting carefully designed spectral filters. 

Additional compensation of nonwhite illumination to 

a white standard perhaps utilizing "color constancy" 

techniques is also necessary. Nevertheless, the general 

integrated white condition, for nonuniform spectral in­

tensities, (equation (19)) must hold in order for hue to 

discount highlights completely.3 Anything less will give 

an approximate hue invariance to highlights. Within the 

framework of the Phong shading model, normalized 

color will not generally discount highlights. 

3.4.3 Discounting Shading. Shading or surface orien­

tation change is another confounding cue that will con­

fuse an achromatic vision system. A simple analysis 

by Rubin (1982) for a single-point light source illumi­

nating a matte surface shows that 

/1 = p(A.)/p(A.) cos (01) 

lz = p(A.)/p(A.) cos (02) (21) 

where / 1 and lz are the image radiance intensities for 

two points that differ only by a surface orientation 

change; p(A.) is the spectral albedo (which will be 

similar to the bidirectional reflectance of a lambertian 

surface); and 0 is the angle between the surface normal 
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and the illumination direction. The tristimulus equa­

tions immediately imply that 

RI - cos (OJ) R 
- cos (02) 2 

G
1 

_ cos (01) G 
- cos (02) 2 

BI - cos (OJ) B 
- cos (02) 2 (22) 

For this simple model, the multiplicative/scale invari­

ance condition holds. Thus, both normalized color and 

hue will discount this model of shading. 

If ambient light were added to the model, the inte­

grated white condition (such as that defined by equa­

tion (19)) must hold for hue to discount confounding 

shading cues. The analysis for this is similar to the 

above calculation for highlight invariance for the Phong 

shading model. 

3.4.4 Discounting Shadowing. For analyzing shadowed 

regions, we require two sources of illumination: one 

to cast the shadow on an object and the other to lightly 

illuminate the darkened region. In practice, the second 

light source can result from interreflections or scattering 

from the principle light source. Our starting point is 

taken from Rubin's analysis for shadowed regions 

(Rubin 1982). (See also Gershon (1986) fur a discussion 

on distinguishing material from shadow boundaries.) 

The governing equation fur shadowed and nonshadowed 

regions is given by 

lu1 = p(A)[/p(}.) + /d(}.)] 

/shade = p(A)[/d(A)] (23) 

where /1it and /shade are the radiance intensities in the 

nonshadowed and shadowed region respectively, p is the 

albedo as defined before, IP is the illumination inten­

sity, and Id is the diffuse ambient intensity. The relevant 

tristimulus equations for the shade region become 

Cshade = J /d(A)p(}.)Sc(}.) dA for C = (R, G, B) 

}o. (24) 

While the relevant tristimulus equations for the lit 

region become 

Clit = Cshade + J>-. lp(}.)p(}.)Sc(A) dA 

for C = (R, G, B) (25) 

In the most general case, hue will discount shadows 

if and only if 

J>-. fp(}.)SR(A)p(}.) dA = J>-. Jp(}.)Sc(A)p(A) dA 

= !>-. lp(}.)SB(A)p(A) dA 

This equation seems coincident with the integrated 

white condition of equation (19). However, this condi­

tion depends on the surface albedo p(A) which depends 

on material type.4 

A further simplification is possible if we assume that 

the ambient lighting and the main lighting are related. 

In particular, if the ambient lighting is proportional to 

the main lighting, that is /p(}.) = cxld(A), then the fol­

lowing tristimulus equations hold 

Clit = (a + 1)Cshade for C = (R, G, B) 

For this case, the condition of multiplicative/scale in­

variance holds. Thus, both normalized color and hue 

will discount this particular shadow cue. In the follow­

ing table, we compare color values for typical points 

in the light and shadow regions of the lower right-hand 

side of the Mondrian of figure 2a within different color 

spaces. 

Color Space a Light to Shade (%) 

R:G:B 80 92 68 

nR:G:B 16 68 24 

H:S:I 3 55 76 

(CIE)H:C:L 4 11 52 

Hue varies only 3% across the shadow edge while nor­

malized color varies at least 16% . The performance of 

the CIE (L*a*b*) hue is similar to the simplified hue 

(for more details, see section 5.3). 

4 Tools for Working in Hue Space 

Before we can utilize hue in image segmentation, we 

need to develop special tools to detect edges in hue 

space. Further smoothing of the hue parameter-in par­

ticular in regions of low saturation-through the 

Markov random field (MRF) formulation will lead to 

improved color segmentation. 
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4.1 Finding Edges of a Circular Variable 

Standard techniques of intensity edge detection (Canny 

1986) by convolving with various masks followed by 

thresholding or extremum detection such as by Canny's 

algorithm do not work with hue, because unlike inten­

sity, hue is defined on the ring S 1 rather than on the 

interval R 1. However, standard convolution techniques 

can be modified to work with these modulo variables to 

determine their spatial "edges." Conceptually, this is 

similar to a 2-D lattice populated with particles whose 

state is defined by a scalar variable defined on S 1, 

such as orientation or phase angle 0. In the latter ex­

ample, "edges" would correspond to all locations on 

the 2-D lattice across which the phase angle changes 

maximally. 

Traditional edge detection entails finding the zero­

crossings of the 2-D image convolved with a Laplacian. 

One of the simplest discrete approximations of a Lapla­

cian is the following kernel: 

[

0 1 

1 -4 

0 1 

In the manner of Terzopoulos (1985), this kernel can 

be decomposed into the following molecules: 

Interpreting these fundamental molecules as distances 

between nearest neighbors allows the generalization of 

a modulo Laplacian as the modulo distance of nearest 

neighbors from a central pixel. Modulo distance or 

angular distance, ~(y - x), can be described as linear 

saw-tooth pattern with slope 1 and period 21r. It is given 

by the Fourier series expansion 

00 
(-l)n+1 

~(y - x) = 2 2: sin [n(y - x)] (26) 
n=1 n 

An equivalent form of this equation is given by 

~(y - x) = (y - x) - 27rk (27) 

where 

k = floor [ ~ ceiling C Y ~ x J J 

Since the hue values x, y are given in the principal 

range 0 to 27r, the angular distance formula can be sim­

plified to 

{

+27r 

~(y - x) = y - x + -~7r 

if y - X < -7r 

ify-x>7r 

otherwise 

(28) 

where positive values of ~(y - x) indicate that y is posi­

tioned clockwise to x. Therefore, the strategy for find­

ing material boundaries in images is to find the hue 

zero crossing by convolving the hue image with an 

equivalent mask similar to the Laplacian, the modulo 

Laplacian. 

4.2 Markov Random Field Formulation 

Smoothing unstable hue regions is performed by utiliza­

tion of a regularization technique based on Markov ran­

dom fields. While other researchers (Hurlbert 1989; 

Wright 1989) have used the Markov random field for­

mulation in color segmentation, the research of Daily 

(1989) comes closest in spirit to this work in the selec­

tion of hue as a useful measure for image segmentation. 

In this study, we use deterministic hue discontinui­

ties to segment hue regions smoothed by a first -order 

membrane-type stabilizer. This represents a determin­

istic approximation to the underlying stochastic Markov 

random field algorithm of Geman (1984); see also 

Geiger (1990). The advantages of using such a deter­

ministic approach are simplicity, speed, and the fact 

that hue values are smoothed while hue discontinuities 

are computed at the same time. Noise is eliminated 

while discontinuities are preserved. The algorithm 

utilizes a first-order Tikhonov stabilizing functional 

(Poggio 1985) by minimizing the following "energy" 

functional: 
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where 

Edata = A ~ [relativedist (hueij• Dii)]
2 

ij 

Ev = ~ [relativedist (hueij+b hue;j)(l - vij)]2 

ij 

Eh = ~ [relativedist (huei+lj• hue;j)(l - hij)f 
ij 

Eline = ex ~ (hii + vii) 
ij 

Here, i, j are pixel locations in a rectangular lattice; 

A is associated with the data confidence to smoothing 

ratio; vij and h;,j are vertical and horizontal hue dis­

continuity line processes which take on values of 0 or 

1; and ex is the energy penalty for forming these line 

processes. The method we used in segmenting scene 

boundaries was to start with the intensity edge map gen­

erated from the Canny edge operator and to gradually 

eliminate those edges not due to hue differences. Our 

constraint is that hue discontinuity line processes would 

only form if pixel saturation values exceeded some 

(a) 

(b) 

specified minimum value (20% saturation). In doing 

so, we are discounting edges due to confounding cues 

of highlights, shading, transparency, and shadows for 

moderately chromatic scenes. 

5 Color Image Segmentation 

In this section, we compare conventional edge detection 

techniques in the RGB and Nrgb spaces to the nonlinear 

operator developed for hue and intensity in our HSI 

as well as in the CIE color space. 

5.1 Conventional Edge Detection 

Standard edge detection in both RGB spaces is per­

formed using Canny's algorithm (Canny 1986). Figure 

9a shows the edges obtained from the RGB image of 

the Mondrian of figures 3a, while figure 9b shows the 

edges obtained from the RGB image of the peppers of 

figure 3b. Canny edges for Nrgb images are depicted 

in figure 10. The computed edges represent intensity 

Fig. 9. Red, green, and blue Canny edges of (a) Mondrian and (b) peppers. 
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(a) 

(b) 

Fig. 10. Normalized red, green, and blue Canny edges of (a) Mondrian and (b) peppers. 

changes and thus, falsely indicate the shadow as a mate­

rial boundary. The shadow edges in the Mondrian also 

show up in the Nrgb space, since only uniform changes 

in color-what we call multiplicative/scale invariance­

are factored out. 

5. 2 Modulo Edge Detection 

Based on the modulo algorithm developed in the pre­

vious section, we computed "hue edges" associated 

with both the HSI and the CIE (L*a*b*) color spaces. 

Figures 11 and 12 display the hue edges as well as the 

saturation/chroma and intensity/lightness edges of both 

the Mondrian and the peppers. Comparison of the Mon­

drian hue edge map with the intensity edge map in both 

HSI and CIE color spaces show an amelioration of the 

shadow edge effect. Performance of hue segmentation 

in this image is discussed in the next section. Addition­

ally, we note that the hue edge map for the peppers in 

both color spaces is unsatisfactory due to the misbe-

havior of the hue transform. Techniques to improve this 

performance will be discussed. 

5.3 Performance Comparison 

Qualitatively, a visual inspection of the Mondrian edges 

in the four color spaces used illustrates that hue discon­

tinuities in both HSI or CIE spaces appear to be the 

best measure for detecting material changes, indepen­

dent of shadow edges. In order for us to form a more 

quantitative judgement of the relative performance in 

the different color spaces, we use the figure of merit 

F proposed by Abdou (1979) to compare different edge 

detection schemes. This is given by 

1 Na 1 
F- :6 (29) 

- max (Ni, Na) i=! 1 + cxd2 

where Ni and Na represent the number of ideal and ac­

tual edge map points and d is the closest distance from 
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{a) 

(b) 

Fig. 11. Hue, saturation, and intensity edges of (a) Mondrian and (b) peppers. Excellent performance is achieved in discounting the shadow 

boundary of the Mondrian hue edge map. The unsatisfactory performance for the peppers is due to the instabilities of the hue transform at 

low saturations and intensities associated with the shadows and background of figure 2. 

an actual edge point to any ideal one.5 F penalizes both 

nonlocalized edges and inaccurately positioned ones, 

with values of F closest to 1 being ideal. 

Applying this measure on the saturated portion (the 

central halt) of the Mondrian image gives the follow­

ing results: 

Color Space Figure of Merit 

R:G:B 0.2596 0.4126 0.2626 

nR:G:B 0.1830 0.2509 0.2330 

H:S:I 0.9158. 0.1765 0.3093 

(CIE)H:C:L 0.7421 0.3215 0.2733 

In general, normalized color gives spurious edges 

within low intensity regions. That is why its figure 

of merit is penalized more than that of the RGB 

system. For this particular example, hue segmenta­

tion in HSI space outperforms the CIE (L*a*b*) hue 

segmentation. 

5.4 Improvements Afforded by MKF Technique 

While the hue segmentation works adequately in some 

areas, it is clear that it performs poorly in other areas. 

In portions of the image with low saturation and low 

intensity values, hue values become unstable. This is 

apparent in the upper left-hand portion of the Mondrian­

edge image in figure 11a and in the background regions 

of the pepper-edge image in figure 11b. This suggests 

using hierarchical processing based on confidence 

values that depend on saturation and intensity. That is, 

hue regions of low saturation and intensity should be 

smoothed before segmentation is performed. This 

strategy is the complement of combining all sensory 

data to find all "true" edges (Oblander 1976). Thera­

tionale behind this algorithm is that a cooperative pixel 

neighborhood scheme is appropriate for scene seg­

mentation since object pixels will correspond more 

closely to nearby pixels. This neighborhood corre­

spondence is a fundamental premise in Geman and 

Geman's MRF formulation. 
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(a) 

(b) 

Fig. 12. CIL (L*a*b*) hue, chroma, and lightness edges of (a) Mondrian and (b) peppers. Results for the Mondrian are similar to figure 11. 

Although chromatic edges of the peppers show nearly acceptable scene segmentation, highlight boundaries are confounded. 

By utilizing a first-order membrane type stabilizer 

to smooth low-confidence regions due to low satura­

tion or low intensity, improvement in scene segmenta­

tion is obtained. The corresponding hue edges for 

regions away from unstable saturation are shown in 

figure 13. The procedure used to generate this map is 

to start out with an initial edge map identical to the in­

tensity edge map and to minimize the hue energy func­

tional. Edges are created if both critical hue thresholds 

and critical saturation thresholds are exceeded, while 

intensity edges are eliminated if hue differences are 

small. 

Notice that edges associated with intensity variations 

due to shading on the curved bell-pepper surface and 

intensity filtering through the translucent bowl have 

been eliminated in the hue edge map. Also, the high­

lights have been discounted. Thus hue edge map corre­

lates more strongly to the material boundaries than the 

intensity edge map. 
Fig. 13. Smoothed hue edges away from low-saturation regions. The 

threshold was 20% saturation. 
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6 Analog VLSI Chip Implementations 

Based on the performance of our hue segmentation 

algorithm, we proceeded to the next step of our research 

program, implementing a hue sensor using integrated 

circuit technology. Because the underlying photorecep­

tor signals are continuous, it seems appropriate to use 

analog, rather than digital, circuits. Our technology of 

choice is analog CMOS VLSI technology, as developed 

and applied to a range of neuromorphic systems by 

Carver Mead (1989) and his collaborators. A significant 

number of circuits have been successfully built in this 

technology, including a silicon retina with logarithmic 

photoreceptors (Sivilotti 1987), resistive networks for 

smoothing, and "fuses" for detecting discontinuities 

(Harris 1990a). This will allow us in the future to inte­

grate smoothing and discontinuity detection circuits 

with our color sensors to build a single smart sensor 

for directly computing hue discontinuities. The alter­

native CCD camera/color imaging system is a power 

hungry system requiring analog pixel scanning, AID 

conversion, and digital computation. In comparison to 

CCD camera technologies, analog CMOS circuits oper­

ating in the subthreshold regime offer a low power,6 

real-time, illumination independent solution to color 

segmentation. Our's is the first analog CMOS VLSI 

circuit that uses on-board photoreceptors responsive to 

different spectral components. 

Although this article successfully demonstrates a 

number of machine vision algorithms to segment hue, 

these algorithms are not amenable to analog circuit im­

plementation due to their complexity (witness, for in­

stance, equation (28)). Furthermore, no direct analog 

circuit can be constructed for hue utilizing equation ( 4) 

because the required division operation is not a func­

tional analog computational unit. Our approach fortu­

nately overcomes these obstacles. We report on two 

color circuits that perform the required computations 

using simplified algorithms. Because normalization 

lends itself quite readily to an analog circuit implemen­

tation, we first built a circuit for computing normalized 

color with inputs provided by on-board red, green, and 

blue photoreceptor sensors. In order to incorporate the 

additive/shift invariance property we utilize an oppo­

nency strategy to compute hue components. This final 

output of the hue circuit are the x and y components 

of hue rather than the single hue angle. It is interesting 

that this functional progression from three wavelength­

selective signals to opponency to hue imitates the known 

stages of color computation in the primate visual system 

(De Valois 1975; Lenny 1988). These circuits should 

be viewed as exploratory designs, proving that analog 

VLSI hue chips are feasible. We first describe some 

of the practical aspects of chip design and fabrication. 

6.1 Chip Background and Experimental Setup 

Because all of our chips are fabricated using the 

government-sponsored silicon foundry service MOSIS, 

we are restricted to using standard CMOS and BiCMOS 

processes. Over the visible range of light, the spectral 

sensitivities of the various kinds of photodiodes and 

phototransistors available in these processes varies only 

little (Delbruck 1993). Thus, we are unable to exploit 

any intrinsic wavelength filtering of silicon. Further­

more, we do not have access to the highly developed 

colored polymer film-deposition technology found in 

the majority of modern solid-state commercial video 

cameras. We therefore had to manually deposit spectral 

filter over our phototransistors, a quite tedious process 

which does not lend itself to an extension to one- or 

two-dimensional arrays of photoreceptors. 

We mechanically glued color gelatin filters on top 

of standard bipolar phototransistors, which were further 

covered by an IR filter. The area of the phototransistors 

were approximately sized to accommodate the color 

filter transmissivity. The phototransistors we use have 

logarithmic voltage response to over five orders magni­

tude of intensity change (Mead 1989; Sivilotti 1987). 

In our application, we use photocurrent output that 

varies linearly with intensity. All chips were fabricated 

using the MOSIS 2 p.m process. We used the standard 

40-pin "Tinychip" die which effectively gives a 1.6 mm 

by 1.6 mm usable wafer area. 

Instead of building our circuits using the prevalent 

voltage mode of operation (Mead 1989), our circuits 

operate in the current mode-for an example of building 

block circuits see the compendium in (Seevink 1988), 

an approach that is gaining prominent support lately 

(see Toumazou 1990). Here charge rather than voltage 

is the active parameter, resulting in higher usable gain, 

accuracy, and bandwidth. 

To measure spectral tuning curves for our con­

structed color sensors, we used the calibrated prism 

monochromator and tungsten incandescent lamp source 

setup of Delbruck (1993). Although the lamp exhibits 

nonideal spectral characteristics-intensity is not con­

stant and varies 4 orders of magnitude within its spec­

trum-our circuits compensates for this variation by 
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performing a multiplicative/scale invariance operation, 

thus removing intensity contributions from the chromatic 

computation. We report our results in the 400 to 750 nm 

wavelength range. 

6.2 Normalized Color Sensor 

Because of its relative design simplicity, we first de­

signed and built a normalized color sensor (Perez 

1992a). The basic circuit design is based on Gilbert's 

translinear principle (Gilbert 1975) and consists of a 

current-mode normalization circuit (described by 

Seevink (1988); see also insert in figure 14b) that has 

the desired scaling behavior. The input currents I, 1
8

, 

Ib from the three phototransistors produce normalized 

output currents N, N
8

, Nb such that 

Nr = /bias [ 1 + Jr + 1 J 
r g b 

Ng = /bias [ 1 + J + 1 J 
r g b 

Nb =/bias [ 1 + ~b + 1 J 
r g b 

(30) 

where /bias is set to operate in the subthreshold regime 

(Mead 1989). Notice that this equation matches the nor­

malized color equation given in equation (2), and thus 

offers multiplicative/scale invariance. 

Figure 14 shows the spectral tuning curves for the 

normalized color circuit at two different illumination 

levels: (a) an arbitrary baseline level and (b) 10 times 

that baseline level. The figure shows that for illumina­

tion level increases of one order of magnitude, the cir­

cuit output increases no more than 25% for Nr and N
8

• 

That Nb is attenuated by 60% for the baseline illumi­

nation is attributed to circuit operation in the nonsatu­

rated regime for this particular experiment. (This glitch 

can be compensated by circuit redesign.) Since the 

translinear principle is based on Kirchhoffs voltage law 

and the transistor voltage-current logarithmic relation­

ship, the circuit normalizing behavior will hold over a 

large range (4 decades from experiments) of input cur­

rents. The advantage of this circuit is that intensity gain 

control can be achieved electronically rather than via a 

mechanical iris as done in typical camera systems. 

6.3 Hue Sensor 

In addition to multiplicative/scale invariance, hue has 

additive/shift invariance. To accommodate this extra 

property, we borrow a concept from biological vision 

processing, the opponency cell computation. We de­

signed a circuit computing the following additive/shift 

invariant parameters: 

x+ = min (2R - 2G, 0) 

x- = min (2G - 2R, 0) 

y+ = min (R + G - 2B, 0) 

y- = min (2B - R - G, 0) (31) 

Here R, G, and Bare the currents from the red, green, 

and blue phototransistors. Each of the opponency cur­

rents x+ and x- are half-wave rectified, such that if 

either one is positive the other one is zero, that is X = 
x+ - x- (the same applies to the opposing pair y+ 

and y- ). In an earlier version of this chip, we used 

a single current X that could take on both negative and 

positive values. However, imbalances due to inherent 

mismatched properties of the circuit lead to unbalanced 

output and poor performance. The opponency currents 

are then processed by the translinear normalization cir­

cuit discussed above to give normalized x and y current 

values that map directly onto a unit diamond on the 

4 quadrants of the color plane shown in figure 15. These 

currents are given by 

x+ 
= /bias [ x+ 

x+ 

y J + x- + y+ + 

X 
- [ x-

= /bias x+ + x- + y+ + y-J (32) 

with the corresponding equations for y + and y- . 

Notice that we slightly warp the hue definition given 

earlier in equation (4) for expedient hardware imple­

mentation (R-G is 1C' apart rather than 2h7r).7 In this case, 

hue will be defined as 

[
R+G-2BJ 

hue = arctan 
2
R _ 

2
G 

= arctan [ y+ - y= J 
x+- x 

(33) 

The block diagram circuitry for the hue sensor is shown 

in figure 15. The output of the chip is the normalized 

half-wave rectified hue currents x and y, which is shown 

as a mapping on the unit diamond in the X-Y opponent 

color space. This mapping is fundamently different 

from traditional color space mappings. Rather than [0, 1] 

mapping onto [0, 1] we have [0, oo] mapping onto [0, 1]. 

This is a result of the fundamental differences of the 
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Fig. 14. Spectral tuning curves for a normalized color circuit from (a) standard intensity (arbitrarily set) and (b) 10 times standard intensity. 

The normalization operation is demonstrated on N,(6) and Ng(O) because a 10-fold increase in intensity causes a 1.25 increase in circuit 

output. The 60% attenuation of Nb(O) is attributed to low SIN from the experimental setup and the resultant nonsaturation circuit operation. 

In the central portion of the curve, the sum of the normalized color currents equals a constant ]bias. The circuit diagram used for normalized 

color is shown in the insert. 
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Photo Transistors 

Translinear 
Circuit 

Normalized 

Current 

Output 

Opponency Circuit 

BB 

Fig. 15. Block diagram of hue sensor element. RGB current inputs are converted into opponency currents which are then converted into x and 

y components of hue in the translinear normalization circuit. The opponency circuit gives the additive/shift invariance property while the trans­

linear part given multiplicative/scale invariance. Opponency X and Y currents in the plane are mapped onto the unit diamond shown in the 

insert. The unit diamond is defined by lXI + IYI = Jbias = const. In the insert, even though point BB is roughly twice as intense as point 

AA, their mappings to B and A respectively on the unit diamond indicate their hue similarities. 

input signal: R, G, B values are limitless in the analog 

sensor domain, but are constrained and preprocessed 

to remain within a fixed domain (usually 8 bits) with 

traditional imaging systems. 

As expected, figure 16 shows that the hue circuit out­

put varies little with changing illumination levels. When 

the image irradiance is scaled by a factor of 10, the x 

andy currents scale only by at most 25%, in a manner 

similar to the normalized color circuit. 

Finally, we numerically computed off-chip the hue 

defined by equation (33) and the measured x andy cur­

rents. For comparison, we additionally superimpose the 

calculated hue based on photosensor input and human 

visual input in figure 17. The former is computed from 
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Fig. 16. Spectral response of the hue circuit at (a) standard intensity (arbitrarily set) and (b) 10 times standard intensity. Similarities of the 

half-wave rectified hue currents x+ (e), x- (D), y+ (0), y- (6) in (a) and (b) indicate that the circuit performs the normalization and thus 

exhibits multiplicative/scale invariance. Here an order of magnitude increase in illumination causes a maximum change of only 25% of current 

output. 
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Fig. 17. Comparison of hue as computed using (I) the x andy output currents of the hue chip (0), (2) the spectral response curves of the 

R, G, B filtered phototransistors (0), and (3) the spectral response curves (Ingling lfJ77) from human cones (1':.). If we discount the borders 

of the spectral range (near 400 nm) where our experimental setup has low signal content, all curves exhibit monotonically unique hue values 

in the visible range. The flat range in the band 500 nm to 600 nm for the hue chip is predicted from the color photosensor input. The hue 

response curve suggests that this sensor would have higher spectral resolution in the transition regions: 475 nm to 525 nm, 575 nm to 625 nm, 

and upwards of 700 nm. The color wheel in the insert shows the color interpretation of the hue angle.• 

the measured output photocurrents from R, G, B color 

filtered phototransistors, while the latter is computed 

from the equivalent R, G, B spectral-response curves 

(Ingling lfJ77) of the human cone system. In both cases, 

hue is calculated from arctan [(R + G - 2B)/(2R -

2G)]. In the visible range ( > 400 to 700 nm) all curves 

give monotonic hue values. The hue chip output agrees 

within experimental error to the calculated hue based 

on phototransistor current input. Both have a flattened 

output spectral response in the 500 to 600 nm band. 

Because they have different input sensor characteristics, 

hue calculated from human visual curves does not have 

this flattened output spectral response. 

We select the output of the chip to be the x and y 

currents, rather than the single variable hue, because 

we can easily compute them within analog circuitry. 

This will enable us in future chips to segment visual 

scenes based on the x and y components of hue in a 
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straightforward and, more importantly, achievable man­

ner in analog VLSI (rather than trying to segment images 

based on hue using a modular operation on chip). 

6.4 Future Hardware Issues 

In our current unoptimized circuit design, one pixel, 

including three (RGB) phototransistors as well as nor­

malized RGB, intensity, opponency, and hue circuits, 

spans 350 ttm by 1600 ttm on the die, most of which 

is inactive silicon real estate. This odd geometrical 

shape was selected to facilitate color filter placement. 

Without circuit optimization, a 5 by 5 pixel array can 

be implemented onto the smallest available chip (using 

a 2 ttm process), while significantly larger array sizes 

are possible with circuit optimization, bigger die sizes 

and smaller design rules. Because phototransistors take 

up 70% of the active silicon real estate area, their design 

optimization will have the biggest impact on circuit 

compaction. Still, mechanical spectral filter placement 

will be difficult to achieve so a method to place the 

filters easily and accurately is desired. One method is 

to fabricate color array dyes using a lithographic process 

and bond to the chip (Dillon 1978). A lower-quality but 

cheaper version of this method is to use color slide film 

as the color filter array. 

We envision two approaches for designing a hue cir­

cuit that locates discontinuities in hue space as dis­

cussed in the first part of this article. One is to convert 

the normalized x + x-y + y- currents into voltages and 

utilize available circuits for detecting discontinuities 

(Harris 1990a). Another approach is to develop current 

mode versions of discontinuity detectors such as resis­

tive fuses. The advantage of the current mode fuse over 

voltage mode is less use of silicon real estate for a more 

compact circuit. Although we do not yet have a com­

plete hue discontinuity sensor, we have all the necessary 

circuit-building blocks for this task. 

7 Conclusion 

In this study we argue that edges in hue correlate more 

directly with material boundaries than edges in inten­

sity, RGB, or Nrgb space. In particular, given the prop­

erties of additive/shift and multiplicative/scale invari­

ance, hue edges are invariant to particular types of 

shadows, highlights, and transparency. We illustrate this 

behavior using video-acquired color images. Segmen-

tation in images containing low saturation and intensity 

image values can be improved with the help of a smooth­

ing operation. Using an intensity edge map as a starting 

point and applying a first-order smoothness operator 

to the hue map results in an edge map that discounts 

confounding cues. The main advantage of utilizing this 

operation is the straightforward application to analog 

VLSI hardware. 

We also developed modulo operators to enhance 

traditional image processing algorithms for segmenta­

tion of variables defined on a circular space. By utilizing 

the HSI space for color segmentation, scene segmenta­

tion is enhanced in real images containing high satura­

tion, even in the presence of confounding cues due to 

shading, transparency, shadows, and highlights. In the 

shadowed Mondrian of figure 2, hue edges in HSI space 

corresponded more closely to material boundaries than 

either hue edges in the CIE space or other edge types. 

While modulo operators are elegant they are not feasi­

ble for analog VLSI implementation. However, they 

may have utilization in custom digital hardware. 

We greatly favor the simple definition of hue em­

ployed in the HSI space over the definition of hue in the 

CIE spaces, since the former is relatively straightfor­

ward to implement in analog electronic integrated cir­

cuits. On that basis we have proceeded to build elec­

tronic test circuits to facilitate color processing. The 

first electronic integrated structure to be manufactured 

and tested was the Nrgb color sensor (Perez 1992a). 

The next electronic structure was the hue color sensor. 

Tests on this sensor show correct performance to vary­

ing illumination. Future analog circuits will be con­

structed to evaluate hue boundaries for segmentation. 

In designing artificial vision systems, there is some 

benefit to carefully selecting spectral filters such that the 

integrated white condition of equation (20) (or more gen­

erally equation (19)) is satisfied. In doing so, the RGB 

sensors will ultimately construct a hue space that is in­

variant to highlights, shadows, and surface orientation. 

In comparison to physically based models with their 

associated color clustering and histogramming, the 

method developed here is comparable in performance 

yet simpler in concept and execution. It is also more 

amenable to analog VLSI hardware implementation. 
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Notes 

l. Note that due to the wrap-around nature of hue, low values of 

hue are near high ones. For example, a hue value of 0 is 3 units 

removed from 253. 

2. Bajcsy (1990) utilizes a similar concept called illumination 

»>litening. 

3. This is viable in industrial applications where the illumination 

and the filter characteristics are controlled such that equation (19) 

is satisfied. 

4. The implication of this equation is that the diffuse illumination 

can be arbitrarily colored and not violate the integrated white con­

dition. Segmentation will be achieved for these conditions. 

5. In 2-D scenes this definition of d will give an upper bound on 

F. Also, Pratt chooses a = ~ to penalize offset edges more than 

smeared edges. 

6. The silicon retina requires less than I mWofpower, most of which 

is used in the photo-conversion stage. 

7. In particular, we avoid the .../3 scaling required from the use of 

equation (4). 

8. Missing representation in the W to 360 degree range fur hue angles 

is an affirmation that monochromatic light cannot produce pur­

ple hues. 
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