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Abstract—The privacy of biometric data needs to be 

protected. Cancellable biometrics is proposed as an 

effective mechanism of protecting biometric data. In this 

paper a novel scheme of constructing cancellable 

fingerprint minutiae template is proposed. Specifically, 

each real minutia point from an original template is 

mapped to a neighbouring fake minutia in a user-specific 

randomly generated synthetic template using the k-

nearest neighbour method. The recognition template is 

constructed by collecting the neighbouring fake minutiae 

of the real minutiae. This scheme has two advantages: (1) 

An attacker needs to capture both the original template 

and the synthetic template in order to construct the 

recognition template; (2) A compromised recognition 

template can be cancelled easily by replacing the 

synthetic template. Single-neighboured experiments of 

self-matching, nonself-matching, and imposter matching 

are carried out on three databases: DB1B from FVC00, 

DB1B from FVC02, and DB1 from FVC04. Double-

neighboured tests are also conducted for DB1B from 

FVC02. The results show that the constructed recognition 

templates can perform more accurately than the original 

templates and it is feasible to construct cancellable 

fingerprint templates with the proposed approach.  

 

Index Terms—Fingerprint, minutiae, pseudo random 

number generator, synthetic template, k-nearest 

neighbours, cancellable template. 

 

I.  INTRODUCTION 

Biometric recognition systems aim to establish a 

genuine connection between a real person and the 

person’s digital identity through the measurements of 

human body features, such as fingerprint, iris, face, etc. 

In general, a biometric system operates in two stages: 

enrollment and recognition (verification or identification). 

During enrollment, a template is extracted from biometric 

images and then stored in a database.  During recognition, 

the user is required to provide the same body features for 

new measurements, from which a new template will be 

generated. For verification, one score is produced by 

matching the new template against the stored template for 

the user. For identification, the user is unknown and 

multiple scores are produced by matching the new 

template against each template in the database in order to 

find the best match or to obtain a candidate list of 

possible matches. Whether a score indicates a match or a 

non-match depends on an arbitrarily selected threshold. 

Biometric templates are not exactly reproducible due to 

the factors such as the dynamics of human body features, 

changes in environmental factors, and interaction 

variations between a user and biometric sensor. Error 

correction methods, such as averaging, discretization, 

majority voting, and other error correction algorithms, 

can reduce some fuzzy bits, but cannot completely solve 

the non-exact reproducibility problem. Therefore, 

biometric matching is never 100% accurate. 

A person has limited number of biometrics and they 

cannot be changed easily. Therefore, a well-designed 

biometric system should be able to revoke a 

compromised template and reissue a new one based on 

original biometrics – the so-called cancellable biometrics.  

According to [1], cancellable biometrics must meet 

four criteria: 
 

 Diversity: dissimilar templates can be generated 

from the same biometrics. 

 Revocability: a compromised template can be 

replaced with a new one using the same biometrics. 

 Non-reversibility: it is impractical to recover the 

original biometrics given a recognition template. 

 Accuracy: matching with the recognition template 

does not reduce the recognition accuracy. 

 

The approach proposed in this paper can be utilized to 

construct cancellable fingerprint minutiae templates that 

satisfy the four requirements. 

The rest of the paper is organized as follows. Section 2 

reviews related works; Section 3 introduces the proposed 

approach; Section 4 gives the testing results obtained 

with three FVC databases; and Section 5 concludes the 

paper.  
 

II.  RELATED WORKS 

Many researchers have attempted to solve the problem 

of generating cancellable biometrics. The main challenge 

to cancellable biometrics lies in transforming the original 

template in such a way that matching can be done 

accurately in the transformed domain.  

Ratha et al. [2] proposed three techniques to transform 

fingerprint template, including image morphing, block 

scrambling, and domain mapping. Ratha et al. [3] [4] also 

proposed using Cartesian, polar, and surface-folding  
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transformations to generate cancellable minutiae 

templates. Yang et al. [5] proposed using features 

obtained from minutiae pairs to generate cancellable 

template. References [6-10] also proposed methods of 

deriving new features from minutiae pairs. 

Delaunay triangulation is proposed as an approach for 

fingerprint identification in [11-21]. Tulyakov et al. [22], 

Li [23], and Sandhya et al. [24] [25] proposed methods of 

deriving and transforming new features based on 

minutiae triplets for the purpose of generating cancellable 

templates. Similar schemes were proposed using 

Delaunay quadrangle [26] [27], pentangle [28] [29], and 

hexangle [30]. 

Li et al. [31] [32] proposed an approach of generating 

cancellable palmprint template by applying chaotic 

stream cipher on orientation features of palmprint. Du et 

al. [33] proposed a scheme of generating cancellable iris 

template by using a key and helper information generated 

during feature extraction to transform the original 

template. Rathgeb et al. [34] [35] [36] proposed a method 

of generating cancellable iris templates [34] and 

cancellable multi-biometric templates (iris-iris [35], face-

iris [36]) using bloom filters. Hämmerle-Uhl et al. [37] 

proposed using block-wised mapping and key-based 

image warping to generate cancellable iris templates. 

Phillai et al. [38] proposed a method of generating 

cancellable iris template, in which the iris image is 

divided into small sectors and each sector is projected 

onto a random matrix. Osama et al. [39] proposed a seed-

based method of generating cancellable iris templates. 

Kanade et al. [40] proposed a scheme of generating 

cancellable iris and face templates by using a user-

specific key to shuffle the feature vectors. Savvides et al. 

[41] proposed a cancellable face template generation 

method by utilizing PIN-based random convolution 

kernels. Hirata and Takahshi [42] [43] developed a 

method of generating cancellable biometric template by 

using correlation-invariant pseudorandom filters to filter 

biometric images. Maiorana et al. [44] proposed a method 

of generating cancellable templates for sequence-based 

biometrics, such as voice and signature. Xu et al. [45] 

proposed a method of generating cancellable voiceprint. 

Connie et al. [46] proposed an approach of generating 

cancellable palmprint using pseudorandom keys. Zuo et 

al. [47] proposed a method of generating cancellable iris 

template with using key-based image transformation. 

Bajwa and Dantu [48] proposed a scheme of generating 

cancellable template based on the electroenciphalograms 

(EEG). 

Currently, generating cancellable biometric template is 

still in research stage. As Jain et al. [49] recently 

indicated that one of the unsolved problems is to protect 

the privacy of biometric data. In this paper we make an 

effort to approach this problem. 

 

III.  PROPOSED SCHEME 

Minutiae are points of ridge ending or ridge bifurcation. 

Each minutia is represented with one triplet (x, y, θ), 

where (x, y) is a minutia’s Cartesian coordinates, and θ is 

the orientation of ridge flow at the point. A fingerprint 

minutiae template contains a number of minutiae, which 

can be generated with random number generators. 

Random number generators play an important role in 

information security [50]. They can be classified into two 

categories: Truly Random Number Generator (TRNG) 

and Pseudo Random Number Generators (PRNG). TRNG 

utilizes nondeterministic physical sources, such as the 

position/velocity of an atomic electron, decay of a 

radioactive material, or quantum entanglement, to 

produce random numbers. As Ellison [51] pointed out, 

“getting true randomness can be extremely difficult.” 

Most random numbers used in computer security, such as 

cryptographic keys, are generated with software-based 

PRNG. As shown in Fig. 1, the synthetic templates in this 

paper are generated with PRNG. Specifically, three 

numbers (x, y, and θ) associated with every minutia are 

independently generated with PRNG. The ranges of the 

two coordinates (x, y) are determined by the original 

dimensions of the fingerprint image. The orientation 

angle is set between 0 and 360. A synthesized fingerprint 

template consists of an arbitrary number of synthetic 

minutiae. 

In the proposed approach, every real minutia point 

from an original template is positioned among the fake 

minutiae of a user-specific synthetic template. Then, the 

nearest neighbours of the real minutia are found and 

stored in a sequential array, which contains only fake 

minutiae. The recognition template is constructed simply 

by selecting a particular set of neighbours. Note that the 

recognition template is a subset of the synthetic template 

and there is no common minutia between the original 

template and the recognition template. 

 

 

Fig.1. Schematic Diagram of Generating Cancellable Template (N  M) 

It is important for readers to realize that two PRNG-

generated synthetic templates do not match, and the sub-

templates of one synthetic template do not match the sub-

templates of another synthetic template. Therefore, the 

false (imposter) match rate should be close to zero. 

The recognition template constructed with this 

approach meets the four criteria of cancellable biometrics 
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as follows: 

 

 Diversity can be achieved by pairing different 

synthetic templates with one real template; 

 Revocability can be achieved by changing the 

synthetic template; 

 Non-reversibility: recognition template does not 

contain any real minutia. It only contains fake 

minutiae. With proper selection (For example, 

selecting the 20TH nearest neighbour), the synthetic 

neighbour does reveal much information about the 

real minutia it is associated with. 

 The desired accuracy can be achieved by controlling 

the size of synthetic templates and the proper 

selection of the nearest neighbours. 

 

The constructed recognition templates are matched 

with the Bozorth algorithm as described in [52].  

In addition to using genuine matching score and 

imposter matching score to characterize the matching 

performance, we use the database-based average 

matching scores to compare the accuracy before and after 

template transformation. It is generally true that the 

higher the average score is, the higher the accuracy is. 

The results are given as follows. 

 

IV.  EXPERIMENTAL RESULTS 

To test the validity and feasibility of our proposed 

approach, we carried out experiments with three publicly 

available fingerprint databases as given in Table 1. 

Table 1. Database Information 

Source FVC00 FVC02 FVC04 

Database DB1B DB1B DB1 

Reference [53] [54] [55] 

Sensor type Optical Optical Optical 

Image size 300x300 388x374 640x480 

Resolution 500dpi 500dpi 500dpi 

No. Fingers 10 10 110 

Images/per finger 8 8 8 

Imaging sessions 1 1 3 

Avg. & std. minutiae 

count 
52  12 44  13 58  18 

Avg, & std. self-
matching score of 

original templates* 

420.0  

110.4 

330.0  

130.0 

461.9  

138.0 

Avg, & std. nonself-
matching score of 

original templates* 

47.0  

32.0 
62.3  44.6 56.9  44.6 

*Self-matching score is obtained by matching a template with itself; 
nonself-matching score is obtained by matching two different 

templates from the same finger. 

 

In the three databases, there are eight images originated 

from each finger. Using the minutiae extraction utility 

mindtct [56], one template is obtained from every image. 

In all, there are eight original templates per finger. One 

synthetic template is pseudo-randomly generated and 

paired with each of the eight original templates, which 

gives eight original-synthetic pairs. Given a pair, we 

apply our proposed approach to construct the recognition 

template. For each pair, a number of different recognition 

templates can be constructed by selecting different 

synthetic neighbours (1ST, 2ND, …, or 36TH) for each 

real minutia.  

Matching is carried out between the constructed 

recognition templates. For self-matching, a recognition 

template is matched with itself; for nonself-matching, 

matching is carried out only between two different 

recognition templates constructed for the same finger 

(constructed with same synthetic template but different 

original templates); for imposter matching, matching is 

conducted between recognition templates constructed for 

different fingers (constructed with different synthetic 

templates and different original templates). Since 

biometric templates are non-exact reproducible, nonself-

matching score represents the real-world scenario of 

genuine matching and imposter matching represents the 

real-world scenario of false matching in biometric 

recognition. Averages and standard deviations are 

calculated based on all the matching scores for the entire 

database.  

Upon designing the experiments, we consider the 

following two factors: 

 

 The size N of the synthetic templates. N is chosen in 

the range between 50 and 1600. 

 The ordinal number L when selecting the nearest 

neighbours for each real minutia. In this paper we 

limit L in the range between the 1ST and the 36TH 

nearest neighbour, and either one or two neighbours 

of each real minutia are utilized to construct the 

recognition template. If only one neighbour is 

selected, we call it single-neighboured the 

transformation; if two neighbours are selected, we 

call it double-neighboured transformation. The 

results are given below. 

 

A.  Single-neighboured transformation 

In this section, the recognition templates are 

constructed by selecting just one neighbour for every real 

minutia. If multiple real minutiae are mapped to one 

synthetic minutia, duplicates are removed and only one 

copy of the synthetic minutia is kept in the recognition 

template. 

A.1.  Self-matching 

In theory it is possible to regenerate a biometric 

template with 100% accuracy. Self-matching represents 

this theoretically possibility. The averages and standard 

deviations of self-matching scores obtained from the 

constructed recognition templates for the DB1B of 

FVC00, the DB1B of FVC02, and the DB1 of FVC04 are 

given in Table 2, Table 3, and Table 4, respectively. Note 

that the averages and standard deviations of self-matching 

scores for the original templates are listed in the last row 

of each table for easy comparison. 

From Table 2, Table 3, and Table 4 we can observe the 
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follows:  

 

 Average self-matching score increases as the size of 

synthetic templates increases. 

 Average self-matching score increases as the ordinal 

number of the nearest neighbour selected to 

construct the recognition templates increases, except 

when N=50 and/or 100. 

 For the DB1B of FVC02 and the DB1 of FVC04, 

the average self-matching scores obtained from the 

recognition templates are lower than those from the 

original templates. For the DB1B of FVC00, the 

average self-matching scores obtained from the 

recognition templates can be higher than those from 

the original templates. 

Table 2. Averages and Standard Deviations of Self-matching Scores with DB1B FVC00 

N 1ST 6TH 16TH 26TH 31ST 36TH 

50 116.2±38.1 153.0±45.4 171.2±57.0 165.1±56.6 154.2±47.7 134.2±41.6 

100 187.2±63.8 249.5±89.1 273.7±93.0 286.8±102.2 279.4±99.8 279.5±102.4 

150 251.0±86.9 317.5±115.7 335.3±114.1 345.7±119.4 346.0±116.8 346.9±116.6 

200 285.8±103.6 340.5±115.7 363.6±114.6 380.9±117.7 371.8±118.9 375.1±116.7 

250 294.5±109.4 353.6±116.9 373.2±113.6 381.0±115.5 376.1±116.8 397.0±113.0 

400 342.3±113.7 386.3±113.3 397.9±114.0 407.0±114.2 412.7±116.2 412.6±116.1 

800 384.5±118.2 405.4±111.2 415.6±110.5 415.9±113.2 420.1±112.0 427.8±110.7 

1600 396.5±113.6 414.3±115.9 420.8±109.2 423.4±111.7 420.5±110.3 426.9±109.9 

DB1B 420.0±110.4 
     

Table 3. Averages and Standard Deviations of Self-matching Scores with DB1B FVC02 

N 1ST 6TH 16TH 26TH 31ST 36TH 

50 61.6±28.3 84.8±35.9 91.0±39.8 87.8±36.6 85.4±31.6 78.0±29.3 

100 103.3±52.9 145.4±66.1 161.5±73.6 158.8±71.9 164.4±75.7 156.4±72.8 

150 133.2±68.1 182.0±91.4 188.2±88.4 196.2±87.0 198.6±92.4 200.3±92.1 

200 149.4±76.3 196.6±101.5 208.7±101.6 217.0±98.6 226.0±110.5 220.8±101.7 

250 166.3±89.2 206.9±109.0 229.3±114.5 233.1±114.0 234.4±113.3 244.9±115.9 

400 193.5±105.1 223.4±114.2 242.4±128.4 249.7±124.9 247.7±122.1 250.8±125.1 

800 223.6±120.0 240.4±127.0 252.4±130.4 258.1±129.9 262.3±132.7 262.4±130.3 

1600 241.1±125.1 247.7±130.4 256.3±133.0 260.2±133.4 261.8±133.3 264.9±135.0 

DB1B 330.0±130.0 

     

Table 4. Averages and Standard Deviations of Self-matching Scores with DB1 FVC04 

N 1ST 6TH 16TH 26TH 31ST 36TH 

50 49.8±19.6 77.8±26.1 90.6±31.2 89.3±31.0 82.4±29.1 72.3±25.1 

100 99.3±40.6 158.5±64.6 172.6±70.1 179.0±76.9 179.2±77.1 179.8±77.8 

150 134.1±59.0 216.5±93.6 233.7±102.6 234.9±103.7 235.4±105.2 236.0±107.1 

200 160.0±73.8 256.5±111.9 274.5±119.3 275.7±120.4 276.0±121.2 276.9±120.4 

400 225.1±109.8 319.5±134.1 342.3±134.5 343.7±134.5 345.4±134.4 345.0±133.6 

800 280.7±130.6 352.9±140.2 373.5±141.2 379.6±141.2 378.2±142.0 380.8±140.5 

1600 319.2±138.8 369.7±146.1 385.9±149.4 393.1±149.7 394.4±150.8 396.0±148.1 

DB1 461.9±138.0 

      

For self-matching, the matching score is closely related 

to the number of minutiae in a template. In general, the 

matching score increases as the number of minutiae in a 

template increases. For a database, a lower average 

matching score indicates that the average number of 

minutiae in the constructed recognition templates is less 

than that of the original templates. The reason is that 

multiple real minutiae are mapped to a single fake 
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minutia during the neighbour-finding process of the 

proposed method.  

Based on the results given in Table 2, Table 3, and 

Table 4, we can conclude that when the size of synthetic 

templates is greater than 100, selecting the neighbours 

further away to construct the recognition template can 

help reduce the chance of mapping multiple real minutiae 

to a single fake minutia. 

For comparison, the self-matching results with the 

16TH nearest neighbours are plotted in Fig. 2. 

 

 

Fig.2. Self-matching results with the 16TH Nearest Neighbours 

From Fig. 2 we can see that for a given size of the 

synthetic template the constructed recognition templates 

for the DB1B of FVC00 produce the highest average 

score, while those for the DB1B of FVC02 produce the 

lowest score. 

A.2.  Nonself-matching 

Nonself-matching represents the practical scenario of 

biometric matching. The averages and standard 

deviations of nonself-matching scores obtained from the 

constructed recognition templates for the DB1B of 

FVC00, the DB1B of FVC02, and the DB1 of FVC04 are 

given in Table 5, Table 6, and Table 7, respectively. Note 

that the averages and standard deviations of nonself-

matching scores for the original templates are listed in the 

last row of each table for comparison. 

From Table 5 it can be seen that the average nonself-

matching scores are maximized when the size N of the 

synthetic templates equals to 75. To achieve an overall 

higher accuracy with the transformed templates than with 

the original templates, any combination of row (N) and 

column (L) with an average score higher than 47.0 can be 

selected. For example, the average score equals to 61.1 

when N=150 and L=21ST. 

From Table 6 it can be seen that the average nonself-

matching scores are maximized when the size N of the 

synthetic templates equals to 50 or 75. However, all the 

combinations of row (N) and column (L) produce lower 

average matching scores than the original templates. 

Therefore, the proposed scheme with the single-

neighboured transformation cannot be applied to generate 

cancellable templates for this database due to 

performance degradation. The solution to the problem is 

given in section B.2. 

From Table 7 it can be seen that the average nonself-

matching score is maximized when the size N of the 

synthetic templates is around 100. To achieve an overall 

better accuracy with the transformed templates than with 

the original templates, any combination of row (N) and 

column (L) with an average score higher than 56.9 can be 

selected. For example, the average score equals to 60.5 

when N=150 and L=6TH. 

For comparison, the nonself-matching results with the 

16TH nearest neighbours are plotted in Fig. 3, from 

which it can be seen that recognition templates for 

FVC00 produce the highest scores when the size N of the 

synthetic templates is less than 150, while those for 

FVC04 produce the highest scores when the size N of the 

synthetic templates is greater than 150. 

 

 

Fig.3. Nonself-matching results with the 16TH Nearest Neighbours 

A.3.  Imposter matching 

Imposter matching is carried out between two 

recognition templates constructed for different fingers. 

The matching score distributions for DB1B of FVC00 

with N=150 and L=11TH are plotted in Fig. 4.  

 

 

Fig.4. Distributions of Imposter Matching scores DB1B_FVC00 
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Table 5 Averages and Standard Deviations of Nonself-matching Scores with DB1B FVC00 

N 1ST 6TH 16TH 21ST 26TH 31ST 36TH 

50 56.6±23.9 75.0±30.5 83.4±38.1 76.8±37.2 75.4±37.6 71.0±31.6 62.5±27.6 

75 63.9±33.2 79.9±41.4 83.4±40.4 81.5±42.8 83.2±41.7 74.3±42.5 70.8±39.5 

100 65.0±31.6 69.1±35.4 72.2±40.3 71.6±39.0 70.6±39.6 65.4±37.0 61.0±34.3 

125 62.1±28.1 64.6±36.3 70.5±36.6 66.6±38.3 66.1±38.9 67.6±40.8 61.6±36.4 

150 57.4±29.8 55.2±33.9 56.8±33.8 61.1±37.7 56.2±32.3 57.2±34.6 55.6±35.5 

200 52.9±31.5 42.8±26.7 40.8±24.6 44.2±27.2 44.2±26.1 40.8±24.5 40.5±24.7 

250 43.9±27.3 39.8±26.3 33.3±22.4 33.8±22.6 31.9±21.0 32.4±23.1 35.5±23.0 

400 30.8±20.1 20.9±14.5 17.6±12.3 17.6±13.3 17.0±13.5 16.0±12.2 16.9±12.2 

800 15.0±12.3 9.7±6.9 7.2±5.5 7.1±4.9 7.3±5.7 6.6±5.5 6.9±4.9 

1600 7.9±6.9 5.1±3.3 4.8±3.1 4.3±2.5 4.7±2.6 4.4±2.6 4.5±2.3 

DB1B 47.0±32.0 

      

Table 6. Averages and Standard Deviations of Nonself-matching Scores with DB1B FVC02 

N 1ST 6TH 11TH 16TH 21ST 26TH 31ST 36TH 

50 26.3±17.8 36.6±25.1 35.2±21.5 37.7±26.9 40.9±27.5 34.1±23.7 34.0±20.2 31.9±20.1 

75 29.3±22.9 33.3±24.9 38.0±24.7 37.4±26.3 38.3±22.4 35.3±23.8 36.0±24.3 31.6±23.8 

100 26.7±21.0 31.6±27.1 31.6±22.8 35.5±27.4 32.7±26.8 32.4±24.4 36.5±31.4 29.7±25.2 

125 24.2±21.1 26.7±21.4 30.2±27.5 27.7±24.2 31.5±28.0 28.1±23.4 29.5±25.0 28.3±28.0 

150 23.5±22.2 26.9±28.1 22.8±21.9 24.6±24.5 24.7±20.2 24.5±21.5 26.3±25.3 25.6±22.9 

200 21.1±21.2 19.3±20.5 17.9±18.7 18.0±18.0 19.6±19.3 18.8±17.3 20.6±18.4 20.6±17.9 

250 18.1±18.6 14.2±15.5 14.8±16.8 15.1±17.1 15.7±17.4 14.3±15.7 14.4±14.7 15.4±15.8 

400 11.5±14.1 8.1±9.5 7.6±11.2 6.8±8.7 6.9±8.6 7.3±8.7 7.6±9.1 8.3±10.4 

800 6.0±8.3 3.1±4.3 3.2±4.5 2.6±3.7 2.9±3.9 3.1±4.1 2.6±3.3 2.8±3.3 

1600 2.8±4.3 1.8±2.5 1.9±2.3 1.9±2.5 1.8±2.2 2.0±2.3 2.0±2.3 1.8±2.1 

DB1B 62.3±44.6 
       

Table 7. Averages and Standard Deviations of Nonself-matching Scores with DB1 FVC04 

N 1ST 6TH 11TH 16TH 21ST 26TH 31ST 36TH 

50 26.2±13.4 43.7±19.5 47.6±22.7 46.8±22.4 46.2±22.5 44.0±21.8 41.4±20.5 39.2±18.8 

75 32.6±19.2 56.0±29.4 57.1±32.3 57.4±31.5 55.5±32.0 52.3±31.1 51.5±31.1 49.6±29.1 

100 37.0±22.1 61.3±35.9 61.9±37.6 59.6±35.9 57.6±36.1 55.4±36.5 52.5±35.4 50.6±33.8 

125 37.8±24.6 59.8±39.0 61.7±39.5 59.5±40.2 57.1±38.9 53.3±36.2 51.0±36.1 49.1±35.5 

150 39.2±26.5 60.5±41.2 60.4±40.2 59.0±40.9 55.6±37.7 53.1±37.4 49.5±35.5 47.6±34.6 

200 38.7±28.0 55.3±40.6 56.0±41.1 53.2±38.3 51.4±37.3 48.1±35.5 46.1±33.7 44.1±32.0 

400 33.3±27.4 32.8±26.8 31.0±25.1 29.0±23.8 27.5±22.3 26.2±21.6 26.1±21.1 25.6±21.0 

800 24.9±21.7 16.1±15.2 13.5±12.6 12.2±11.6 11.7±11.4 11.4±11.5 10.8±10.8 10.4±10.1 

1600 17.4±16.3 8.8±9.1 6.6±7.3 5.8±6.1 5.4±5.5 5.1±5.2 5.0±5.3 4.8±4.7 

DB1 56.9±44.6 
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From Fig. 4, we can see that matching with the 

transformed templates produce lower imposter scores 

than that with the original templates. Therefore, the 

proposed approach can improve performance. 

Fig. 5 gives matching score distributions for the DB1B 

of FVC02 with N=100 and L=11TH. From Fig. 5 we can 

see that the transformed templates produce lower 

imposter scores than with the original templates. 

 

 

Fig.5. Distributions of Imposter Matching scores DB1B_FVC02 

As given in Table 1, each of the two databases DB1B 

from FVC00 and DB1B from FVC02 only contain 80 

images captured from 10 fingers. Due to the size 

limitation, they may not generate representative results. 

Therefore, we carry out experiments with the DB1 from 

FVC04, which contains 880 fingerprints obtained from 

110 fingers. The imposter matching results are plotted in 

Fig. 6, from which we can draw the same conclusion: the 

transformed templates produce significantly lower 

imposter matching scores than the original templates. 

 

 

Fig.6. Distributions of Imposter Matching scores DB1_FVC04 

In sum, we conclude that the recognition templates 

constructed with the proposed approach for all three 

databases can produce significantly lower imposter scores 

than the original (non-transformed) templates. 

B.  Double-neighboured transformation 

As given in section A.2, the nonself-matching 

performance with the transformed templates for DB1B of 

FVC02 is worse than that with the original. The solution 

to problem is to select multiple nearest neighbours when 

construct the recognition templates. In this paper, we 

utilize two synthetic neighbours for each real minutia. 

Multiple real minutiae may be mapped to a single 

synthetic minutia. When this happens, only one copy of 

the synthetic minutia is kept (the duplicate is removed). 

With the double-neighboured transformation, the results 

for self-matching, nonself-matching, and imposter 

matching are given below. 

B.1.  Self-matching 

The average self-matching scores with double-

neighboured transformation are given in Table 8, from 

which we can see: 

 

 The average matching score with the transformed 

templates increases as N increases. 

 When N=50 or 75, the average matching scores with 

the transformed templates are lower than that with 

the original. 

 When N100, the average matching scores with the 

transformed templates are higher than that with the 

original, with the exception when N=100 and 

L=1ST+2ND. 

 For any given N, the transformed templates with 

L=1ST+2ND produce the lowest average matching 

score than those with other combinations of L. 

Table 8. Self-matching with Two Neighbours (DB1B_FVC02) 

N 1+2 7+8 13+14 19+20 25+26 31+32 

50 131.7 169.2 182.7 183.1 193.4 172.7 

75 196.8 266.4 270.6 282.2 288.8 294.8 

100 275.5 366.8 375.5 380.9 378.5 387.6 

150 349.2 414.3 429.1 428.5 427.2 427.6 

200 392.8 432.3 438.7 443.5 441.8 443.1 

300 422.0 453.7 456.4 464.2 466.7 471.8 

400 451.8 470.9 478.8 482.8 480.9 486.6 

600 473.5 504.1 511.9 517.4 513.3 512.7 

1200 525.7 548.5 550.8 540.1 543.5 543.0 

DB1B 330.0 
      

Comparing Table 2 with Table 8, we can see that the 

average self-matching score can be increased 

significantly by using two nearest neighbours. 

B.2.  Nonself-matching 

The average nonself-matching scores with two 

neighbours are given in Table 9. 
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Table 9. Nonself-matching with Two Neighbours (DB1B_FVC02) 

N 1+2 7+8 13+14 19+20 25+26 31+32 

50 82.2 111.3 123.9 120.5 131.1 116.8 

75 101.5 140.1 143.1 147.8 152.6 153.5 

100 123.2 156.1 160.1 161.5 155.7 157.3 

150 113.1 116.2 121.8 112.5 114.4 118.8 

200 98.6 90.4 90.4 89.1 88.3 88.0 

300 74.3 59.3 54.7 55.0 55.6 60.2 

400 57.8 43.5 39.5 37.0 35.4 35.1 

600 44.0 30.0 27.2 22.4 21.9 22.0 

1200 22.0 14.6 11.4 9.3 9.0 8.3 

DB1B 62.3 
      

From Table 9, we can see that: 

 

 When N200, the average matching scores with the 

transformed templates are higher than that with the 

original. 

 When N300, the average matching scores with the 

transformed templates are lower than that with the 

original, with the exception when N=300 and 

L=1ST+2ND. 

 When N=50, 75, or 100, the average matching score 

tends to increase as L increases; When N=200, 300, 

400, 600, or 1200, the average matching score tends 

to decrease as L increases. 

 

Comparing Table 6 with Table 9, we can see that the 

average nonself-matching score can also be increased 

significantly by using two nearest neighbours. 

B.3.  Imposter matching 

With double-neighboured transformation, the imposter 

matching results are given in Fig. 7, from which we can 

see that the transformed templates produce significantly 

lower imposter matching scores than the original 

templates do. 

 

 

Fig.7. Distributions of imposter matching scores of DB1B_FVC02 

The usage of two nearest neighbours may cause the 

concern about reversibility. However, we believe that the 

concern can be alleviated for the reason that the two 

neighbours are randomly generated and can be chosen 

arbitrarily from a large set of available neighbours.  

In this paper, we store 36 nearest synthetic neighbours 

into an array for each real minutia.  Instead of using two 

contiguous neighbours, we may choose any pair (For 

example, L=9TH+23RD, i.e., 9TH and 23RD nearest 

neighbours). Therefore, it is challenging for an attacker to 

find the two neighbours belonging to a real minutia in the 

recognition template. Even if the two neighbours are 

found, it is still mathematically difficult in finding the 

exact position of the real minutia. 

 

V.  CONCLUSION 

A new method of constructing cancellable template is 

proposed. Recognition template is constructed by 

mapping real minutiae to the fake minutiae in a PRNG 

generated synthetic template using the K-nearest 

neighbour method. In this paper one or two synthetic 

neighbours of each real minutia are utilized to construct 

the final recognition templates. The cancellability of a 

recognition template is achieved by replacing the user-

specific synthetic template. 

Our testing results for genuine matching indicate that 

the recognition templates constructed with the proposed 

approach can achieve better accuracy than the original 

templates by properly selecting the size of synthetic 

templates and the ordinal number of nearest neighbours.  

It should be noted that two randomly generated 

synthetic templates do not match with each other, and the 

sub-templates of one synthetic template do not match the 

sub-templates of another synthetic template. Our testing 

results show that the imposter matching scores obtained 

from the transformed templates are extremely low and 

significantly lower than those obtained from the original 

templates.  

The usage of two nearest neighbours should not raise 

the concern about reversibility for the reason that the two 

neighbours are randomly generated and can be chosen 

arbitrarily from a large set of available neighbours.  
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