
1

Towards Dependable Embedded Model Predictive
Control
Tor A. Johansen

Abstract—While Model Predictive Control (MPC) is the in-
dustrially preferred method for advanced control in the process
industries, it has not found much use in consumer products and
safety-critical embedded systems applications in industries such
as automotive, aerospace, medical and robotics. The main bar-
riers are implementability and dependability, where important
factors are implementation of advanced numerical optimization
algorithms on resource-limited embedded computing platforms
and the associated complexity of verification. This challenge
comes from a requirement of the use of ultra-reliable hardware
and software architectures in safety-critical applications, low-cost
hardware in consumer products, or both. This paper surveys the
state-of-the-art in the emerging field of dependable embedded
MPC, and discusses some key challenges related to its design,
implementation and verification. A novel result is the study of a
simulator-based performance monitoring and control selection
method that monitors and predicts MPC performance and
switches to a highly reliable backup controller in cases when
the MPC experiences performance issues.

Index Terms—Numeric Optimization; Embedded Systems; De-
pendability; Fault-tolerance; System safety

I. INTRODUCTION

Model predictive control (MPC) was developed as a prac-

tical implementation of optimal feedback control for multi-

variable processes that were subject to input and output

constraints. At the current time t0, when the system is in the

state defined by the vector x(t0), MPC solves the following

optimization problem in order to compute optimal control

inputs u(t0), ...,u(tN) on the time horizon N:

min
u(·),s(·)

J(u(t0),,u(tN),s(t0),,s(tN);x(t0)) subject to

x(tk+1) = f (x(tk),u(tk), tk), x(t0) given

g(x(tk),u(tk),s(tk), tk)≤ 0, k = 0,1,2, ...N

where J is a cost-function, f a discrete-time dynamic model,

g is a function that represents constraints, and the vector s(tk)
contains slack variables that are used to relax the constraints

to guarantee the existence of a solution. At every time in-

stant, t1, t2, ..., the procedure is repeated based on updated

information. MPC is proven to enable significant performance

improvements in a range of applications, and has been partic-

ularly successful in the process and petroleum industries, [1].

The industrial success of MPC has led to intense research, and

theoretical issues such as stability and optimality, and how they

are influenced by real-time computational resource limitations,

are by now fairly well understood [2].

The implementation of MPC in the process and petroleum

industries has typically been as a high-level multi-variable

Center for Autonomous Marine Operations and Systems, Department of
Engineering Cybernetics, Norwegian University of Science and Technology,
Trondheim, Norway.

Fig. 1. Two common variations of conventional MPC. Left: (a) Conventional
MPC system architecture. Right: (b) Conventional MPC system architecture
with independent safety system.

controller at a level above a layer of basic single-loop control,

as illustrated in Fig. 1. The basic control has typically been re-

sponsible for plant stabilization, disturbance rejection and set-

point tracking. Thus, the interface between the basic control

and MPC is typically set-point commands to low-level PID-

type controllers. The basic control is typically implemented

within industrial PLC (programmable logic controllers) or

industrial DCS (distributed control systems) that are based on

highly dependable hardware and firmware. However, although

the basic control system provides a significant degree of both

control performance and safety by itself, it is sometimes

accompanied by an independent safety system. The safety

system is designed to take the plant to a safe state when unsafe

conditions are detected or predicted, or call for intervention or

manual control by an operator. This often involves reconfig-

uring, isolating or shutting down a part of the plant. Although

not explicitly represented in the figure, a typical architecture

may also include a higher-level optimization of steady-state

conditions. This often uses nonlinear static models in order to

provide reference points for inputs and states to the MPC, and

is referred to as real-time optimization (RTO). Alternatively,

the static and dynamic optimization is combined in so-called

Economic MPC, e.g. [3].

With the basic control performance and safety already

provided, it has been convenient to allow the MPC to be

implemented in computationally powerful and inexpensive,

yet not very reliable, off-the-shelf computer hardware and

software. This usually means PC-type computers running

office/server-type of operating systems not designed with the

strict resource control and scheduling needed for real-time

response guarantees and ultra-high reliability. Moreover, the

numerical optimization required for MPC has conveniently

been based on sophisticated off-the-shelf numerical code and

libraries that have been developed and improved over long

time. Often, this code is proprietary and/or binary and there-

fore to be considered more or less as a ”black-box” even

2

though basic algorithms have known properties. Arguably, the

dependability of the standalone MPC module has received only

modest attention in many applications and implementations,

and perhaps been driven more by availability and reliability

requirements rather than safety.

Currently, there is significant research activities on algo-

rithms and software for Embedded MPC, aiming to implement

MPC either on ultra-reliable industrial real-time computer

platforms such as PLCs and DCSs, or custom embedded

system hardware (HW) with micro-controllers, FPGAs (Field-

Programmable Gate Arrays) or ASICs (Application-Specific

Integrated Circuits). This development is driven by commer-

cial interests in new applications and other industries following

the success of conventional MPC in process control:

• Desire to use MPC in applications that are characterized

by relatively fast dynamics where the real-time aspects

of MPC computations must be taken very seriously,

e.g. subsea petroleum production (e.g. [4], [5]), oil well

drilling control systems (e.g. [6]), robotic systems (e.g.

[7]), aerospace (e.g. [8]), electric power generation and

distribution systems (e.g. [9]), and scheduling of comput-

ing resources, e.g. in cloud computing [10].

• Desire to use MPC in applications that requires extremely

fast sampling and updates, e.g. power electronics, [11].

• Desire to use MPC in products which require low-cost

embedded systems, e.g. consumer electronics, medical

devices (e.g. [12]), and cars (e.g. [13]).

• Desire to use MPC for low level control, also for plants

that are not pre-stabilized (e.g. [14]).

• Desire to use MPC in safety-critical applications.

This means that MPC might be used within different embed-

ded system architectures, where some of them will impose

significantly stronger responsibility on the MPC in order to

not only provide high-level performance-improving control,

but also basic and safety-related control functionality such

as stabilization, disturbance rejection, and fault tolerance. In

safety-critical applications the consequences of failure of the

MPC system may be catastrophic and unacceptable.

The above trends means that embedded MPC may need

to be made significantly more dependable than conventional

MPC. Dependability means the system’s ability to avoid

failures with unacceptable consequences for the system’s

functionality, [15]. While ”external” faults in sensors, actu-

ators, and the plant can lead to control system failure with

unacceptable consequences, the focus of this study is on the

dependability and vulnerability of the MPC computer control

system with its computer hardware and software. The limited

resources of an embedded system (such as power, memory,

processing capacity and software libraries) in combination

with requirements for predictable performance poses the main

barriers for replacing conventional industrial control algo-

rithms with MPC in embedded systems. For completeness,

we remark that in addition to handling to internal faults, the

MPC’s tolerance to external faults is also an active research

area, e.g. [16], [17], [18], [9].

A summary of potential embedded MPC system architec-

tures is given in Fig. 2. As an extreme case, the architecture

in Fig. 2 part (a) has no additional safety system or even basic

control and stabilization, which increases the dependability

requirements to the core embedded MPC module. The desire

to reduce cost in products where MPC is embedded may favor

this architecture, e.g. in automotive applications [13].

In other applications with strong couplings and nonlineari-

ties, a basic control layer based on PID-controllers may limit

the achievable performance and therefore be unacceptable,

e.g. [4], [5], favouring the architecture in Fig. 2 part (c).

On the other hand, the architectures in Fig. 2 parts (b) and

(d) are similar to conventional MPC and may be favoured in

applications when the MPC is embedded in an existing fault

tolerant system design, e.g. [9].

Top-left: (a) ”Bare” embedded MPC system architecture. Top-right:

(b) Embedded MPC system architecture with separate basic control.

Bottom-left: (c) Embedded MPC system architecture with

independent safety system. Bottom-right: (d) Embedded MPC

system architecture with separate basic control and independent

safety system.

Fig. 2. Four possible embedded MPC system architectures.

Many aspects of dependable embedded MPC are currently

receiving increasing interest in the literature, while others are

not receiving the attention that may be needed in order to

enable embedded MPC in certain application areas.

The purpose and contribution of this paper is to provide a

holistic systems perspective and discuss some requirements

and challenges for dependable embedded MPC. Section II

surveys embedded MPC architectures, algorithms, hardware

and software. Section III discusses the key aspects of de-

pendability, and together these two sections lay a foundation

for dependable embedded MPC. In section IV this leads to

some novel results and advice for practitioners on how depend-

able embedded MPC architectures, algorithms and computer

hardware and software can be designed, implemented and

verified for demanding and safety-critical control applications.

A key element is a fault-tolerant architecture that includes

a simulation-based performance monitor to select between

different control solutions that is presented and illustrated

using a simulation example in section IV. Section V ends

with some concluding remarks on the future of dependable

embedded MPC.

3

II. EMBEDDED MPC ARCHITECTURES, ALGORITHMS,

HARDWARE AND SOFTWARE

This section will provide some further discussion on the

embedded MPC architectures illustrated in Fig. 2 and the

underlying algorithms, hardware and software required to

implement embedded MPC in a highly resource-limited real-

time embedded control system.

The limited resources in combination with requirements

for predicable performance poses the main barriers for re-

placing conventional industrial control algorithms with MPC

in embedded systems. Limited power and cooling means

limited computational resources for computationally intensive

numerical optimization with hard real-time constraints that

normally relies on the accuracy of floating-point arithmetic.

With complex algorithms that have a relatively large footprint,

limited computer memory might reduce performance. One

reason is that transfer of data and instructions from the slower

memory modules to the central processing elements might be a

bottleneck leading to latencies and unused processing capacity.

Another reason is that it also means limited opportunities to

store pre-computed data structures to support the real-time

processing. Redundant hardware or functionality is often a

highly useful factor in developing dependable systems, but

the opportunities are limited by shortage of processing and

storage resources.

A. Embedded MPC architectures

The existence of a dedicated and independent safety system

as shown in parts (c) and (d) of Fig. 2 means that the safety

of the process is not a primary responsibility of the MPC.

Still, even with the existence of such as safety system, there

might be very demanding requirements for the MPC since the

cost and consequences of activating the safety system might

be significant as it may lead to a shutdown causing several

hours or days of non-productive time of an industrial asset.

Performance and reliability of the MPC may be a primary

concern even if it is not safety-critical.

One should have in mind that in some applications it might

be difficult, or even impossible, to develop an independent

safety system that could respond safely to control failures.

Reasons for this could be that there is no well-defined fail-

safe state in the case of control system failure (think of an

aircraft or a ship loosing steering or propulsion). In such cases

the faulty control system should perhaps be overridden by

manual (human) control, or some redundant control system

(hardware or functional redundancy) should take over. Such

redundancy is provided by the separate and independent basic

control system in Fig. 2 (b). As will be investigated in Section

IV, the control re-configuration required to implement this

is quite complicated as it may require a separate diagnosis

function in order to identify if the embedded MPC output is

to be trusted and used, or not.

The ”bare” architecture in Fig. 2 (a) provides no safety or

functional redundancy beyond what is built into the embedded

MPC. There are indeed several safety functions that are recom-

mended to be integrated within an MPC, e.g. state constraints.

Since there is no external backup solution, the demands for

verification and validation of the embedded MPC hardware

and software are likely to be very strict if the consequences

of failure are severe. As will be discussed later, this has

significant consequences for the design and analysis of the

embedded MPC.

The choice of control system architecture is likely to be

highly dependent on several factors, such as requirements

for dependability, hardware and software technology require-

ments, and the related costs of design, verification and valida-

tion. As will be introduced in Section IV, there are additional

novel architectures beyond those in Fig. 2 that might be

attractive. Systematic system design and analysis frameworks

are available in the form of industry standards such as IEC

61508 and 61511, and MIL-STD-882C. They provide methods

and tools for the design and analysis based on the particular re-

quirements of the application. It is considered highly unlikely

that one can find single architectures, algorithms, hardware

and software implementations that fit all applications, and a

system theoretical safety approach may be fruitful in complex

systems [19]. The use of MPC is particularly fruitful in

the systems theory approach to safety, as MPC provides a

systematic approach to integrate safety constraints with other

operational constraints, objectives and performance criteria for

reference tracking, control effort use, or economic objectives.

The use of a systems theory approach is particularly evident

for the design, development, implementation, verification and

certification phases, although relevant also for analysis of

requirements and feasibility, and specification.

B. Hardware and software environments

While today’s conventional MPC is typically run under

some Windows or Unix/Linux variant on PC/server-type of

computers, embedded MPC may run in a variety of different

platforms:

• Industrial controllers, typically well-proven process-

ing units with floating point co-processors and fairly

large amounts of memory for program and data. These

standardized controllers are designed to operate in a

distributed control system (DCS) and typically run some

real-time operating system and comes with well-proven

standard libraries for communication, networking, in-

put/output, configuration management, control and sig-

nal processing. Moreover, they usually support custom

programs (such as MPC numerical optimization) using

high-level programming languages such as C or C++.

• Programmable logic controllers (PLCs), which are

similar to, but usually designed to be even more robust

than, industrial controllers. They can operate stand-alone

or within a DCS. Usually, they have processors with fairly

limited processing and memory capacity, and only top-

end models tend to have floating-point co-processors. The

access to resources and programming is usually limited to

specific block-oriented or highly structured programming

languages (such as IEC 61131-3) with standard blocks for

communication, networking, input/output, configuration

management, control and signal processing. Such limi-

tations contributes to less risk for users’ programming

errors causing system failure. In addition, some offer

structured programming environments with C-like lan-

guage, or reduced C syntax and a few standard libraries,

that can be used to implemented Embedded MPC, [20],

4

[4]. They are designed using extremely robust and reliable

electrical and mechanical design and components, and

made for high endurance in harsh industrial environment

characterized by large temperature ranges, humidity, dust,

vibrations, electromagnetic interference, etc.

• While industrial controllers and PLCs are standardized

modules that can work as building blocks in the design

of a large industrial system, many embedded systems

designed for serial production (e.g. in the automotive and

aerospace industries) tend to be custom designed as elec-

tronic control units with dedicated circuit boards that in-

cludes input/output and interface electronics in addition to

processing units. Embedded MPC can be implemented in

the supported programming languages and operating en-

vironment, typically ranging from small micro-controllers

(without any floating-point co-processing), [21], to very

powerful multi-core digital signal processing (DSP) chips

with floating-point capacity, and to Field-Programmable

Gate Arrays (FPGAs) [22], [23], [24], [25], [26] and

Application Specific Integrated Circuits (ASICs) [27].

C. Embedded MPC algorithms and software

The work-horse of MPC software is numerical optimiza-

tion, usually in the form of quadratic or linear programming

solvers (for so-called linear MPC that is characterized by

a linear model, linear constraints and a linear or quadratic

cost function) or nonlinear programming solvers (for so-

called nonlinear MPC). With a few notable exceptions, the

commercial or public domain numerical optimization software

available for use in MPC are not open-source which usually

means that one is limited to Windows or Unix/Linux binary

libraries. Among the emerging open-source options, the level

of documented verification, certification and testing tends to

be somewhat limited. The limited availability of optimization

software suitable for embedded MPC has led to several re-

cent research activities that targets open source and library-

free portable numerical optimization code using a convenient

programming language and style such as subsets of C and

C++ (avoiding e.g. dynamic memory allocation and pointers).

This software enables embedded MPC implementation, but

as formal verification and documentation of extensive testing

may not always be available, the question of dependability still

remains somewhat open. The developments can be categorized

according to optimization algorithm type as follows:

• Active set convex quadratic programming. The

QPOASES algorithm takes advantage of the fact that

the time-varying parameters of the MPC problem (such

as states and set-points) typically leads to a quadratic

program where the time-varying parameters only ap-

pear linearly in the constraints, and that they typically

make small changes from one sample to the next, [28].

QPOASES searches for the optimal active set by moving

through the parameter space, and inherently includes a

warm-start procedure. The original implementation was

made in C++, but C-versions now exist.

• Interior point convex/quadratic programming. Vari-

ous interior point methods have been implemented as

automatically generated customized C code solvers, i.e.

CVXGEN [29] and FORCES [30], [31]. An effective

variant of an interior point method that uses Riccati-

iterations to compute the gradient is presented in [32].

• Fast gradient convex/quadratic programming. Fast

gradient methods are first order optimization methods that

perform weighted/filtered gradient descent steps and con-

straint projections, usually taking advantage of the very

simple projection needed to solve the dual problem (i.e.

positive Lagrange multipliers) for constraint fulfillment,

[33], [34], [4], [35]. In addition to very simple code

that leads to a small footprint and may allow formal

verification of the code, one can bound the number

iterations needed to achieve a given accuracy.

• Nonlinear programming. The ACADO software tool

contains methods for discretization of continuous-time

nonlinear optimal control problems and numerical so-

lution of the resulting nonlinear program, [36], [37].

The software exploits symbolic computation of gradients

based on a C++ specification of the model, constraints and

objective. In addition to the basic C++ version, efficient C

code can be automatically generated for embedded system

implementations.

Embedded MPC applications tend to require fast update

intervals within a highly resource-limited computer environ-

ment. Although the size of embedded MPC control problems

tends to be significantly smaller than in conventional MPC,

and warm start procedures can be used, one cannot expect that

the optimization solver will be allowed to execute until strict

tolerances on the optimality conditions or stopping criteria

are met in every case. Hence, in order to fulfill the strict

requirements for real-time processing, only a finite (usually

small) number of iterations is allowed. Theoretical studies

have provided theories, stability criteria and sub-optimality

(performance) bounds that cover such limitations, e.g. [38],

[39], [40], [41], [42], [43]. These theories are primarily of

conceptual value as their direct applicability are limited. First,

assumptions may not be theoretically guaranteed or verified

a priori in a given application, or the potentially adverse

impact of uncertainty on models and measurements. Second,

the benefits of a long prediction horizon would require more

computational resources.

Embedded processing units are often highly resource-

limited, and it has been demonstrated that efficiency of the

implementation of embedded MPC not only depends on the

chosen numerical algorithm and the HW platform, but also

on the implementation in software. For example, in [44] it is

shown that significant improvements in computational speed

can be achieved by considering the system memory architec-

ture and exploit in the numerical linear algebra computations

the device’s registers, fast cache, data addressing modes, etc.

It is also experienced that generating branch-free code with

unrolled loops (e.g. [29]) may lead to efficient code execution

at the cost of a larger memory footprint.

Extensive effort has been invested into the research for

algorithms that can pre-compute and store the solution to the

MPC problem as a function of its input parameters (such as

current state, objective and constraints). While some useful

algorithms and software to compute so-called explicit MPC

have been developed, e.g. [45], [46], [47], their practical use

is limited to fairly small-scale applications where it is no need

5

to online update of set-points, constraints and models. The

embedded system implementation typically consists of some

data structure that stores the pre-computed solution, and some

algorithm that can efficiently search through this data structure

for the current optimal MPC solution, [48], [49], [50]. This

approach requires very limited computational resources and

no need for floating-point computations.

From an implementation point of view, a clear distinction

goes between linear and nonlinear MPC, or more precisely,

between convex and non-convex optimization. While linear

MPC requires numerical linear algebraic computations (which

also can be very challenging and lead to failures of the MPC

if not implemented in a suitable manner), nonlinear MPC

requires in addition the accurate computation of gradients and

may come with additional challenges such as lack of convexity

(manifested through existence of multiple local minimums, in-

definite Hessians, etc.), possibly lack of smoothness of the cost

and constraints, and numerous numerical issues. While linear

MPC provides a reasonably ”closed” class of problems for

which general solutions can be made, there seems to be little

hope to be able to make any general solutions for nonlinear

MPC except for certain classes of systems and problems. A

state-of-the-art software tool for embedded nonlinear MPC is

ACADO, [36]. Real-time performance is achieved by a so-

called real-time iteration approach that pre-computes data for

the optimization algorithm based on the previous step while

waiting to receive new state measurements. This reduces the

latency from state measurements are received until the control

input is computed.

III. DEPENDABLE MPC

This section discusses dependability in the context of MPC,

using standard taxonomy and concepts [15]. The first section

deals with requirements and assessment of dependability of

an embedded MPC. The second section analyses potential

faults, errors, failures and their consequences in embedded

MPC, while the third section discusses some general means

to improve dependability in embedded MPC.

A. Requirements and assessment of dependable embedded

MPC

The general attributes of system dependability are reliability,

availability, safety, integrity, and maintainability, [15]. In the

context of embedded MPC the aspects of safety and reliability

are key and therefore given special attention here. The other

attributes are not discussed any further, as they can be assumed

to be managed through industry standard embedded system

design and development procedures without much special

consideration for MPC.

Safety requirements of a system need careful analysis that

may go far beyond the functionality of the MPC itself. The

implications of safety requirements on an MPC design and

implementation will depend strongly on the control system

architecture, as illustrated for some possible cases in Fig. 2,

and the characteristics of the system under control and its

environment. Reliability refers to the continued correctness of

functionality. Some of the concepts involved are much the

same as mentioned in the context of safety above. However,

the requirements can in many cases be different as in some

systems safety and performance are treated separately during

design and development, while in other systems they are all

part of an integrated design and development process. Some

common safety and reliability requirements specific to MPC

can typically be characterized in terms of

• A description of acceptable MPC faults and errors that

can be handled by its inherent fault-tolerance and ro-

bustness [51], or by the basic control system and safety

system. For example MPC may be designed as a fail-

controlled system that can fail in specific failure modes,

[52]. If independent basic control or safety systems are

not available, one will expect that less faults and errors

within the MPC can be acceptable. Further discussion on

typical issues is given in section III-B.

• Requirements for internal fault detection, diagnosis, re-

configuration and accommodation within the MPC, and

accompanying inputs, diagnostic outputs and alarms. Fur-

ther discussion of relevant methods and tools are given

in section III-C.

• A characterization of acceptable mean time between

faults, fault probability, or similar reliability requirements

that can be used for design and analysis such as verifica-

tion, validation, testing and certification procedures, see

also section III-C.

The MPC objective and performance is generally specified in

terms of a cost function and a set of constraints. Typically,

there is an (explicit or implicit) priority hierarchy underlying

this specification as some of the objectives and constraints are

more important than other. The implementation of this hierar-

chy of objectives and constraints leads to selection of weights

and infeasibility handling mechanisms that usually solves a

sequence of optimization problems in order to not violate

high priority constraints unless strictly needed. Commonly,

the most highly prioritized constraints are characterized as

safety-constraints, while others are not considered to be safety-

critical. Hence, in a given situation, the MPC may predict

that certain safety-constraints are likely to be violated at some

point in the near future. While this is useful information

for alarms, plant re-configuration, shutdown and emergency

actions, one need to have in mind that the predictions are

subject to uncertainty due to modeling and measurement

errors. Although robust versions of MPC might build in

margins towards uncertainty in the optimization problem, this

generally comes at a price of conservativeness and higher

computational complexity. In many applications, requirements

to performance, availability and reliability means that unnec-

essary shutdown or alarms should be avoided. In this context,

safety, reliability, and availability may be conflicting objectives

since sometimes one may be improved only at the cost of

reducing one of the others.

B. Potential faults, errors and failures

We start by describing some typical faults and errors, and

then continue with some discussion on how these faults can

lead to MPC failure.

A known MPC design issue is whether to allow constraints

that might prevent a feasible solution from existing. Infeasi-

bility of the optimization problem typically leads to a failure

of the MPC, as the software will not be able to return a valid

6

or useful solution. In some applications, in particular with

short prediction horizons and open-loop unstable processes,

the use of terminal constraints may be used to ensure stability

properties of the closed loop control system, [2]. However,

infeasibility of the terminal constraint along the predicted state

trajectory does not necessarily mean that instability will result

as the terminal constraint formulation may be conservative,

the model is uncertain, or disturbances may be more favorable

than anticipated (one may be lucky!). Likewise, the violation

of some other state constraints along the predicted state

trajectory may also be acceptable (as a last resort) or may

actually not happen due to prediction errors.

One can therefore argue that in any case it makes sense to

formulate the optimization problem with slack variables on all

constraints (except perhaps input constraints that are physical

limitations) or use an explicit constraint priority hierarchy to

support relaxation of the least prioritized constraints when

necessary. Then one can guarantee that a feasible solution

will always exist. Both approaches increase the complexity

of the MPC optimization. Slack variables result in increased

dimension and range of numerical values of weights. With a

constraint priority hierarchy, there are additional optimization

problems that needs to be solved in order to determine which

constraints must be relaxed. One should have in mind that

the use of hard constraints only on input variables means that

it will be fairly straightforward to guarantee that a feasible

solution is found (also initially before any iterations are made),

even for highly non-convex problems. The reason is that the

input variables are usually directly related to the variables

being optimized by an MPC. Non-zero slack variables or

relaxed constraints are indicators or warnings about likely fu-

ture constraint violations, possible instability, or other adverse

conditions. Expected sources of constraint violations are large

disturbances or challenging references for the controller. There

are physical limitations in the process plant or disturbances

that makes constraint violation unavoidable in certain condi-

tions.

Assuming that the MPC problem is formulated such that

a feasible solution always exists, one still needs to worry

about the performance and optimality of the ”solution” re-

turned by the numerical optimization software. Failure to meet

optimality conditions may typically be caused by algorithmic

faults, software implementation errors, resource limitations

(no time to run the necessary number of iterations), lack of

convexity (in nonlinear MPC), numerical inaccuracies e.g. in

the computation of gradients, degeneracies in the problem

that are not well accounted for in the implementation, or

other design or implementation errors. The accumulation of

numerical round-off errors in iterative numerical algorithms

is usually counteracted with robust numerical methods using

double precision floating point numeric data representation.

In embedded systems based on very simple processors, even

robust numerical algorithms may have problems if fixed-point

(integer) numerical data representations are used in order to

reduce the computational cost compared to computationally

expensive single- or double-precision floating-point emulation

using software. Particular number and processing systems may

be designed in order to optimize the numerical performance,

e.g. [24].

For nonlinear MPC, the typical numerical solvers are not

able to distinguish a local optimum from a global optimum.

In some problems with non-convex objective or constraints,

local optimality may not be sufficient to achieve the required

performance.

Performance degradation must be expected under certain

fault conditions, as those discussed previously in this section.

How can this be detected automatically? What are the con-

sequences and severities of failures? One need to distinguish

between minor failures (that are typically not safety-critical)

and catastrophic failures having cost of consequences that may

be much larger than the benefits of the MPC.

In embedded MPC systems that are expected to operate

without interruption for extended periods of time, the issue of

”software aging” is relevant. It refers to progressively accrued

conditions resulting in performance degradation or failure.

Examples are memory bloating and leaking, unavailable re-

sources that were not properly released when they should,

data corruption/overwriting, storage space fragmentation, and

accumulated numerical round-off-errors. Common features

of several recent optimization algorithm implementations in-

tended for embedded systems are avoiding dynamic memory

allocation and careful protection of the memory space.

In addition to the above mentioned faults related to design,

implementation and operation of the system, one should also

be concerned about specification faults, commissioning faults,

incomplete analysis and design, misinterpretations, unwar-

ranted assumptions, documentation errors, inconsistencies, etc.

This is part of general engineering and control design, and not

specific to embedded MPC so we do not treat it further here.

C. System design and development

Best practice for development of dependable embedded

computing includes the following approaches, [15], that are

found to be effective in the context of MPC:

• Fault prevention. In the system design and development,

one can prevent faults by robust algorithm design that

uses recursive numerical methods that will not accumu-

late the effects of round-off errors and avoid potentially

illegal or sensitive numerical operations. A key success

factor in iterative numerical optimization is robust initial-

ization utilizing quality-assured measurements, results of

previous successful iterations or solutions, and application

knowledge to prevent faulty initialization. The choice of

software (SW) and hardware (HW) architecture should

be based on ultra-reliable industrial HW and SW envi-

ronments that provides reliable hardware under a suffi-

cient range of environmental conditions. The embedded

system SW environment should avoid dynamic memory

allocation, use strict typing, and memory protection.

• Fault tolerance. In the system design and implemen-

tation, a common and effective approach involves HW

and SW redundancy. Several industrial computer envi-

ronments has firmware support for automatic switchover

to a hot redundant processor in case of fault or failure.

SW redundancy may include multiple optimizations and

fallback solutions in case of SW failure.

For example, in [53] the fallback solution is a relatively

simple Hildreth’s numerical optimization algorithm that is

7

executed in parallel with a more high-performance solver.

In general, diversity (independent solutions in design

and/or implementation) may lead to increased fault toler-

ance as certain common mode failures can be avoided.

The use of post-optimal analysis, exception handling,

and multi-threaded programming may prevent faults to

lead to failures as the fault-free part of the system may

continue without being impacted. In MPC, monitoring

of constraints and their violation/margin is commonly

used in industrial implementation and model errors might

lead to unacceptable gaps that should be corrected for

by updating models through online estimation. Fault-

hardening of software implementation is studied in [52].

• Fault detection and identification. It is a great advantage

if internal MPC function faults be detected, identified

and signaled as diagnostic information to the rest of

the system (including operator, engineers, basic control,

safety system). Many numerical optimization solvers pro-

vide return codes and warnings that can be used for this

purpose, and additional specific mechanisms can also be

implemented [52].

• Fault removal. Various methods for software and system

testing and verification are effective, such as simulator-

based testing using dedicated fault-injection tools, [54],

[52]. This also includes in particular the use of Hardware-

in-the-loop (HIL) simulation-based testing. Hot (periodic)

reset may be effective to avoid the effect of “software

aging”.

• Fault prediction. MPC includes an inherent dynamic

mathematical model of the system, which means that

simulation is an effective tool in order to not only verify

and test the system, but also to predict which faults or

failure modes can be expected, and what are their conse-

quences for the system, [52]. While HIL-testing and fault-

injection tools [54] are useful also here, its effectiveness

is limited by the fact that the system operates in real time,

which means that HIL-testing would be slow compared

to software simulation on a faster computer system. The

faults are likely to be very rare events, so specially

tailored scenarios would be needed to complement Monte

Carlo simulations and other exhaustive techniques.

MPC requires a very complex software and development

processes, and error-free software may be an impossible goal,

although numerical methods based on fast gradient methods

(as discussed in Section II-C) may enable formal software

verification as it provides small footprint, simple code, theo-

retical convergence and error bounds. As in many other cases,

[55], one could also focus on ways to build MPC software

and systems that are robust and safe in the presence of typical

software errors. A control system will need to face uncertainty

in mathematical prediction models and physical equipment and

materials, so ”perfect software” is in any case not a sufficient

technical requirement for safety and reliability.

As a partial conclusion, we find that with a complex

numerical algorithm as the basis for the embedded MPC it is in

general difficult to assess, based on the optimization software

output if the computed control action is reliable (correct) and

safe, or not, and how well it will perform. The reasons for this

difficult assessment is prediction uncertainty (due to unknown

disturbances and modeling and measurement errors), difficulty

of interpreting slack variables and other auxiliary outputs

and diagnostic information from the optimization software,

possible existence of local minimums, as well as potential

software errors in the optimization software. This leads to

the critical question, how to detect faults in the MPC and

assess their potential for future failure of the control to meet

the control objectives and constraints? Some suggestions and

new results in this direction are provided in Section IV.

IV. PROPOSED ARCHITECTURE FOR DEPENDABLE

EMBEDDED MPC

As discussed in section III-C, there are several means

to ensure the dependability of embedded MPC. Different

techniques are likely to be favorable in different applications

and based on the dependability requirements. The proposed

MPC system architecture is therefore not intended to be a

recommended approach for every embedded MPC, but still

believed to be sufficiently flexible to be useful to a range of

applications and implementations.

(a) Resilient embedded MPC system architecture.

(b) Resilient embedded MPC system architecture with

independent safety system.

Fig. 3. Two versions of a proposed resilient embedded MPC system
architecture.

A. Functional redundancy

The basic idea is to build an architecture for dependable

embedded MPC on the principle of functional redundancy.

This is illustrated in Fig. 3, where multiple control algorithms

8

or implementations propose control alternatives that are evalu-

ated and compared by a separate algorithm called Performance

Monitor and Control Selection which eventually selects the

single control alternative that is expected to achieve the best

control performance (in terms of the MPC cost function and

constraints). The following observations and comments can be

made:

• Assuming that the Performance Monitor and Control

Selection algorithm is able to make a correct decision

(see section IV-B for further descriptions and discussion

on this important non-trivial issue), it is sufficient that

one of the control alternatives provides an acceptable

solution. This is in particular the role of the Backup

Controller illustrated in Fig. 3, and is similar to the

Simplex architecture [56], [57] which has both a safety

controller and a baseline controller that together serves

such a purpose.

• The Performance Monitor and Control Selection process

should not introduce any significant latency or delay in

the execution of the control action. This means that the

calculations should be fast and executed immediately

after the MPC calculations such that the control selection

can be made before a new cycle is scheduled.

• One can think of the Performance Monitor as mak-

ing post-optimal analysis. It can base its analysis on

solver return status that may typically indicate if local

optimality conditions are fulfilled or not, and if some

error conditions have occurred during optimization. In

addition, the Performance Monitor can make its own

independent assessment of the fulfillment of the MPC

performance and constraint satisfaction. As described in

section IV-B, the use of an independent faster-than-real-

time simulator could be a useful tool for this. This may

be particularly important for nonlinear/non-convex MPC

where fulfillment of local optimality conditions may not

be sufficient to achieve the desired performance, or the

solver return status cannot be fully trusted.

• The redundancy can be realized in different ways, e.g. use

time-shifted optimal solution from the previous solution

(as theoretically analyzed in e.g. [43]), use multiple opti-

mization solvers, [53], one solver with different settings

and options, multiple initializations or warm start pro-

cedures, use multiple MPC formulations (possibly with

relaxed constraints, simplified models, perturbed param-

eters in order to avoid degeneracies, etc.), or simpler

”backup controller” solutions such as PID or LQR. As

a minimum, two sufficiently independent control alterna-

tives are needed, although more diversity though multiple

MPC instances or algorithms may be considered favorable

at the cost of additional computational complexity.

• Some level of performance degradation (compared to an

optimal solution) should be considered acceptable within

the proposed system architecture. Upon non-acceptable

performance degradation (e.g. violation of certain con-

straints) of all available control alternatives, shutdown or

fail-to-safe functions might be executed.

• The proposed redundancy may be realized only in soft-

ware or in a combination of hardware and software.

This choice may depend on the system requirements,

reliability of the control hardware, and the ability of

the hardware to catch software faults and exceptions,

including real-time requirements. As mentioned above,

the correctness and reliability of the Performance Monitor

and Control Selection is essential for the dependability of

the redundant embedded MPC architecture.

• The redundant control alternatives can be evaluated us-

ing parallel processing, and can exploit multi-core or

multi-processor architectures, [53], [58], as well as cloud

computing techniques. The performance monitoring can

also be partly executed through parallel independent

evaluations, but the final comparison and control selection

may not be made until all control alternatives have been

evaluated. Hence, with parallel processing there will still

be a small coordination overhead.

• Switching between controllers is known to degrade per-

formance (chattering) and stability in some cases. How-

ever, since the switching criterion should be performance-

based (simulation over a sufficiently large horizon into

the future, always using the same performance criterion),

there seem to be no strong instability mechanisms inher-

ent in the proposed approach. However, further investi-

gation and theoretical research on this issue would be

needed in order to firmly establish some conclusions.

• Risk-based verification scope management as proposed in

[59] is applicable to analyze how verification resources

are most efficiently utilized in this approach. It requires

that the losses due to failure as well as effectiveness

of verification and testing can be estimated. It is quite

straightforward and intuitive to see that when the Backup

Controller is simple and provides performance not too

sub-optimal compared to the MPC, it may be favorable

to invest verification resources on the Backup Controller

and the Performance Monitor, and accept is reasonable

high fault rate of the MPC. On the other hand, when

the Backup Controller leads to significant losses or risks

compared with the MPC, it might be favorable with a

shift of verification effort to in the MPC module.

B. Simulator-based performance monitor

The task of the performance monitor is to predict which

of the alternative control trajectories will provide best perfor-

mance. While conventional control performance monitoring

techniques considers the statistics of recent historic data, or

the current state of the system, [56], [57], our need to avoid

the consequences of faults typically requires a prediction of

future performance. This is a more difficult task, that we will

based on a faster-than-realtime simulation of the alternative

control trajectories, although an analysis of recent historic data

may provide a useful supplement.

We note that the selection of simulation model and nu-

merical simulation accuracy are crucial, as MPC control

trajectories are optimized by solving an open loop optimal

control problem. Predicting the performance of the open-loop

optimal control by simulating its response with a different

model or disturbances would potentially strongly over-estimate

the deviation since the effect of feedback achieved by re-

optimizing the control trajectory at the next sample is not

accounted for. Unfortunately, performance prediction under

9

closed loop conditions with the actual MPC feedback control

would typically not be possible to implement in real time in

a resources-limited environment because a sequence of MPC

problems would need to be solved as part of this simulation.

Hence, in order to implement the performance monitor with a

faster-than-real-time simulation and avoid steady-state differ-

ences, one should take care to ensure that future disturbances

are set up in the same way in the simulator as in the MPC

predictions. This, on the other hand, might lead to deviations

being under-estimated since the effects of model uncertainty

and disturbances on the MPC are optimistic. When relevant,

there should be implemented mechanisms to monitor local vs.

global optima as well as to monitor fulfillment of constraints

in order to account for modeling/prediction errors.

A pseudo-code summary of a simulator-based performance

monitor and control selection is given in Algorithm 1.

while true do

1. Get the current state;

2. Get disturbance estimates;

3. Predict future disturbance;

4. Execute the MPC calculations;

5. Simulate the MPC control trajectories in open loop

on the prediction horizon;

6. Simulate the backup controller in closed loop on

the prediction horizon;

7. Evaluate all results with priorities: Constraint

violations, control performance (cost function), and

other diagnostic information (e.g. operating system,

hardware monitoring, fault detection and diagnostic

modules, optimizer status output, etc.) ;

8. Rank the acceptable solution;

9. Select the best solution;

10. Scheduled the best solution for use;

11. Issue alarms and other diagnosis;

12. Use best trajectory for warm start;

end
Algorithm 1: . Pseudo-code for simulator-based performance

monitor and control selection algorithm.

C. Simulation example

In order to illustrate the proposed Simulation-based Per-

formance Monitoring and Control Selection algorithm and its

benefits when used in the architecture in Figure 3 part (a), we

consider a simulation example. The MPC has the objective of

controlling the angle of attack and pitch angle using elevator

and flaperon inputs of an unstable aircraft. Thus, the system

has two inputs (u1 and u2) and two outputs (y1 and y2), with

constraints on all variables. The control problem formulation

and 4th order linearized state space model is, [60], and the

MPC cost function defined at time t0 is

J(t0) =
N

∑
i=0

w1(y1(ti+1)− r1)
2 +w2(y2(ti+1)− r2)

2

+p1∆u1(ti)
2 + p2∆u2(ti)

2 (1)

where N = 10 is the prediction horizon (corresponding to

0.5 seconds), r1 and r2 are time-varying reference values,

∆u(t) denotes change since previous sample, and cost function

weights p1 = p2 = 0.5,w1 = 8 and w2 = 20. In addition the

MPC takes into account constrains on the horizon in the

following form, for i = 0,1, ...N:

−25◦ ≤ u1(ti),u2(ti)≤ 25◦, −5◦ ≤ y1(ti),y2(ti)≤ 5◦

As the backup controller we use the linear controller from [61]

that considered the same example. In order to implement a

simulation-based performance monitor, we simulate the nomi-

nal system with the optimal future control trajectory provided

by the MPC and record its predicted performance through the

cost function (1), denoted JMPC(ti). Likewise, we simulate the

nominal system in closed loop with the backup controller and

record its predicted performance on the prediction horizon

through the cost function (1), denoted Jbackup(ti). The MPC

controller is selected for use if it fulfills the following criterion

JMPC(ti)< (1+ γ)Jbackup(ti) OR JMPC(ti)< Jmin

If not, the backup controller is selected. The tuning parameters

are γ > 0 and Jmin > 0, that in our simulations are chosen as

γ = 0.1 and Jmin = 20 as a robust trade-off to prevent undesired

switching due to effects of noise and disturbances.

The first failure mode we simulate is that the MPC output

freezes and stays constant for the period 2.5 ≤ t ≤ 4. Typical

faults leading to this failure mode are faults in the software

code, task or computer executing the MPC algorithm, but it

could also be due to I/O, interface or communication faults or

latencies in the embedded system. While in some cases there

would be other indicators or status information that would

give a clue about the fault, we consider in this example only

the simulation-based performance assessment criterion above.

The simulation results are shown in Figure 4, where we have

added pseudo-random white noise disturbances representing

turbulence and measurement noise. We observe that the frozen

MPC output is partially accepted during the period 2.5 ≤ t ≤

3.0 since the flight conditions are stable and constant control

input is most of the time sufficient for this short period of time

until the set-point changes at t = 3.0. At this point, the inferior

performance of the MPC is quickly detected and the control

selector switches to the backup controller. Upon recovery of

the output from the MPC at t = 4.0, the superior performance

of the MPC is detected and the control selector switches back

from the backup controller to the MPC. Additional simulations

reveal that due to the open loop unstable nature of the aircraft,

complete loss of stability of the aircraft would have occurred

after less than one second without switching to the backup

controller in this scenario.

The second failure mode we simulate is that the MPC output

is inaccurate for the period 2.5 ≤ t ≤ 4. More specifically, we

simulate this by adding normally distributed pseudo-random

numbers with standard deviation 2◦ to the input trajectories

computed by the MPC. Typical faults leading to this failure

modes are similar to the above case, but of intermittent and

less severe character. The simulation results are shown in

Figure 5. We observe the inferior performance of the MPC

is quickly detected and the control selector switches to the

backup controller immediately at t = 2.5. Upon recovery of

the output from the MPC at t = 4.0, the superior performance

of the MPC is detected and the control selector switches back

10

Fig. 4. Simulations with MPC freeze failure mode occuring during 2.5 ≤ t ≤ 4 sec.

to the MPC. Additional simulations show that in this case,

the MPC performance degradation is not severe enough to

cause instability of the aircraft if not switching to the backup

controller, but leads to unsteady behavior and generally poor

performance.

V. CONCLUSIONS

The technology of embedded MPC has emerged quickly

over the last decade, with open source software supporting

the implementation of online numerical optimization and

optimal data structures pre-computed by offline parametric

programming on highly resource-limited embedded hardware

and software architectures. In particular the use of fast gradient

methods for numerical optimization in linear MPC show good

promise for embedded systems due to their small footprint,

computational efficiency, theoretical convergence guarantees,

and simple code that may admit formal verification.

The need for verification of the embedded MPC may in

some applications be relaxed as safety may be accounted

for by building a resilient architecture around the MPC with

redundant functionality and automatic control performance

monitoring. Still, the effects of model uncertainty and un-

known disturbances on the control performance are fundamen-

tal limitations.

Some important future research challenges are related to

tighter performance bounds on numerical algorithms, allowing

the effect of limiting the number of iterations to be predicted

in an accurate non-conservative manner. For nonlinear MPC,

there are many additional challenges due to possible lack of

convexity and regularity of the mathematical programming

problem. Improved tool-chains with methods for automatic

code design, system integration, and verification of the result-

ing implementation would enable more widespread industrial

use of embedded MPC.

ACKNOWLEDGMENTS

This work is funded by the Research Council of Nor-

way, Statoil and DNV through the Center of Excellence of

Autonomous Marine Operations (AMOS) and Systems, by

the Research Council of Norway and Statoil through the

PETROMAKS project Enabling High-Performance Safety-

Critical Offshore and Subsea Automatic Control Systems

using Embedded Optimization (emOpt), and supported by the

European Commission through the Marie Curie ITN Training

in Embedded Model Predictive Control (TEMPO). Thanks to

Stian Ruud and Aleks Karlsen at DNV GL and Gisle Otto

Eikrem and Alexey Pavlov at Statoil for the contributions

through many interesting discussions.

BIOGRAPHY

11

Fig. 5. Simulations with MPC inaccurate output occuring during 2.5 ≤ t ≤ 4 sec.

Professor Tor A. Johansen (MSc,

PhD) worked at SINTEF as a re-

searcher before he was appointed As-

sociated Professor at the Norwegian

University of Science and Technology

in Trondheim in 1997 and Professor

in 2001. He has published several

hundred articles in the areas of con-

trol, estimation and optimization with

applications in the marine, automo-

tive, biomedical and process industries. In 2002 Johansen co-

founded the company Marine Cybernetics AS where he was

Vice President until 2008. Prof. Johansen received the 2006

Arch T. Colwell Merit Award of the SAE, and is currently

a principal researcher within the Center of Excellence on

Autonomous Marine Operations and Systems (AMOS) and

director of the Unmanned Aerial Vehicle Laboratory at NTNU.

REFERENCES

[1] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictivec
control,” Control Engineering Practice, vol. 11, pp. 733–764, 2003.

[2] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, pp. 789–814, 2000.

[3] J. B. Rawlings and R. Amrit, “Optimizing process economic perfor-
mance using model predictive control,” in Nonlinear Model Predictive
Control – Towards New Challenging Applications, ser. Lecture Notes

in Control and Information Sciences, L. Magni, D. M. Raimondo, and
F. Allgöwer, Eds. Springer, 2009, vol. 384.

[4] D. K. M. Kufoalor, S. Richter, L. Imsland, T. A. Johansen, M. Morari,
and G. O. Eikrem, “Embedded model predictive control on a plc using
a primal-dual first-order method for a subsea separation process,” in
Proc. Mediterranean Conf. Control and Automation, Palermo, 2014, p.
TuCT2.1.

[5] B. J. T. Binder, D. K. M. Kufoalor, A. Pavlov, and T. A. Johansen,
“Embedded model predictive control for an electric submersible pump
on a programmable logic controller,” in Proc. IEEE Multiconference on
Systems and Control, Nice, 2014, p. WeC01.2.

[6] O. Breyholtz, G. Nygaard, and M. Nikolaou, “Managed-pressure
drilling: Using model predictive control to improve pressure control
during dual-gradient drilling,” SPE Drilling and Completion, vol. 26,
pp. 182–197, 2011.

[7] L. van den Broeck, M. Diehl, and J. Swevers, “A model predic-
tive control approach for time optimal point-to-point motion control,”
Mechatronics, pp. 1203–1212, 2011.

[8] B. Acikmese, M. Aung, J. Casoliva, S. Mohan, A. Johnson, D. Scharf,
D. Masten, J. Scotkin, A. Wolf, and M. W. Regehr, “Flight testing
of trajectories computed by g-fold: Fuel optimal large divert guidance
algorithm for planetary landing,” in Proc. 23rd AAS/AIAA Spaceflight
Mechanics Meeting. Kauai, USA, 2013.

[9] T. I. Bø and T. A. Johansen, “Dynamic safety constraints by sce-
nario based economic model predictive control,” in Proc. IFAC World
Congress, Cape Town, South Africa, 2014, pp. 9412–9418.

[10] C. Chapman, M. Musolesi, W. Emmerich, and C. Mascolo, “Predictive
resource scheduling in computational grids,” in Proc. IEEE Int. Parallel
and Distributed Processing Symp., 2007.

[11] D. E. Quevedo, R. P. Aguilera, and T. Geyer, “Predictive control in
power electronics and drives: Basic concepts, theory, and methods,” in
Advanced and Intelligent Control in Power Electronics and Drives, ser.
Studies in Computational Intelligence, T. Orowska-Kowalska, F. Blaab-
jerg, and J. Rodriguez, Eds. Springer, 2014, vol. 531, pp. 181–226.

12

[12] C. R. Gutvik, T. A. Johansen, and A. O. Brubakk, “Optimal decompres-
sion of divers - procedures for constraining predicted bubble growth,”
IEEE Control Systems Magazine, vol. 31, pp. 19–28, 1 2011.

[13] P. Falcone, F. Borrelli, E. H. Tseng, and D. Hrovat, “On low complexity
predictive approaches to control of autonomous vehicles,” in Lecture
Notes in Control and Information Sciences - Automotive Model Predic-
tive Control, 2010, pp. 195–210.

[14] D. K. Kufoalor and T. A. Johansen, “Reconfigurable fault tolerant flight
control based on nonlinear model predictive control,” in Proc. American
Control Conference, Washington DC, 2013, pp. 5128–5133.

[15] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concpets
and taxonomy of dependable and secure computing,” IEEE Trans.
Dependable and Secure Computing, vol. 1, pp. 11–33, 2004.

[16] R. C. Shekhar and J. M. Maciejowski, “Robust predictive control with
feasible contingencies for fault tolerance,” in IFAC World Congress,
Milano, 2011, pp. 4666–4671.

[17] E. Camacho, T. Alamo, and D. de la Pena, “Fault-tolerant model
predictive control,” in Emerging Technologies and Factory Automation
(ETFA), 2010 IEEE Conference on, 2010, pp. 1–8.

[18] L. Lao, M. Ellis, and P. D. Christofides, “Proactive fault-tolerant model
predictive control,” AIChE J., vol. 59, pp. 2810–2820, 2013.

[19] N. G. Leveson, Engineering a Safer World. Systems Thinking Applied
to Safety, 1st ed. MIT Press, 2011.

[20] B. Huyck, H. J. Ferreau, M. Diehl, J. D. Brabanter, J. F. M. V. Impe,
B. D. Moor, and F. Logist, “Towards online model predictive control on a
programmable logic controller: Practical considerations,” Mathematical
Problems in Engineering, pp. 1–20, 2012.

[21] P. Zometa, M. Kogel, T. Faulwasser, and R. Findeisen, “Implementation
aspects of model predictive control for embedded systems,” in Proc.
American Control Conf., Montreal, 2012, pp. 263–275.

[22] M. He and K.-V. Ling, “Model predictive control on a chip,” in
Intenational Conference on Control and Automation. Budapest, 2005,
pp. 528–532.

[23] L. Bleris, J. Garcia, M. V. Kothare, and M. G. Arnold, “Towards
embedded model predictive control for system-on-chip applications,” J.
Process Control, vol. 16, pp. 255–264, 2006.

[24] P. Vouzis, L. Bleris, M. Arnold, and M. Kothare, “A system-on-a-chip
implementation of embedded real-time model predictive control,” IEEE
Trans. Control Systems Technology, vol. 17, pp. 1006–1017, 2009.

[25] K. Ling, B. Wu, and J. Maciejowski, “Embedded model predictive
control (MPC) using a FPGA,” in IFAC World Congress, Seoul, 2008.

[26] J. Jerez, K.-V. Ling, G. Constantinides, and E. Kerrigan, “Model
predictive control for deeply pipelined field-programmable gate array
implementation: algorithms and circuitry,” IET Control Theory and
Applications, vol. 6, pp. 1029–1041, 2012.

[27] A. G. Wills, G. Knagge, and B. Ninness, “Fast linear model predictive
control via custom integrated circuit architecture,” IEEE Transactions
on Control Systems Technology, vol. 20, pp. 59–71, 2012.

[28] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy
to overcome the limitations of explicit mpc,” International Journal of
Robust and Nonlinear Control, vol. 18, pp. 816–830, 2008.

[29] J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, pp. 1–27,
2012.

[30] A. Domahidi, A. Zgraggen, M. Zeilinger, M. Morari, and C. Jones,
“Efficient interior point methods for multistage problems arising in
receding horizon control,” in Proc. IEEE Conf. Decision and Control,
Maui, 2012, pp. 668–674.

[31] A. Shahzad and P. J. Goulart, “A new hot-start interior-point method
for model predictive control,” in Proceedings of the 18th IFAC World
Congress, Milano, 2011.

[32] G. Frison, H. H. B. Sørensen, B. Damman, and J. B. Jørgensen, “High-
performance small-scale solvers for linear model predictive control,”
in Proc. 13th European Control Conference (ECC), 2014, Strasbourg
(France), 2014, pp. 128–133.

[33] C. N. Jones, A. Domahidi, M. Morari, S. Richter, F. Ullmann, and M. N.
Zeilinger, “Fast predictive control: Real-time computation and certifi-
cation,” in IFAC Conference on Nonlinear Model Predictive Control,
Noordwijkerhout, the Netherlands, 2012, pp. 94–98.

[34] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection
algorithm for embedded linear model predictive control,” IEEE Trans-
actions on Automatic Control, vol. 59, pp. 18–33, 2014.

[35] I. Necoara and V. Nedelcu, “On linear convergence of a distributed dual
gradient algorithm for linearly constrained separable convex problems,”
University Politehnica Bucharest, Tech. Rep., October 2013.

[36] B. Houska, H. J. Ferreau, and M. Diehl, “An auto-generated real-
time iteration algorithm for nonlinear mpc in the microsecond range,”
Automatica, vol. 47, pp. 2279–2285, 2011.

[37] ——, “ACADO toolkit - an open-source framework for automatic
control and dynamic optimization,” Optimal Control Applications and
Methods, vol. 32, pp. 298–312, 2011.

[38] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings, “Suboptimal model
predictive control (feasibility implies stability),” IEEE Trans. Automatic
Control, vol. 44, pp. 648–654, 1999.

[39] G. Valencia-Palomo and J. A. Rossiter, “Efficient suboptimal parametric
solutions to predictive control for plc applications,” Control Engineering
Practice, vol. 19, pp. 732–743, 2011.

[40] S. Richter, C. N. Jones, and M. Morari, “Computational complexity
certification for real-time mpc with input constraints based on the fast
gradient method,” IEEE Trans Automatic Control, vol. 57, pp. 1391–
1403, 2012.

[41] ——, “Certification aspects of the fast gradient method for solving
the dual of parametric convex programs,” Mathematical Methods of
Operations Research, vol. 77, pp. 305–321, 2013.

[42] A. Bemporad and P. Patrinos, “Simple and certifiable quadratic program-
ming algorithms for embedded linear model predictive control,” in 4th
IFAC Conf. Nonlinear Model Predictive Control, 2012, pp. 14–20.

[43] J. B. Rawlings, G. Pannocchia, S. J. Wright, and C. N. Bates, “On the
inherent robustness of suboptimal model predictive control,” in SIAM
Conference on Control and its Applications, San Diego, 2013.

[44] G. Frison, D. K. M. Kufualor, L. Imsland, and J. B. Jørgensen,
“Efficient implementation of solvers for linear model predictive control
on embedded devices,” in Proc. IEEE Multiconference on Systems and
Control, Nice, 2014.

[45] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
pp. 3–20, 2002.

[46] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in Proc. European Control Conference, Zürich, Switzer-
land, 2013, pp. 502–510.

[47] A. Grancharova and T. A. Johansen, Explicit Nonlinear Model Predictive
Control. Springer, Lecture Notes in Control and Information Sciences,
2012, vol. 429.

[48] T. Poggi, F. Comaschi, and M. Storace, “Digital circuit realization
of piecewise affine functions with non-uniform resolution: theory and
fpga implementation,” IEEE Transactions on Circuits and Systems-II:
Transaction Briefs, vol. 57, pp. 131–135, 2010.

[49] F. Bayat, T. A. Johansen, and A. A. Jalali, “Using hash tables to
manage time-storage complexity in point location problem: Application
to explicit mpc,” Automatica, vol. 47, pp. 571–577, 2011.

[50] ——, “Flexible piecewise function evaluation methods based on trun-
cated binary search trees and lattice representation in explicit mpc,”
IEEE Trans. Control Systems Technology, vol. 20, pp. 632 – 640, 2012.

[51] J. M. Maciejowski and C. N. Jones, “Mpc fault-tolerant flight control
case study: Flight 1862,” in Proc. IFAC Safeprocess Conference, 2003.

[52] P. Gawkowski, M. Lawrynczuk, P. Marusak, J. Sosnowski, and P. Tatjew-
ski, “Fail-bounded implementations of the numerical model predictive
control algorithms,” Control and Cybernetics, vol. 39, 2010.

[53] K. C. Ng, L. Wang, and I. D. Peake, “Safety-critical multi-core soft-
ware architecture for model predictive control,” in Australian Control
Conference, 2011, pp. 434–439.

[54] P. Gawkowski, K. Grochowski, M. Lawrynczuk, P. Marusak, J. Sos-
nowski, and P. Tatjewski, “Testing fault robustness of model predictive
control algorithms,” in Architecting Critical Systems, ser. Lecture Notes
in Computer Science, H. Giese, Ed. Springer Berlin Heidelberg, 2010,
vol. 6150, pp. 109–124.

[55] N. G. Leveson, Safeware. System safety and computers, 1st ed.
Addison-Wesley, 1995.

[56] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “Dynamic control system
upgrade using the simplex architecture,” Control Systems, IEEE, vol. 18,
no. 4, pp. 72–80, Aug 1998.

[57] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and
L. Sha, “The system-level simplex architecture for improved real-time
embedded system safety,” in Proc. IEEE Real-time and embedded
technology and applications symposium, 2009.

[58] R. Gu, S. S. Bhattacharyya, and W. S. Levine, “Methods for efficient
implementation of model predictive control on multiprocessor systems,”
in Proc. IEEE Conf. Control Applications (CCA), 2010, pp. 1357–1362.

[59] S. Ruud and I. B. Utne, “Verification and examination management by
marginal verification risk,” in Submitted for publication, 2014.

[60] P. Kapasouris, M. Athans, and G. Stein, “Design of feedback control
systems for unstable plants with saturating actuators,” in Proc. IFAC
Symp. on Nonlinear Control System Design, 1990, pp. 302–307.

[61] A. Bemporad, A. Casavola, and E. Mosca, “Nonlinear control of
constrained linear systems via predictive reference management,” IEEE
Trans. Automatic Control, vol. 42, pp. 340–349, 1997.

