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A very important problem in numerical optimization is to find a way
to update a sparse Hessian approximation so that it will be positive
definite under reasonable circumstances. This problem has motivated
research, which is yet to show much progress, toward a "sparse BFGS
method." In this paper, we suggest a different approach to the problem
based on using a sparse Broyden, or Schubert, update directly on the-
Cholesky factor of the current Hessian approximation to define the next
Hessian approximation implicitly in terms of its Cholesky factorization.
This approach has the added advantage of being able to cheaply find the
Newton step, since no factorization step is required. The difficulty
with our approach is in finding a satisfactory secant or quasi-Newton
condition to use in the update.
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l. Introduction

Let f:R"+R, and consider the problem of finding a local minimizer

of £, Often, a solution to this problem can be obtained using a quasi-

Newton method which is basically an iterative procedure of the form

-1

Xk+l:xk'Bka(xk) k=0;l,2|oco
where Vf(xk) is the gradient of £ at X, and Bk is some approximatiom to
the Hessian of f at X, . The sequence of matrices {Bk} is often gen-

erated by the least-change secant update (l.c.s.u.) approach, i.e. im

going from B, to B » we want to change B

k k+1 as little as possible 1imn

k
some sense while preserving its structure, e.g. symmetry, sparsity,

positive detiniteness, and forcing Bk+l to satisfy the secant equation

Br1% Tk
with Sp T Xy T Xpe yk=ka+l-ka . For further details om the l.c.s.u.
idea the reader is referred to Dennis and Schnabel (1979).

For small dense problems the BFGS update developed independently by

Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970),

has been found to be the best among the class of l.c.s.u. that preserve
symmetry and positive definitemess. BHowever, for larger problems with
sparse Hessians, the situation is less clear. Recently, a considerable

amount of work has gone into extending the known dense updates to



preserve sparsity using the least-change secant update framework (Marwil
1978; Toint 1977,1978,1979,1981; Shanno 1981; Dennis and Schnabel 1979).
The resulting updates preserve symmetry, sparsity, and satisfy the
secant equatiop. However, they do not necessarily maintain positive
definiteness, and they exhibit rather unsatisfactory performance in
practice. An interesting different approach is developed in Griewank
and Toint (1982a,b,c, 1983). Thus, a major problem in this area is how
to generate sparse symmetric positive-definite secant updates that per-

form well in practice.

In this report, we will point out an approach to derive a family of
sparse symmetric positive-definite secant updates. The motivation for
this work is based on the following derivation of the BFGS update by
Dennis and Schnabel (1981):

Assuming BC==LCL§ is the current symmetric positive-definmite approxi-

mation to the Bessian of £, obtain B+.=J+JE as follows:

(1) For arbitrary veR", solve for
J, = argmin jIJ-LCllF s.t., Jv=y.
(2) Solve for v so that JEs==v.

The solution J_ is the Broyden update (Broyden 1965) of L. sending

T
vl

Lzs to y. Dennis and Schmabel (1981) prove that J+JI is exactly
IL s
c

JT. we can get the Cholesky

-1 1% -
the BFQS update of BC-LCLC. From B+--J+ +

factors of B_ in O(nz) operations by forming the LQ factorizatiom of J_

without ever forming B (Goldfarb 1976), since



T T.T_ . .T
B+"J+J+"L+Q+Q+L+"L+L+'

Note that what we really want all along is the Cholesky factoriza-
tion of B+, not B+ itself. Thus it seems reasonable to update LC by a
sparse Broyden .or Schubert formula (Broyden 1971, Dennis and Schmabel
1979, Marwil 1979, Schubert 1970) to get L, directly using the l.c.s.u.
idea as in Dennis and Marwil (1982). This way we can ensure that the
resulting B+.=L+LE is positive definite and symmetric, and wé‘can also
preserve the sparsity structure of Lc’ if there is any. In Section 2, we
will consider some instances of this updating scheme. Sectiom 3 outlines
our test algorithm for the minimization problem together with the new

update. In Section 4, we will discuss some of the computational results.

Finally, Section 5 is a brief look at some possible future work.

2. Ihe Update Method

nxn n
. - R ) L t L
Let Q(zl. zz) denote { MeR Mz, =z, for z;s z,¢€ } e
denote the space of lower triangular matrices with some fixed sparsity
pattern chosen from the sparsity of the Hessian as in George and Liu

(1981).

An interesting approach to the problem of finding a sparse sym-

metric positive~definite update would be to solve the following problem:

~

Problem 1. Given yss € R" such that yTs >0, find

L+=argminlIL-LCH s.t. LeL and LLTeQ(y.s).

F
At the moment, a computationmally viable solutionm to the problem is not
obvious (see Greenstadt (1983). Hence we seek a related but Measier"

problem by sparsifying the BFGS derivation of Section 1. The following

notation will be very useful:



P,(*) represents the orthogonal projection of (*) onto X im the

Frobenius norm;
. . .th .
zj denotes the vector z with the sparsity of the j=— row of Lc H

(zj)i is the itB component o f zg 3

zd is the vector z with the sparsity of the jEE column o £ LC;

+ . .
(szJ) is the pseudo-inverse of szJ;

and

. .th .
ej 1s the 3J— unit vector.

If we try to modify the BFGS derivation im the most straightforward

way, then we run into apparent difficulty as follows:

(1) For arbitrary veR",

L+=argm1nllL-Lc| IF s.te LeLnQ(y,v)

is solved by the appropriate sparse Broyden update

n
_ T+ T, T
L+-Lc4-izl(vivi) ei(y ch)eivi.

(if (1) has a solution -- more on this later.)

(2) Solve for v such that v'=LEs. But this yields the rather formid-

able system

n
+ > (Q?v.)+e?(y-L v)s.v.
4oy B 10 cTi'd

T
v=L"s
c
to solve for v.

Instead of trying to solve for v, we will turn the problem around

. T . ..
and try to 1incorporate Vv =L+s into the variational problem whose



solution defines L+. This leads to the following problem:

Problem 2. Given vZ0, §¥» s € R" such that vTv=yTs. find

L, = argmin| lL—Lcl lF s.t. LeQ(y,v)nkn Q(v.s)T.

where Q(v,s)T is the set of transposes of matrices im Q(v.s).

The remainder of this section is devoted to the presentation of
results on the solution to Problem 2. Imn particular, vTv==yTé is shown
to be neccessary for feasibility, although it is quite unlikely to be
sufficient. 1In the event that Problem 2 is not feasible, i.e.

Q(y.v)tWLf\Q(v,s)T=¢, we provide a generalized inverse type solution.

Theorem 2.1. If sz(x) is symmetric, positive definite and has
the same sparsity pattern for every x€[xc.x+]; and if every symmetric
positive-definite matrix with that same sparsity pattern has a Cholesky
factor in L , then there exists some veR® such that Problem 2 has a

. n T T _.T .
solution. If veR" and Q(y,v)nQ(v,s) #@#, then y s=v'vz0, with equal-
ity only for y=0.

Proof: The proof is accomplished by drawing slightly different conclu-

sions from standard arguments. We write

y = [§V2f(xc-+ts)dt]s = Bs,

where B is 2 symmetric positive-definite matrix with the sparsity of the
. . ) T
BHessian. Thus by hypothesis, for some LekL , B==LLT. Set v=L"s, and

note that LeQ(y,v) with v=0 only if y=0 and

yls = (1le)s = als)Tats) = viv 2 0.
Thus L is a feasible point for the Problem 2 corresponding to this v,

and by standard arguments, feasibility is enough to ensure a solutiom.



If the reader is unfamiliar with such existence results, then we give

the explicit solution in the next theorem.

. ‘s T T
Now to see the necessity of the condition that v'v=y's20 for

feasibility, let JeQ(y.v)nQ(v,s)T . Then,

0s vTv = (J—ly)T(JTs) = yTs.

If VTV'=0. thenv =0, so y =Jv=0=J"v=s,

Short of the impractical comstruction of the proof, we don't know
how to find a v for which Problem 2 is feasible. Our next theorem, a
corollary of results in Dennis and Schnabel (1979), gives a. formula for
L eL which solves Problem 2 whenever it has a solution and when it

doesn't have a real solution, the formula gives a generalized solution.

Iheorem 2.2. Let PeR™™ ™ be the matrix whose jth column is given by

T .
vV, 3 - (v.).v.s . .
pe, = —le, - 3 (N A (2.1)
1 v'v i=1 vV

and let w be any solution to the least squares problem

min | [Pw - (y-PA(Lc)v)Ilg.

n
wek

where

Ti+ T T i T
(s7s) ei(v Lcs)s e,

1

nvg

PA(LC) =Lc * i

Then in the Frobenius norm,

n v, . . v, . .

- i 1 T i+, T, T y__1 T 1,2 T
L+-Lc4-.> {—E-w +(s7s™) [ei(v Lcs) T s W Is }ei , (2.2)
1=l v'wv v'v



is an element of L closest to Q(v,s)T. Among these closest points, it
is also a closest point to Q(y,v). Among all such points, it is the

unique closest point to Lc' Thus, if Problem 2 is feasible, then L is

its unique solution,

Proof: It will be convenient to establish some further notation. We

will always use closest or nearest to mean in the Frobenius norm. Let
_ T T T . .
A=H(L",Q(v,s)) = {LeL:L"~ is a nearest point to Q(v,s) }.

It is shown in Dennis and Schmabel (1979) that for Al,Az atfine,
H(Al.Az) is affine and it is AlnAz. if the intersection is nonempty.

. . . . T
Thus, A is affine and its parallel subspace is S==[LTnQ(0.s)] .

From Theorem 4.5 in Dennis and Schnabel (1979),

T T n - T .
+ 1. I.T
P (D srr (e > (sTsM)Ter(-p (B-)sde, (sT) 10,
S' T T T . 1 " T 1
vV L™ vywv 1=1 L™ vwv
va ooy i, T
wherg P T(—ETO = > —E—ei(w )", Bence,

L™ v'v i=l v'v

T n v - n . n v -
+ k T
P (T = > —i-wle? - > (sTsl) e?[ > X o (sTw Ylste: .
] . T i . it, .. T 7k i
S vVwv izl v'v 1=1 k=lv'v
n v . n . V. . .
= > -—l-wle? - > (s s1)+ ——L-(sTwl)sle?.
. T 1 T 1
izl v'v izl vy
Thus,
B r i+ T, T AT
P (L)=L + > (s's”) e.(v-Ls)s"e.,s
A ¢ c i=1 1 c 1

Also from Theorem 3.2 in Dennis and Schmabel (1979), we know that

T
_ wv
L, = PA(LC)-+PS(—T—). (2.3)
vy

where w is any solution to the least squares problem
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min | |Pw - (y- PA(LC)V)llg'

n
wekR

with the jEE column of P given by

‘ = 1
Pej = P_( T v

fOrj = 1,2,...,:1.

(2.4)

It is straightforward to show this to be (2.1), but we will give

the proof since some facts about projectors are used.

First note that

once we have done so, the proof of the theorem is complete because (2.2)

can be obtained by substituting the expressions for the projections into

(2.3).

ve? v.e .
Now P _(—) = E_dl_l
L™ vy vV

Hence,

e .v E'fl
=[p (P . )]
v'v ST LT vTv

T

H
A
t

T
ve . n

LT vTv i=1

T
v.e',

T

vv i=l

n 'T.
[—-1- > (s7s™)

+

P (—L)+ > (sTsi)+e§(-P

[

T

ve .
T(_Tl)s)ei(si)T]T

LT vy

T T
e;v.e.s
T Je (s
v'v

Consequently by (2.4), the j th column of P is

n
Pe . = [—=1] ej - > (s

because vj is zero in every coordinate past the jth.

the proof.

L

This completes



If Problem 2 is not feasible, then Theorem 2.2 gave a solution to

the generalized problem

L, =argmin|[L-L | lp sote Le u(u(L.Q(v.s)T).Q(y.v)).

We could have chosen to solve another generalization of Problem 2:

T
L, =argmin][L-L |l s.t. LeM(M(L,Q(y,v))»Q(vss) 7).
The solution to this problem can be obtained using the same principles

as in the proof of Theorem 2.2.

] T .
Hence, if we have some reasonable choice rule for v, L+L+ with L+

given by (2.2) would give a sparse symmetric positive-definite update of

B =L LT .
C- cC C
3. Algorithm

In this section, we will outline our test algorithm for the minimi-

zation problem using our updating procedure.

» L. For k = 091)2.ooo

leen xo 0

(1) Compute f(xk).Vf(xk) and test for convergence.

(2) Calculate Py S° that L LT

lPy = TV E(R ).

(3) Calculate )k satisfying

-4 T
f(xk+-)kpk)$ f(xk)i-lo )kakpk

(4) Set x =x, + )\

k+1 " X TAKPgr 57X

k+l-xkp y=ka+1-kao
(5) Use some choice rule to pick a v. (More on this later.)

(6) Form the right-hand side of the least squares problem:
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T i+ T T i
(s7s7) e.(v Lks)vis .

LRI S ;

1

n v e

(7) Accumulate P column by column using (2.1).

(8) Solve the least squares problem for w:

Pu=y- PA(Lk)v

(9) Update L, to get L using (2.2).

k k+1
Some remarks should be made about steps (5) and (8).

Remark 1. For a given choice of v the updafe L, only solves Problem 2

provided that A n Q(y,v) is nonempty, i.e., Problem 2 is feasible.

Moreover, since we trust the l.c.s.u. idea, we certainly hope that the

vector v that we pick will give us an L_ which is not too far from Lc .

For example, if we ignore sparsity in the lower triangular factors, then

we might want L, to satisfy

L |1 (3.1)

ML, =Lollp < Hllppeg = Lcllpe

where LBFGS is the lower triangﬁlar matrix obtained from the BFGS Chole-

sky update procedure. There is no obvious way to choose v which satis-

P

T .
fies both these conditioms. Since v=lJ%JiLzs’gives the BFGS update
IL s | '
c

when used with the BFGS procedure, it would seemlreasonable to test our
updating procedure using this v. However, we do take sparsity into
account, at least to require L _ to be lower triangular, so this choice
for v cannot guarantee that AnQ(y,v) be nonempty, and in fact, it may

not give an L_ that satisfies (3.1).

If L is the subspace of lower triangular matrices without any

additional sparsity, them the other choice of v for which both
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T .
AnQ(y,v) = ¢ and (3.1) are satisfied is Vv =LBFGSS' The truth of this
statement 1s obvious since LBFGS itself belongs to AnQ(y,v). We want

to point out that this choice for v is not a practical one since it

. requires that we know L However, since we are trying to test the

BFGS®
usefulness of applying l.c.s.u. to the factor, this v is interesting for
our purposes.

Remzrk 2. The solution of the least squares problem in step 8 is impor-
tant in our procedure. In the testing, we used the SVD to sélve this
problem and found that the matrix P is always ill-conditioned with con-
dition number ranging between 109 ~and 1018. In all cases tested, P
usually had n-1 "nice™ singular values and one relatively bad one. We

used the following criteria to determine the numerical rank of P. Let

S, denote the iEh singular value of P, then

c&_=0 if G, < Qmacheps ||P||°o

where macheps ~ 10“18 is the machine epsilon of the arithmetic used.

Though this seems reasonable, we have observed that in some cases our

minimization algorithm performs better without it. This probably indi-

cates that the size of the regidual is more important than the well-

posedness of the least-squares problem. When some &, is set to 0, (3.1)

is sometimes not satisfied even though we know that theoretically for
T

vV:LBFGSs this could never happen.

4. Discussion of Computational Results

The following updates were tested in the algorithm of Section 3:

(4) L, given by the BFGS Cholesky update,

T

(B) L, given by (2.2) with v=Llircs®



(c) L, given by (2.2) with v=-x-y—s-LTs
lLCSI

In general, (C) gave very poor performance for the reasons that we
have already discussed; so we will shift our attemtion to (A) and (B).
The test problems used were the 18 problems documented in More'! et al
(1981). Moreover, to test for robustness of the algorithms, we followed
the idea of More'! et al in starting at x0 =xs. 10xs. and 100xs respec-
tively, where X is the standard start for the test problem. This gave

us a total of 54 test cases.

411 the runs were made in 18-digit arithmetic without any rescaling

of the problems and with a default maximum stepsize allowed in the line

}. Also, convergence was assumed

search STEPMX = max{lO3 » 103llx0|12
when either
ng-—xg-ll '
i i -5

max { } £ STPTOL = 10 7,

i max{lxkl,l}
i
or

lVf(xk)il max{lx‘i‘l,l} 5
} £ GRDTOL = 10 ~.

max { =
i max{] £(x )|, 1}

In a lot of cases, (B) is certainly competitive with (4). However
the following observations were made in the cases where (B) performs
poorly:

(1) Drastic changes in the Newton step occur frequently.

(2) (B) is nmot robust in the semse that it performs very poorly far

away from the solution, e.g. when %, =100xs.
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(3) The steps generated by (B) usually do not lead to a decrease in
function value as large as does the BFGS update. Even if we add a

. . . T T )
B-condition to our line search, 1.e., ka+1pk 2 ﬁkapk. the samé

behavior persists no matter how accurate the line search is chosen

to be, e.g. for §=0.01.

(4) 1f we switch from (B) to (A) using whatever information the algo-
rithm has accumulated up to that point, then the BFGS updAte always
seems to be able to converge to the solution quite rapidly from
what is supposed to be "bad"™ informatiom.

2

(5) Let DIFF = {|L e We observe that in the

2
BFGs'Lc“F' HL, =Ll

case where (B) is doing poorly, DIFF is always relatively large;
when (B) performs better or as well as the BFGS uppdate, DIFF is
always relatively small. Hence (B) is only good when L_ is near
LBFGS' Does this say that doing a least change secant update of Lc

~ is not sensible? We domn't really kmow since it only tells us that

our procedure does not give a reasonable update for the choice of

]

V'=L§chs. The following is a possible explanation of this

 behavior. Since we are at Lc' we need to compute LBFGS to get
_.T . . :

v-—LBFGSs. Hence in the case where LBFGS is far away from Lc’ the

information that we use to obtain L+ will not reflect the current
information contained in Lc' It would seem more reasonable to have
a choice rule that used information at the current step to deter-

mine a v that satisfies both (3.1) and AnQ(y,v)Z# .

Although this discussion is based on extensive computational
results, we feel that there is little point to including actual numbers

of function and gradient evaluations here. Our experiments are
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continuing and it is our plan to publish all test results together, if

at all.

5. Conclusions

We would ¥eally like to be able to solve Problem 1, but we con-
sidered the apparently more tractable Problem 2, and we have developed
‘what should be a reasonable way to update a sparse Cholesky factoriza-
ticn by updating LC to get L, directly. Unfortunately, the whole pro=
cedure is based on the choice of the vector v. It is reasonable to comn-
jecture that if our idea has merit, then the obstacle is the determina-
tion of v as mentioned at the end of the last section. This is somewhat
similar to the problem of making a useful partially separable decomposi-
tion in the Griewank-Toint approach (Griewank and Toint 1983). We also
would need to find a cheap way to solve the least squares problem in
Step 8 of the algorithm to make our aigorithm useful. There are other
ways to simplify Problem 1 that m;y turn out to be more useful; for
example, we might linearize the constraint L+Lfs==y in L.« (See Qreen-

Stadt) 19830)
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