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Reports of columnar organization of the macaque inferotemporal cortex (Tanaka, 1992, 1993a) indi­
cate that ensembles of cells responding to particular objects may be both sufficiently extensive and 
properly localized to allow their detection and discrimination by means of functional magnetic reso­
nance imaging (fMRI). A recently developed theory of object representation by ensembles of coarsely 
tuned units (Edelman, 1998; Edelman & Duvdevani-Bar, 1997b) and its implementation as a computer 
model of recognition and categorization (Cutzu & Edelman, 1998; Edelman & Duvdevani-Bar, 1997a) 
provide a computational framework in which such findings can be interpreted in a straightforward 
fashion. Taken together, these developments in the study of object representation and recognition sug­
gest that direct visualization of the internal representations may be easier than was previously thought. 
In this paper, we show how fMRI techniques can be used to investigate the internal representation of 
objects in the human visual cortex. Our initial results reveal that the activation of most voxels in ob­
ject-related areas remains unaffected by a coarse scrambling of the natural images used as stimuli and 
that a map of the representation space of object categories in individual subjects can be derived from 
the distributed pattern of voxel activation in those areas. 

Recognition of visual objects over successive encoun­

ters requires that the visual system maintain representa­

tions of objects in long-term memory. The main compu­
tational challenge posed by this task is the variability in 

the appearance of objects. A given object will look dif­

ferent, depending on viewing conditions such as the illu­

mination and the orientation of the object with respect to 

the observer. Moreover, different exemplars of the same 

visual category may look different, yet must be treated sim­
ilarly, even when encountered for the first time. Any vi­

sual system, natural or artificial, must strive to compen­

sate for the variability due to viewing conditions before 

attempting to recognize an object-that is, to compare it 

to an internal representation stored in memory. Further­

more, the format of the memory trace must be such that 
the variability among exemplar objects is represented ex­

plicitly, to make possible not only coarse categorization 

but also fine distinction among stimuli. Several theories 

of object recognition and representation that attempt to 

address these issues have been proposed in the past (see, 
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e.g., Biederman, 1987; Ullman, 1996; see Edelman, 1997, 

for a review). Both their compatibility with general prin­

ciples of biological information processing and the pos­

sibility of their mapping onto the experimentally deter­

mined mechanisms of primate vision remain debatable 
(Logothetis & Scheinberg, 1996; Tanaka, 1996). 

The advent of new imaging techniques, such as func­

tional magnetic resonance imaging (fMRI) and PET, 

made it possible to study noninvasively the activation 
evoked by various stimuli in the human brain, in an at­

tempt to characterize directly the nature of object repre­
sentation in the human visual system. For such an at­

tempt to succeed, the experimenter must have a notion of 

the mechanism whereby the response to a stimulus is gen­

erated, so that the stimuli can be manipulated in an appro­
priate manner. Most of the current theories of recognition, 

however, are not specific enough in their predictions of 
the response properties of large assemblies of cells (the 

only quantity that can be measured directly by imaging 

techniques). I Thus, as frequently happens when the avail­

ability of an experimental tool precedes the development 

of a detailed model of the process that is subjected to 

scrutiny (Barlow, 1990), the results of the experiments 

seem to be conflicting and difficult to interpret. 
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A solid basis for the interpretation of the fMRI data 

on object recognition in humans is provided by the iden­

tification of a region in the lateral occipital (LO) cortex 

that is activated by images of objects much more strongly 

than by random dot patterns, repetitive textures, or de­

graded images (Malach et aI., 1995). The same region 

appears to respond to line drawings of unfamiliar objects 

more than to visual noise or to highly scrambled line 

drawings (Kanwisher, Woods, Iacoboni, & Mazziota, 

1997). Furthermore, it also appears (Grill-Spector et aI., 

1998) that the LO region is essentially nonretinotopic in 

that it integrates information from both the ipsilateral 

and the contralateral visual fields, indicating that it may 

be the human homologue of the monkey inferotemporal 

(IT) cortex (Tanaka, 1997). 

Whereas the existence and the location of the object­

related areas in humans seem to be a matter of consensus, 

their presumed principles of operation are controversial. 

One suggestion stemming from many of the recent stud­

ies is that the object areas are subdivided into regions 
that respond preferentially to certain categories of ob­

jects. Thus, significant efforts are currently directed to­

ward the establishment of a topographic characterization 

of the object areas, in which processing of specific cate­

gories, such as faces (Allison, Ginter, McCarthy, Nobre, 
& Puce, 1994; Allison, McCarthy, Nobre, Puce, & Belger, 

1994; Haxby et aI., 1994; Kanwisher, Chun, McDermott, 

& Ledden, 1996; Kanwisher, McDermott, & Chun, 

1997), certain object categories (Ishai, Ungerlieder, 
Martin, Maisog, & Haxby, 1997; Martin, Wiggs, Unger­

leider, & Haxby, 1996), or letter strings (Puce, Allison, 

Asgari, Gore, & McCarthy, 1996); would be associated 

with specific regions of the cortex. The experimental ev­

idence for such parcellation remains, however, elusive; 

even when a differential response across categories is 

found, areas that are shown to be selectively responsive 

to a certain object category also exhibit a nonnegligible 
response to stimuli from other object categories (as com­

pared with a low baseline response to texture patterns). 

Category-based parcellation is also not favored by the 

neuropsychological data summarized in Farah (1990): 
"superselective category-specific deficits ... appear to 

result from impairments outside the the visual recognition 

system, as they are confined to lexical/semantic opera­
tions" (p. 85). Even in face recognition, a function most 

frequently postulated to be narrowly localized in the brain, 
the deficits are not category specific: "in prosopagnosia 

the impairment encompasses some subset of faces, ani­

mals, buildings, clothing, and makes of automobile" (Fa­
rah, 1990, p. 123). 

A Framework for the Understanding offMRI 

Results Concerning Object Representation 
An intriguing alternative to the hypothesis of anatom­

icallocalization by object category emerges when one ex­

amines the same imaging data reported in the above 
studies from a different perspective. In a typical experi­

ment, dozens of voxels are found to respond to objects 

but not to simpler control stimuli. Adopting the notion of 

coarse coding (Hinton, 1984), one may hypothesize that 

it is the relative activation levels of many voxels at a spe­

cific time that signal the category to which the stimulus 

belongs and, possibly, its identity. 

It is important to realize that coarse coding per se must 

remain a mere hypothesis, unless it is substantiated on 

two levels: computational and implementational. On the 

computational level, a theory is needed that would show 

how, precisely, a distributed coarse code could work. Spe­

cifically, such a theory must address the two issues hav­

ing to do with the variability of object appearance men­

tioned earlier-namely, the effects of viewing conditions 

and of the within-category shape variation. On the im­

plementational level, evidence is needed to the effect 

that the cellular mechanisms identified by neurobiolog­

ical means (e.g., electrophysiological and fMRI studies) 
can support the functionality required by the theory. 

Coarse coding for object representation: A compu­
tational framework. The variability of object appear­

ance with Viewing conditions can be countered, to a 

large extent,2 by storing a number of views of the object 

and attempting to recognize another (potentially novel) 

view as an interpolation of the stored ones (Poggio & 

Edelman, 1990). This approach provides the necessary 

computational basis for a distributed code for visual ob­
jects, whose relevance to biological vision is indicated 

by psychophysical studies (Biilthoff, Edelman, & Tarr, 

1995; Logothetis, Pauls, Biilthoff, & Poggio, 1994) and 

by electrophysiological evidence (Logothetis, Pauls, & 

Poggio, 1995; Miller, Li, & Desimone, 1993). It does not, 

however, address the problem of dealing with novel shapes, 

for which no stored views are available. An extension of 
the view interpolation idea that can support the represen­

tation and processing (e.g., categorization) of novel ob­

jects was proposed in Edelman (1995). Whereas, in the 

view interpolation approach, a novel view is processed 

on the basis of its similarity to several stored views, the 
extended method represents a novel object on the basis 

of its similarity to several stored object traces (each of 

which, in turn, consists essentially of several stored views; 

see Figure I). Empirical support for this representational 

scheme, whose theoretical underpinnings are discussed 
elsewhere (Edelman & Duvdevani-Bar, 1997b), stems 

from two sources. First, a computer implementation of 

this scheme was shown to perform well both in the tra­

ditional recognition task of generalization to novel views 

of familiar objects and in the more challenging tasks of 
categorization (Edelman & Duvdevani-Bar, 1997a) and 

analogy-like generalization from a single view of novel 

objects (Duvdevani-Bar, Edelman, Howell, & Buxton, 

1998). Second, this scheme proved to be capable of mod­

eling psychophysical results concerning human perfor­

mance in a variety of object (Cutzu & Edelman, 1996, 

1998) and face (O'Toole, Edelman, & Biilthoff, 1998) 
recognition tasks. 

In this scheme, the computation of similarities be­

tween the stimulus and the stored objects is carried out 
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Figure 1. Representation by a chorus of prototypes. An implementation of this scheme consists of two layers. The first of these is 
composed of a bank of receptive fields, which map the stimulus into a high-dimensional measurement space. The second layer con­

sists of a number of prototype (reference object) modules, each of which encodes a particular class of objects by some of their views 
(not shown). The stimulus, therefore, is represented by the distributed pattern of activation that it induces across the prototype mod­

ules. The level of activation of each module (indicated here symbolically by the size of the circle drawn near it) encodes the degree of 
similarity between the stimulus and the prototypical object of that module. (See Edelman & Duvdevani-Bar, 1997a, for details.) 

in a distributed fashion, by modules tuned to those ob­

jects. The resulting representation is also distributed­

an object (familiar or novel) is represented by the pattern 

of activities its views elicit in the existing modules. Note 

that each module must be trained to respond to shape 
changes more strongly than to changes in the viewing 

conditions of objects and that its shape selectivity profile 

must be wide enough, so that several modules respond to 

each stimulus (Edelman & Duvdevani-Bar, 1997b). 

It is convenient to think of this representation scheme 
as a shape space, in which each point (i .e., vector of ac­

tivities of the modules) corresponds to some object. If 

this space is endowed with a distance measure, various 
tasks, such as categorization (clustering) and recognition 

(pinpointing a location), become possible. Most impor­

tantly, a novel object is projected (by activating the var­

ious modules to varying degrees) into some point in the 

shape space, which can then be attributed to the nearest 
cluster (category) or used to create a new category, if it 

falls too far from any of the familiar ones. 
The nominal dimensionality of the shape space is equal 

to the number of modules that span this space. However, 

the actual dimensionality might be much smaller. To re­

alize this, consider the table of all pairwise distances of 

a set of cities, as measured off a map. Although the nom­
inal dimensionality of this data set is equal to the num­

ber of cities, the actual dimensionality is equal to two, 

and can be recovered by a proper algorithm, such as mul­

tidimensional scaling (Kruskal, 1964; Kruskal & Wish, 

1978; Shepard, 1962). It should be noted that the loca­

tion of an additional city on the map can be represented 

by its distances to any subset of (three or more) cities. In 

the context of the above shape representation scheme, the 
number of modules is equivalent to the number of cities 
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(nominal dimensionality), whereas the actual dimension­

ality might be much lower (in the example, the actual di­

mensionality was two). An object is, therefore, repre­

sentated by the distributed activation elicited by the 

modules that span the shape space. (Note that an implicit 

assumption is that the activation is proportional to the 

distance between the object and the module). It should not 

be taken to mean that the categories for which modules 

exist need to be the same for all representational sys­

tems; consistency among individuals only requires that 

the different choices of reference categories lead to suf­

ficiently close values of similarities among stimuli in the 

resulting shape spaces (Edelman, 1998). 

We are now in a position to formulate a computation­

ally sound and empirically testable framework for the in­

terpretation offMR[ results concerning object represen­

tation: (I) Objects are represented by a relatively widely 

distributed activity of functional modules. (2) Pairwise 

distances among objects, computed in the space of ac­

tivities of the functional modules, correspond to their 

pairwise (dis)similarities, defined geometrically or psy­

chophysically. (3) Activity related to the functional mod­

ules mentioned above may be observable in the activation 

level ofvoxels responding to objects (but not to textures) 

in fMR[ experiments. The first statement seems to be true 

of the reported data obtained in fMRI studies; it is, how­

ever, phrased in terms that are insufficiently quantitative 

to allow, say, a statistical test. [n comparison, the second 

point is a concrete prediction: Given a set of stimuli, the 

configuration they form in the voxel activation space (or 

in its low-dimensional replica) can be matched quantita­

tively against the configuration derived from geometry 

or from psychophysics, and the significance of the match 

can be tested statistically (Cutzu & Edelman, 1996). The 

validity of the observability assumption in the third point 

is the subject of the fMR[ experiments described in the 

next section. 

Coarse coding for object representation: Evidence 

for the necessary functional architecture. A reason to 

believe that the pattern of activities of the hypothesized 

tuned modules can be observed by means offMR[ is pro­

vided by the columnar structure of the [T cortex in the 

monkey (Fujita, Tanaka, Ito, & Cheng, 1992; Tanaka, 

1992, 1993b, 1996). [n a series of experiments, Tanaka 

and his collaborators found that [T cells, which respond 

selectively to various object features, cluster in columns 

that run perpendicular to the cortical surface, so that 

cells in the same column tend to respond to similar (but 

not identical) features. Although the columns, whose size 

is about 0.5 mm (Wang, Tanaka, & Tanifuji, 1996), are 

too small to be individuated by fMRI means, patterns of 

activation of several columns should be amenable to vi­

sualization. Specifically, even if each one of the fMR[ 

voxels overlaps several columns, the ensemble of several 

voxels will carry some information concerning the rela­

tive activities of several adjacent columns.1 The pattern 

of activities of such columns, which in our interpretation 

corresponds to the activities of the tuned chorus-like 

"modules," may then be observable by state-of-the-art 

fMR[ means. 

SCRAMBLING EXPERIMENT 

A major issue that remains unclear regarding the LO 

complex in humans and the [T cortex in monkeys is the 

level of complexity of the features represented there. 

One possibility here is that entire objects are represented 

by tightly coupled neuronal c1usters~the hypothesis fa­

vored by the chorus model. Alternatively, object frag­

ments can constitute the "alphabet" out of which represen­

tations of entire objects are constructed. We take!ragments 

to mean parts of images, as in "the nose occupies a mid­

dle part in a typical face image." Operationally, the ex­

traction of such fragments is a matter of focusing atten­

tion and narrowing it down to a proper level~a notion 

supported by considerable behavioral (Keele & Neill, 

1978; Nissen, 1985) and electrophysiological (Chelazzi, 

Miller, & Desimone, 1993; Moran & Desimone, 1985; 

Spitzer, Desimone, & Moran, 1988) evidence. Volumetric 

parts defined in an object-centered reference frame (as in 

Biederman, 1987) are not excluded in principle but are 

unlikely to playa significant role, given their lack ofpriv­

ileged attentional status (Brown, Weisstein, & May, 1992) 

and the computational difficulty of their reliable extrac­

tion from raw images (Edelman & Weinshall, in press). 

To investigate the effects of the level of complexity or 

the scale of object features on the activation of object­

related areas, we designed an experiment (Grill-Spector 

et aI., 1998) in which images of objects were repeatedly 

fragmented until the independently characterized object 

areas in the human visual cortex ceased to respond to 

them. [n this scramhling experiment, gray-level images 

of faces or animals were randomly scrambled into an in­

creasing number of blocks (see Figure 2). All the images 

were low-pass filtered with a finite impulse response fil­

ter (cutoff frequency = 15 cycles per image, window 

size = 21 X 21 pixels) to reduce changes in the spatial 

frequency spectrum caused by the scrambling process. 

Epochs of visual stimulation lasting 40 sec were alter­

nated with blank epochs (20 sec long). The subjects were 

asked to covertly name the visual stimuli, including the 

scrambled squares. A scrambling index was defined in 

order to compare the sensitivity of various visual areas to 

image scrambling. Thus, the scrambling index = (aver­

age fMR[ signal during most scrambled epoch - blank) 

/ (average fMR[ signal during unscrambled epoch -

blank). Note that areas that are essentially unaffected by 

image scrambling should have an index that is close to 

1.0, whereas areas that are affected by image scrambling 

should have an index smaller than 1.0. 

Experimenta[ Results 

The scrambling experiment differentiated three main 

foci of activation arranged mediolaterally in both hemi­

spheres of the occipital cortex, as is depicted in Figure 3. 

The medial focus,4 located over the calcarine sulcus and 
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Figure 2. Examples ofthe images used in the scrambling experiment. Epochs of visual stimulation, which contained 20 different im­

ages depicted in 256 gray levels, were presented at a rate of 0.5 Hz and were alternated with blank epochs lasting 20 sec. The visual 
stimuli were low-pass filtered in all the epochs (this is not visible in the reduced-size images shown here). Visual epochs contained the 

same images, which were increasingly scrambled into 16,64,256, and 1,024 random blocks in epochs 2, 3, 4, and 5, respectively. The 
first epoch contained entire images of animals or faces. 

the medial surface of the occipital lobe corresponding to 

areas VI-V3 (blue in Figure 3), showed no reduction in 

activity and even a slight enhancement with mild picture 

scrambling (see Figure 3b, top, for the average time 

course). More laterally, V4v (yellow in Figure 3) showed 

a reduction in the two highly scrambled epochs (256 and 

1,024 fragments), as depicted in Figure 3b, middle. Most 

laterally, LO voxels (red in Figure 3) showed the highest 

sensitivity to scrambling, in that reduction in activation 

was achieved with less scrambling, as compared with 

V4v, and the percent of reduction was greater (see Fig­

ure 4) . 

Examining the behavior of LO voxels in detail, we 

found that in the majority ofLO voxels breaking the pic­

tures into 16 scrambled squares did not cause a severe 

decrease in activation (see Figure 3, bottom). Thus, the 

overall activation in LO under this level of scrambling 

was 82% ± 6% (standard error of the mean, SEM) of the 

maximal activation. However, in a minority (28% ± 9%) 

of LO voxels, there was a larger degree of reduction 

(32% ± 5%, time course not shown) for the same scram­

bled stimuli. 

To control further for spatial frequency or edge ef­

fects, a second experiment ( 12 subjects) was conducted 

in which images were also scrambled, but instead oflow­

pass filtering the images, a grid was overlaid on the un­

scrambled images. In another experiment (5 subjects), 

the order of the epochs was permuted, so that the highly 

scrambled epochs were presented first. To compare 

quantitatively the sensitivity to scrambling in the three 

foci of activation mentioned above, we calculated the 

scrambling index of areas VI , V 4v, and LO for the vari­

ations of the scrambling experiment, as is illustrated in 

the histogram in Figure 4. The results of these control 

experiments were similar (see Figure 4), indicating that 

spatial frequency, number of edges, fatigue, and adapta­

tion effects do not account for the scrambling results. LO 

voxels yielded the lowest scrambling ratio, corresponding 

to the highest sensitivity to image scrambling; VI vox­

els had the highest ratio, as they responded largely to the 

same extent to scrambled and to entire images. 

The use of a gradual scrambling paradigm enabled us 

to distinguish areas V4v and LO: V4v was highly acti­

vated even when the image was fragmented into 64 blocks, 

whereas the activation LO was significantly reduced by 

this degree of image scrambling. Thus, the present results 

suggest that area V 4v plays a role in intermediate-scale 

shape representation. The fact that most LO voxels re­

mained active after the first scrambling indicates the pre­

dominance of the representation of something like object 

fragments rather than entire objects in LO. This result is 

in line with several physiological studies (Kobatake & 

Tanaka, 1994; Wachsmuth, Oram, & Perrett, 1994). It 

should be noted that this result does not necessarily con­

tradict the idea of category-specific representations. For 

example, it is possible that object fragments common to 

faces, animals, and so forth are clustered in distinct ana­

tomical subdivisions of the LO complex. Moreover, we 

did find a smaller subpopulation of LO voxels in which 

the activation was reduced with the first image scram­

bling, suggesting the existence ofa subdivision ofLO in 

which entire objects are represented. 

SHAPE SPACE EXPERIMENT 

In this experiment, we explored (1) the viability of dis­

tributed coarse coding as a model of object category rep­

resentation in human visual areas and (2) the relationship 

between human perception and fMRI activation levels 

ofvoxels within object-related visual areas. 

The idea of category-specific representations is usu­

ally associated with the hypothesis that different object 

categories occupy distinct anatomical regions (Ishai et aI. , 

1997; Martin et aI., 1996). The experimental approach 

based on this idea has several drawbacks. First, its results 

depend on the choice of the visual stimuli ; different stim­

uli may yield somewhat different anatomical divisions . 

Second, given the spatial resolution offMRI, which is of 

the order of 1-2 mm, it is difficult to use fMRI to find the 

optimal stimulus for a given voxel, as was done by electro­

physiological means for clusters of IT neurons in the 

monkey (Fujita et aI., 1992). Therefore, a voxel that ap-
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Figure 3. Results of the scrambling experiment. Panel a: Superposition of the activation maps of the most significant voxels 

of the three functional foci, obtained by regression analysis of the scrambling experiment overlaid on TI weighted high­

resolution anatomical scans of 3 different subjects. The lightness of each color corresponds to the level of the correlation p be­
tween the time course ofthe voxel and an ideal paradigm (statistical significance P < IE - 6, p> 0.4); voxels below the thresh­

old were not colored: blue, VI-V3; yellow, V4v, V3a; red, lateral occipital (LO) cortex. Note that the anatomical organization 
is such that low-level visual areas VI-V3 are located in the medial portion of the slice, whereas higher level areas are located 

more laterally, with area LO being the most lateral. Panel b: Average time courses of9 subjects derived from each ofthe three 
foci of activation depicted in panel a. The abscissa denotes time in seconds and the ordinate normalized fMRI signal strength. 

Error bars indicate ±I averaged standard error of the mean. The numbers on top correspond to the epochs shown in Figure 2. 
Note the increased sensitivity to image scrambling in LO, as compared with VI-V3 and V4v. 
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Figure 4. The histogram ofthe scrambling ratio is plotted for areas VI-V3, V4v, and LO, for different 
variations ofthe scrambling experiment. We defined the scrambling ratio as (average fMRI signal during 
most scrambled images epoch - blank)/(average fMRI signal during unscrambled images epoch - blank). 
The abscissa denotes the area's label, and the ordinate the scrambling index. Black, low-passed filtered pic­
tures; gray, whole pictures including a grid; white, same as gray but order ofimages permuted. Note that 
the variability of the empirical value of the scrambling index in the same area in different scrambling ex­
periments is much smaller, as compared with the differences between the scrambling indices of the func­
tionally different areas. 

pears, for example, to belong to a "face" or a "house" area 

may in fact respond better to images of objects other than 

faces or houses. 

One way to circumvent these problems is to examine 
the entire distributed pattern of activation of voxels in 

object-related areas and to attempt to relate it to the cat­

egory of the stimulus. Because the fMRI signal measured 

in a voxel is determined by the activity of all the neurons 

within it throughout the duration of the scan, different 

stimuli will produce different levels of the signal, de­

pending on the correspondence between the stimulus and 

the selectivity profile ofthe neurons within the voxel. This 

approach has two advantages: It does not depend on find­
ing the optimal stimulus for any of the voxels, and it is 

based on a computational theory (see above) that can be 

tested quantitatively. 

The Experimental Setup 

Seven subjects participated in the shape space exper­
iment, in which we examined the distributed patterns of 

activation of visual object-related brain areas. The stimuli 

were 32 images of three-dimensional (3-D) computer­

generated objects from five categories: planes (4), fish (3), 
standing human and primate figures (4), four-legged an­

imals (12), and cars (9), as is illustrated in Figure 5. The 

objects were taken from a commercial graphics library 

(Viewpoint Datalabs, Inc.) and were rendered with the 

Silicon Graphics Inventor software library in 256 gray lev­

els, at a rate of 0.5 Hz, which was synchronized with the 

scanning rate. The objects were rendered in such a man­

ner that the size and the illumination of all the stimuli 

images were similar. Objects from the same category were 

presented in the same pose and occupied the central part 

of the image. Control epochs consisted of3-D noise pat­
terns created by "exploding" the images into random tri-

angle fragments; blank epochs were used to identify vi­

sual areas. The subjects were asked to covertly name the 
visual stimuli, including the random triangle textures. 

After the fMRI scan, the subjects participated in a psy­

chophysical experiment, described below, that involved 

the same images as those presented in the scan. The aim 

of this psychophysical test was to map the perceived 

shape space of the subjects (Cutzu & Edelman, 1996; 
Shepard & Cermak, 1973). 

Experimental Results 

Psychophysics. The perceptual version of the shape 

representation space was derived by applying multidi­

mensional scaling (MDS) analysis (Shepard, 1980) to 

the dissimilarity judgments among object shapes made 

by the subjects. Because the number of pairwise com­
parisons required to fill the entire 32 X 32 dissimilarity 

matrix is prohibitively large, a tree construction method 

(Fillenbaum & Rapoport, 1979) was used to obtain dis­

similarity data for the 32 stimuli objects. The set of 32 

images was randomly arranged and shown to the subjects. 

The subjects were asked to sort the images according to 
their similarity and were instructed to base their judg­

ments on the shape of the objects. The subjects began by 

selecting the 2 most similar objects, then the next 2 most 

similar objects, and so on. The tree construction method 

requires that the subject specify directly only (N - 1) out 

of the N(N - 1) / 2 possible proximities. All other dissim­

ilarity scores were derived from the tree of pairwise com­

parisons given by the subject, using Dijkstra's algorithm 

for determining the shortest path connecting two vertices 
in a graph. 

Figure 6, left, illustrates the shape space configuration 

derived from the dissimilarity data pooled from all the 

subjects. In this figure, points corresponding to the indi-
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Figure 5. An illustration ofthe visual stimuli and the sequence ofthe shape space experiment. The 
experiment begins and ends with a blank epoch lasting 30 sec. Following the first blank epoch, 32 im­

ages of objects appeared from each of the categories displayed, such that they were synchronized with 
the scanning rate of 0.5 Hz. This epoch was succeeded by an epoch containing noise patterns of ran­
dom three-dimensional triangle fragments that were displayed at the same rate for 60 sec. 

vidual objects are clustered into five categories: cars, four­

legged animals, upright figures, fish, and airplanes. Note 

that the exact location of a point within the cluster is of 

little importance: It does not really matter whether the pig 
is mapped to the left or the right of the cow in this shape 

space. In comparison, it is important that the distances 
between points (exemplars) belonging to the same cate­

gory are smaller on the average than the distances between 

exemplars of different categories; it is this difference that 

allows the subjects to perceive the categories as distinct. 

Voxel-space representation. The fMRI data were first 

preprocessed, using principal component analysis (Rey­
ment & Joreskog, 1993), to reduce correlated noise arti­

facts. This was followed by a Kolmogorov-Smirnov (KS) 

statistical test (Baker, Hopper, & Stern, 1993; Siegel, 1956) 

that detected voxels that were activated significantly by 

images of objects, as compared with noise patterns 

formed by random triangle fragments. This test high­

lighted bilaterally voxels located in the LO region. Only 
the most significant voxels in each slice were submitted 

to further analysis, as follows. 

For each image of an object, the vector of the distrib­

uted activation ofvoxels in object-related areas was cre­

ated by concatenating the activation of the significant 
object-voxels at the time point at which this particular 

image was presented. We call this the voxel-space repre­

sentation of the stimulus. The dimensionality of this rep­
resentation depends on the number of significant voxels 

whose activation exceeds the threshold in each subject 

(mean, 105 ± 44 voxels). To visualize the voxel-space rep-
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Figure 6. A comparison between the layout ofthe object representation space derived by multidimensional scaling (MDS; 

see Shepard, 1980) from perceptual judgment of similarities among objects (left) and that from the similarities among ac­

tivation patterns measured by fMRI (right). Left: A two-dimensional MDS configuration ofthe 32 objects, recovered from 
the psychophysically determined dissimilarity matrix combined from all subjects. Right: A two-dimensional MDS configu­

ration of the 32 objects, recovered from the combined voxel-space representation derived from the most significant object­
related voxels in all 7 subjects. Although the MDS configuration derived from the voxel-space representation is noisier than 

the configuration retrieved from the psychophysical test, there is some clustering according to object categories. Note that 
the MDS configuration space does not necessarily correspond in a simple fashion to the physical (anatomical) space in the 

cortex. 

resentation, we used multidimensional scaling to embed 

it into two dimensions. The multidimensional scaling anal­

ysis (SAS procedure MDS; SAS Institute, Inc., 1989) 

was applied to the Euclidean distance matrix of all pairs 

of voxel-space representations corresponding to the ac­

tivations by different images of objects. This procedure 
was carried out for each subject separately (Figure 7), as 

well as for all subjects (Figure 6, right). 
A comparison between the configuration obtained from 

the pooled fMRI data and the configuration derived from 

psychophysics (Figure 6) reveals important similarities. 

Specifically, some objects, such as airplanes and upright 

figures, cluster together according to the category. Even 
in a configuration obtained from the fMRI activation of 

a single subject (Figure 7), it is possible to distinguish 

some clustering of object categories-for example, air­

planes, four-legged animals, and cars. 

To quantify the ability of the distributed voxel-space ob­

ject representation to support categorization, voxel-space 
similarity data from each of the 7 subjects were submit­

ted to a standard hierarchical clustering procedure (SAS 

procedure CLUSTER; SAS Institute, Inc., 1989). We com­

pared the categorization results obtained by this proce­

dure with the object categories that had been character­

ized psychophysically-namely, four-legged animals, 

cats, planes, fish, and figures. The mean classification error 

rate based on voxel-space representation was 0.28 ± 0.05 

(SD). The significance of this figure was confirmed by 
a bootstrap procedure (Efron & Tibshirani, 1993) in which 

clustering was run on randomized data obtained by per­
muting the 32 slots in each time course record (each voxel 

was separately permuted). This procedure, which had 

been used before in evaluating the statistical significance 

of MDS results (Cutzu & Edelman, 1996; Edelman, 

1995), diminished the temporal correlations between the 

voxels but preserved the basic statistical properties of the 
data. The classification error rate obtained with the ran­

domized data was 0.55 ± 0.10 (std)-significantly above 

the error obtained with the actual subject data. 

Coarse Coding Analysis of the 
Scrambling Experiment Data 

A direct prediction of the shape space hypothesis is 

that the same clustering by object category should be re­
vealed ifMDS is applied to voxel data from any experi­

ment in which subjects are exposed to a variety of objects. 

To test this, we returned to the scrambling experiment 

and carried out the same analysis as above. We used data 

from the most significant voxels that responded to entire 

objects and in which the activation was reduced by any 

scrambling. Data were combined from 7 subjects (see 
Figure 3). Only the epoch in which entire images offaces 

or animals had been presented was analyzed. Because 

this experiment was not originally designed to map the 

shape representation space of the subjects, stimuli were 
not precisely ordered by category, and their appearance 

was not controlled for size, illumination, or viewing po­

sition. The results (Figure 8, left) reveal that points corre-
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Figure 7. This two-dimensional multidimensional scaling configuration ofthe 32 objects was recovered from the acti­
vation of the 136 most significant object-sensitive voxels in five fMRI slices of a single subject (see text for details). Note 
how airplanes, cars, and four-legged animals are clustered separately. 

sponding to animal images and faces form quite separable 

clusters. The significance of this result was estimated by 

a bootstrap procedure (Efron & Tibshirani, 1993). To that 

effect, the MDS analysis was applied to random permu­

tations of the 19 time slots corresponding to the presen­

tations of entire images in that experiment, separately for 

each voxel. The resulting configuration (Figure 8, right) 

shows no clustering of either animals or faces, indicating 

that the clusters derived from the original data are most 

probably not due to chance or to some bias in the data. 

DISCUSSION 

The fMRI results, such as those shown in Figures 6 

and 7, show that the shape space clustering is correlated 

with the perceived object categories. This finding can be 

given a straightforward interpretation in terms of the 

computational theory outlined above and thereby linked 

to a much wider corpus of data provided by computer sim­

ulation, psychophysics, and electrophysiological studies. 

According to our theory, objects are represented by their 

similarity to a number of reference shape classes. Given 

that each such class is assigned a cortical module, as in the 

implementation described in Edelman and Duvdevani­

Bar (1997a), the similarities between the current stimu­

lus and the reference shapes should be manifest in the 

relative activity levels of the various modules-precisely 

what our fMRI experiments measured and what the 

MDS-based analysis technique helped us to visualize. In 

this sense, one may say that the cortical activity patterns 

underlying the configurations revealed by our analysis 

of the fMRI data are the representational substrate of the 

perceptual shape categories. 

For the conclusions suggested above to be reasonably 

grounded in the empirical findings, additional controls 

are required. First, the experiments conducted so far do 

not exclude the possibility that the clustering we found 

was due to some low-level features of the stimulus images, 

rather than to the shape categories to which the depicted 

objects belonged. For example, images of upright figures 
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Figure 8. Shape space analysis ofthe scrambling experiment data. Left: Multidimensional scaling (MDS) was applied to the most 
significant voxels that responded preferentially to entire objects but not to scrambled versions of these objects. Data were taken 

from 7 subjects. Each image is labeled by its serial number in the epoch. Note that animals and faces form separate (in fact, nearly 
linearly separable) clusters. Right: The significance of the results depicted on the left was assessed by a bootstrap procedure, in 

which the MDS analysis was applied to randomly permuted time courses. Note that this plot reveals no clustering, indicating that 
the clusters on the left are statistically unlikely to be due to chance or to a data artifact. 

in our stimulus set are, on the average, more similar to one 

another (mean Euclidean distance in the image pixel 

space of 27,600) than to cars (42,600), animals (42,000), 

fish (42,400), or planes (42,600). To control for this fac­

tor, the shape space experiment is currently being repeated 

with more than one image per object, the images having 

been taken over a wide range of orientations. For these 

stimuli, the pixel-space distances between images of the 

same object are not less than those between images of dif­

ferent objects presented in similar views, making the 

low-level feature explanation less likely.5 

Second, part of the tendency of similar objects to clus­

ter in the MDS rendition of the voxel activation pattern 

in the shape space experiment may stem from their order 

of presentation. 6 It has been shown that the presentation 

of a stimulus elicits a prolonged fMRI response in V I 

voxels, which can be "smeared" over several seconds 

(Boynton, Engel, Glover, & Heeger, 1996). It is possible, 

therefore, that a signal measured at a specific time may be 

influenced by several preceding visual stimuli. We plan to 

control for this factor by revising the experimental proced­

ure in such a manner that the images of various categor­

ies will be presented both in a random order and grouped 

by category in different phases of the experiment. Order 

effects can also be reduced by presenting the images in 

random order but in isolation, with blanks preceding and 

following each stimulus (Buckner et aI., 1997). 

The significance of the visualization of the shape space 

made possible by our method-provided that the results re­

ported above withstand further empirical tests-is twofold. 

On the one hand, this method offers a peek into the internal 

representation of object shapes, including the philosophi­

cally exciting eventual possibility of "guessing" what the 

subject is looking at while his or her brain is being scanned 

(cf. Albright, 1991). On the other hand, the very amenabil­

ity of cortical activation patterns to the kind of analysis we 

used here supports a particular variety of computational 

theories of object representation (Edelman, 1998; Edelman 

& Duvdevani-Bar, 1997b; Poggio, 1990) and offers an in­

tegrated theoretical interpretation for a range of empirical 

findings in monkeys (Logothetis et aI., 1995; Sugihara, 

Edelman, & Tanaka, 1998; Tanaka, 1992, 1996), humans 

(Biilthoff et aI., 1995; Cutzu & Edelman, 1996; Shepard & 

Chipman, 1970), and computers (Edelman & Duvdevani­

Bar, 1997a). 
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NOTES 

I. Although, according to the structural decomposition theory (Bie­

derman, 1987), objects are represented in terms of generic parts and 

their spatial relationships, the expectation to find regions responsive se­

lectively to such parts is not warranted by this theory or by models de­

rived from it (Hummel & Biederman, 1992). Likewise, although the 

alignment theory (Ullman, 1989) calls for geometric information about 

object shapes to be represented, neither this theory nor the "sequence 

seeking" model derived from it (Ullman, 1995) specifies the form or the 

qualities of the representation that can be measured by fMRI. 

2. In some cases, completely (Tomasi & Kanade, 1992; Ullman & 

Basri, 1991). 

3. Current mathematical models of hyperacuity perception operate 

on the same principle: Several overlapping receptive fields carry high­

precision spatial information, which cannot be recovered from the 

activity of each receptive field on its own (Snippe & Koenderink, 

1992). 

4. To relate these foci of activation to established human visual areas, 

we mapped in 7 subjects, during the same experimental sessions, the 

cortical representation of the vertical and horizontal meridians of the vi­

sual field (DeYoe et aI., 1996; Sereno et aI., 1995), using either objects 

or texture stimuli. A comparison of the mapped meridian and the three 

foci of activation indicated that the medial focus (blue in Figure 3) was 

confined to areas VI-V3, whereas the more lateral focus (yellow in Fig­

ure 3) overlapped ventrally with area V 4v. The most lateral focus (red 

in Figure 3) lacked retinotopy and corresponded anatomically to the LO 

complex (Grill-Spector et aI., 1998; Malach et aI., 1995; Tootell, Dale, 

Sereno, & Malach, 1996). 

5. Encouragingly, a recent psychophysical shape space experiment 

that involved several images per object revealed clustering by object 

shape, and not by viewpoint (Cutzu & Edelman, 1998). 

6. This does not apply, however, to the reanalysis of the scrambled ex­

periment data by MOS. 
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