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Abstract—Our work addresses the problem of analyzing and
understanding dynamic video scenes. A two-level motion pattern
mining approach is proposed. At the first level, activities are mod-
eled as distributions over patch-based features, including spatial
location, moving direction, and speed. At the second level, traffic
states are modeled as distributions over activities. Both patterns
are shared among video clips. Compared to other works, one
advantage of our method is that moving speed is considered to
describe visual word. The other advantage is that traffic states are
detected and assigned to every video frame. These enable finer
semantic interpretation, more precise video segmentation, and
anomaly detection. Specifically, every video frame is labeled by a
certain traffic state, and the video is segmented frame by frame
accordingly. Moving pixels in each frame, which do not belong to
any activity or cannot exist in the corresponding traffic state, are
detected as anomalies. We have successfully tested our approach
on some challenging traffic surveillance sequences containing both
pedestrian and vehicle motions.

Index Terms—Anomaly detection, Latent Dirichlet Alloca-
tion (LDA), motion pattern analysis, video segmentation, visual
surveillance.

I. INTRODUCTION

IN many surveillance scenarios, such as those involving a

crowded traffic scene, a busy train station, or a shopping

mall, various motions are involved. It is highly desirable to

analyze the motion patterns and obtain some high-level in-

terpretation of the semantic content. For example, in a video

monitoring intersection, without any prior knowledge about the

traffic rules in the specific scene, it is useful to discover typical
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Fig. 1. Activities and traffic states. Two traffic scenes illustrate activities and
traffic states. (a) Arrows 1–7 and (b) 1–15 show single-agent motion patterns
(activities), while arrows grouped by the same colors show interaction patterns
(traffic states).

vehicle behaviors and their dependencies involved in this scene

and detect anomalous motion for security concerns.

Motion patterns involved in a complex dynamic scene usu-

ally are of a hierarchical nature; that is, at low level, they

consist of single-agent motion patterns, which are combined

at a higher level to form interaction patterns. Typically, many

objects (e.g., vehicles) are involved in the video scene. In terms

of each single object, its motion might follow some regular

streams, which are single-agent motion patterns. In addition,

the cooccurrence of multiple objects at the same time might

also be subject to constraints, which define interaction patterns.

For example, in the traffic intersection scenario, the single-

agent motion patterns are all the legal paths going through this

intersection, which are named as “activities” [shown in Fig. 1(a)

numbered from 1 to 7 and in Fig. 1(b) numbered from 1 to 15],

whereas the interaction patterns are possible combinations of

paths determined by the traffic lights, which are named as

“traffic states.” Fig. 1(a) has two traffic states, particularly

paths 1–5 in red and paths 6–7 in yellow, while there are five

traffic states in Fig. 1(b) represented separately in red, yellow,

green, purple, and blue.

Considering this hierarchical nature of motion patterns, many

works on scene understanding and motion pattern discovery

are based on hierarchical modeling. One common approach is

based on object trajectory analysis. Morris and Mohan [23]

overviewed the work on trajectory learning and analysis for

surveillance. Objects are tracked in videos, and an analysis and

mining approach is applied to the object trajectories to discover

motion patterns. For example, Jiang et al. [1] used a hidden

Markov model (HMM) to characterize object trajectories and a

Bayesian-information-criterion-based dissimilarity measure for

highly recurrent events clustering. Duong et al. [2] introduced

the switching hidden semi-Markov model for atomic activity

modeling, and the high-level activities are modeled as a se-

quence of atomic activities. Jiang et al. [3] characterized the
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crowded motion by a patch-based local motion representation

and clustered all patches into different motion patterns by

spectral clustering. Basharat et al. [4] detected abnormal events

based on local and global behavior of tracks. Instead of cluster-

ing tracks into major paths, they build local pixel-level proba-

bility density functions that capture a variety of tracks. Morris

and Mohan [24] designed the path modeling block to learn the

major scene routes by an HMM based on the vehicle tracking

data. Wang et al. [25] treated the objects’ trajectories as doc-

uments, clustered them into activities by the dual hierarchical

Dirichlet processes (Dual-HDPs), and detected anomalies as

trajectories with low likelihoods. Similarly, Jeong et al. [26]

treated the observations on a trajectory as words in a document,

and then, the latent Dirichlet allocation (LDA) model was

adopted to model the topics, which are semantic regions. Tao

and Gong [27] clustered behavior patterns into behavior classes

through a spectral clustering algorithm. Hu et al. [28] first

clustered the foreground pixels into trajectories, which were

clustered hierarchically into motion patterns based on spatial

and temporal information. Piciarelli et al. [29] extracted the

trajectories of moving objects from video and clustered them

into groups by support vector machine according to their similar

features, while trajectories without these features were detected

as anomalies.

Object tracking methods, however, are sensitive to object de-

tection, recognition, and tracking errors, and they usually fail in

complicated or crowded scenes due primarily to occlusions. To

improve robustness, statistical methods have been devised that

work directly on quantized pixel data or other low-level features

in videos, such as object location and intensity gradient. These

methods typically employ probabilistic topic models adapted

from the text and image mining communities. Low-level fea-

tures are considered as visual words in video sequences, which

are treated as documents. Motion patterns can be discovered

as topics (groups of visual words) shared by all documents.

Yang et al. [5] used diffusion maps to embed the words into

a lower dimensional space and to cluster them into motion

patterns, while video clips are clustered to determine cooccur-

ring motion patterns. Saleemi et al. [6] adopted a Gaussian

mixture model for pixel-level representation of motion pat-

terns in a hierarchical unsupervised fashion. In [7], a Markov

Clustering Topic Model was proposed, which builds on LDA

and Markov chains. Visual words are clustered into actions,

and clips are clustered into behaviors over cooccurring actions.

Both [8] and [9] used an HDP-HMM for state detection. In this

model, the HDP can automatically decide the number of states

for the HMM. Kuettel et al. [10] first learned activities using

an HDP model and then found the activity dependencies by a

dependent Dirichlet process HMM (DDP-HMM). Emonet et al.

[11] proposed a model that relies on a Dirichlet process to

discover the activities, their number, and their occurrences.

Wang et al. [12] used hierarchical Bayesian models to classify

surveillance video into two levels: atomic activity, which is

represented by distribution over low-level visual features on a

pixel basis, and interaction, which is modeled by distribution

over atomic activities. This two-level motion analysis provides

a good representation of the hierarchical nature of the video

scene and enables video anomaly detection.

Following this hierarchical interpretation, we propose a novel

two-level motion pattern analysis method based on the LDA

model. Our approach is different from the work of Wang in

the modeling of the interactions. The work of Wang is based

on a DDP and HDP. Interactions are modeled as clusters of

video clips. Since video clips are the basic processing unit

for interaction learning, a problem appears when interaction

transition happens within one clip. Video anomaly can only

be detected and localized per video clip, which still includes

a number of frames. In contrast, our approach utilizes LDA

modeling for the interaction-level processing. Interactions are

modeled as clusters of atomic activities and are shared among

video clips. Then, they are assigned to every video frame,

thus enabling frame-based, rather than video-clip-based, video

segmentation and anomaly detection. In addition to location and

direction, moving speed is also considered when we form the

visual words. Our work achieves a finer semantic interpretation

of a dynamic scene. Experiments with real traffic surveillance

videos demonstrate that our approach is able to interpret every

video frame by different interaction patterns and detect anoma-

lies in each frame.

The rest of the paper is organized as follows: Visual word

detection is presented in Section II. In Section III, a two-

level motion pattern mining method is introduced. Experiment

results are shown in Section IV. Some issues are discussed in

Section V, and we conclude the paper in Section VI.

II. VISUAL WORD DETECTION

A. Motion Detection

Based on the Lucas–Kanade (LK) optical flow estimation

algorithm [13], we adopt the multiresolution LK (MLK) al-

gorithm [30] in this paper to detect moving patches and their

properties, such as location, moving direction, and speed. The

MLK algorithm can reduce the resolution of images to make

motions small enough when calculating the optical flow. It

is very effective in traffic monitoring when the camera is

installed on a high spot. Let LOF be the number of layers

in the pyramid structure. We use the LK algorithm on every

block at the first layer (the highest level) and set the size of

the window to ofw1 × ofw1 when calculating optical flow.

At layer lOF(lOF = 1, 2, . . . , LOF), the size of the optical flow

window is ofwlOF
= ofw1 × 2lOF−1, and the analysis window

is dlOF
× dlOF

, where dlOF
= 2lOF−1. The MLK algorithm is

applied according to the following steps.

Step 1. Calculate the frame difference between two consecu-

tive frames and keep those values larger than a thresh-

old, which is defined as diffLOF
, since it is treated

as layer LOF.

Step 2. Perform downsampling of the frame difference im-

age LOF − 1 times, to obtain the frame difference im-

ages difflOF
(lOF = LOF − 1, LOF − 2, . . . , 1) for

layer lOF.

Step 3. Compute the LK algorithm on each block at the

highest layer (the first layer) if its frame difference

(diff1) is nonzero and then obtain the optical flow

vector with components u1 and v1.
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Fig. 2. Analysis window and the first block (shadowed) in each layer (when
LOF = 3).

Step 4. For lOF = 2, 3, . . . , LOF do

• Take flow ulOF−1 and vlOF−1 from layer lOF − 1;

• Upsample the flow to create u∗
lOF

and v∗lOF
of twice

the resolution for layer lOF;

• Multiply u∗
lOF

and v∗lOF
by 2;

• For the first block plOF
(x, y) in every dlOF

× dlOF

analysis window, if difflOF
(x, y) is nonzero, com-

pute its It (the partial derivatives of the image I
with respect to time t) from an optical flow window

displaced by u∗
lOF

(x, y) and v∗lOF
(x, y), and the size

of the optical flow window is ofwlOF
× ofwlOF

;

• Apply the LK algorithm to get u′
lOF

, v′lOF
(the cor-

rection in flow);

• Add corrections u′
lOF

and v′lOF
, to obtain the flow

ulOF
and vlOF

:ulOF
=u′

lOF
+u∗

lOF
, vlOF

=v′lOF
+v∗lOF

.

End for

Notice that, in step 4, instead of applying the LK algorithm to

all blocks, we apply it only to the first block in each dlOF
× dlOF

analysis window to reduce the calculation. The block size will

affect the optical flow performance, and the number of layers

is decided based on the size of the images and the block size.

Fig. 2 shows, as shadow squares, the first blocks of the analysis

windows in three layers.

Finally, the speed of a moving pixel is calculated utilizing

spd(x, y) =
√

u2

LOF
(x, y) + v2LOF

(x, y).

B. Visual Word

In our work, the whole video sequence is divided into short

clips with fixed length, which are regarded as documents.

In addition, each frame is divided into patches. We use the

features of the first pixel in each patch to describe the patch’s

motion, which include spatial location (x, y), moving direction

dir (quantized to north, south, east, and west), and moving

speed (quantized to five grades). Consequently, a visual word is

represented by the vector (x, y, dir, spd). Applying overhead-

view video for speed calculation will provide more precise

results by removing perspective effect.

III. TWO-LEVEL MOTION PATTERN MINING

The proposed approach includes two levels of motion pattern

mining. At each level, the LDA model, with different definitions

Fig. 3. Flowchart of two-level motion pattern mining.

Fig. 4. First-level LDA model. Circle represents variable, whereas shaded
circle represents observation. Rectangle represents replicate.

of words and topics, is used to discover the frequent motion

patterns that exist in video data. The flowchart of our approach

is shown in Fig. 3.

At the first level, video sequences are divided into short clips,

which are regarded as documents. Patch-based motion features

are regarded as visual words. In the first-level LDA modeling, ac-

tivities (topics) are represented as distributions over visual words.

At the second level, we keep the same video clips as doc-

uments but consider the activities discovered by the first-level

LDA as words. Due to this second-level LDA modeling, traffic

states (clusters of topic) are discovered, which are represented

as distributions over activities.

With the two-level motion pattern discovery, videos can be

interpreted by the following hierarchical structure: patch-based

motion features (visual words), activities (topics), and traffic

states (clusters of topic). Specifically, every motion patch at each

frame can be assigned to a certain activity. In addition, every ac-

tivity appearing at one frame can be assigned to a certain traffic

state. Therefore, the video can be segmented based on the as-

signment, and motion anomalies can be detected at two levels.

A. First-Level LDA

LDA is a generative probabilistic model for collections of

discrete data (e.g., text corpora) [14]. Its graphical model is

shown in Fig. 4. In the LDA model, the corpus is a col-

lection of D documents over a word vocabulary of size W ;

each document d(d = 1, . . . , D) is a sequence of unordered

words wd = {wdn}(n = 1, . . . , Nd), where Nd is the number

of words in document d, and wdn represents the nth word in

document d. Given the documents, LDA modeling can find

out groups of cooccurring words, which are called “topics.”
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Fig. 5. Second-level LDA model. Circle represents variable, whereas shaded
circle represents observation. Rectangle represents replicate.

The number of topics K is assumed known and fixed. Then,

each topic is represented by a multinomial distribution over the

word vocabulary, whereas each document d is represented as

a multinomial distribution over topics zd = {zdn}, where zdn
is the topic to which word wdn is assigned. The relationships

among these variables are given by

ψ1k|β1 ∼Dirichlet(β1)
θ1d|α1 ∼Dirichlet(α1)
zdn|θ1d ∼Multinomial(θ1d)

wdn|zdn, ψ11:1K ∼Multinomial(ψzdn).

Here, ψ1k is the distribution of words in topic k, which is

drawn from a Dirichlet distribution with parameter β1; θ1d is

the distribution of topics in document d, which is drawn from

a Dirichlet distribution with parameter α1. Both α1 and β1 are

hyperparameters; θ1d and ψ1k are parameters to be estimated;

zdn is a latent variable; and wdn is the observed data.

In our work, the goal is to find out the posterior distribu-

tion over the assignments of words to topics p(z|w), where

z = {zd} and w = {wd}(d = 1, . . . , D). Unfortunately, the

distribution cannot be computed directly. Following [15]–[18],

collapsed Gibbs sampling is used here to discover topics.

In the first-level LDA, topics are discovered as frequent

cooccurring words shared by all documents. In fact, these topics

are activities modeled as distributions over visual words and

shared by all video clips.

B. Second-Level LDA

At the second-level LDA, our goal is to find out the inter-

action patterns defined by certain combinations of activities

occurring at one time. The second-level LDA model is shown

in Fig. 5.

We treat the topic discovered by the first-level LDA as the ob-

served variable, where there are totally K topics. Assume that

the number of topic clusters is L. Each cluster is represented by

a multinomial distribution over topics. Each document d(d =
1, . . . , D) contains Td topics {zdt}(t = 1, . . . , Td), and it can

be represented by a multinomial distribution over latent clusters

of topics {sdt}. The relationships among these variables are

given by

ψ2t|β2 ∼Dirichlet(β2)
θ2d|α2 ∼Dirichlet(α2)
sdt|θ2d ∼Multinomial(θ2d)

zdt|sdt, ψ21:2L ∼Multinomial(ψsdt).

By performing the second-level LDA, the cooccurring activ-

ities are discovered and modeled as interactions.

Fig. 6. Flowchart of interaction labeling.

C. Two-Level Interpretation

From the two-level LDA model, we obtain a hierarchical

representation of the dynamics contained in the video: the

activities modeled as distributions over visual words and the

interaction patterns modeled as distributions over activities. For

each video clip, we can figure out which activities a visual word

belongs to and which interaction patterns an activity is assigned

to. A visual word may belong to different activities in different

frames. Similarly, an activity may be assigned to different

interaction patterns. Furthermore, the average speed vk(k = 1,
. . . ,K) of visual words in activity k can be calculated.

Based on the previous discussion, each video frame f , which

belongs to video clip d, is labeled by one interaction pattern as

follows, and the flowchart is shown in Fig. 6.

Step 1. Detect all visual words in framef .

Step 2. For each word wdn, find out the activities that it is

assigned to, according to the first-level LDA modeling

results. Count one vote for each such assignment. Obtain

a vector nf for frame f , which contains the sum of the

votes nfk(k = 1, . . . ,K) for each activity k.

Step 3. Based on the vector nf , for each activity, find out the

interactions that it is assigned to, according to the second-

level LDA modeling results, and the vote nfk × vk for

each possible interaction. Then, obtain the vector tf , which

contains the sum of the votes tfl(l = 1, . . . , L) for each

interaction l in frame f .

Step 4. Label frame f by interaction l, which receives the

highest vote among {tfl}.

By repeating steps 1–4 for all frames in the video, the

whole video is labeled by interaction patterns frame by frame,

and it is represented as a vector states0 = [s1, . . . , sf ], sf ∈
{1, . . . , L}, where sf is the interaction label of frame f .

Notice that, in step 3, we add nfk × vk votes to tfl, which

means that the most frequent activities with faster speeds will

get higher votes. It is based on the fact that, in our traffic videos,

most vehicles follow the traffic rules very well, but some of

the pedestrians who usually have slower speeds compared to

vehicles do not. Hence, in our experiments, we define nfk ×
vk as the vote contributing to tfl to pay more attention to

moving vehicles, thus reducing the effect of pedestrian motions

when we analyze interaction pattern (traffic state) labeling.
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Furthermore, it also reduces the effect of vehicle motions with

slow speeds. It is very helpful when considering, for example,

the motion of vehicles approaching a red light; in this case, ve-

hicles move slowly until they stop, which presents interference

to traffic state labeling. If we use nfk × (SP − vk + 1) as a

vote, where SP is the number of grades of quantized speed,

then activities with lower speeds will get more attention. It may

be used to detect speeding in some traffic scenes.

D. Temporal Constraint

In our traffic scenario, the traffic states we are detecting

are naturally related to the traffic activity controlled by traffic

lights. Therefore, we need to consider the temporal constraint

for state detection. For example, every state in a traffic scene

should have certain duration according to traffic lights transi-

tion, such as 30 or 60 s. Some labeled traffic states lasting a

very short time can be errors due to noise or too few activities

in the frame (not enough data to determine a traffic state). For

instance, if states0 = [1, 1, 1, 2, 1, 1, 1], then state 2 in vector

states0 is probably a detection error. To address this problem,

we model the traffic state transition using an HMM.

Specifically, the cooccurrence of activities in each frame can

be treated as an observationof,(f=1, . . . ,F) (F is the total num-

ber of frames in the sequence). Then, the whole frame sequence

can be treated as an observation sequence O=(o1, o2, . . . , oF )
generated from an HMM. The hidden states correspond to the

traffic states. Then, the Viterbi algorithm [19] can be used to

find the most probable hidden states q=(q1, q2, . . . , qF ).
In the Viterbi algorithm, the observationO=(o1, o2, . . . , oF )

and model λ=(A,B,π) are given. A is the state transi-

tion probability matrix. Its element aij=P (qf =j|qf−1= i),
(1≤ i, j≤L) denotes the transition probability from state i to

state j. B is the observation probability distribution. Here,

bj(of )=P (of |qf =j) is the probability of state j emitting the

observation of . Finally, π is the initial state distribution, where

πi=P (q1= i).
Then, the probability of the most probable state sequence for

the first f observations δf (j) is given by

δ1(i) =πibi(o1) (1)

δ2(j) = bj(o2)max
i

(aijδ1(i)) (2)

. . .
δf (j) = bj(of )max

i
(aijδf−1(i)) . (3)

Then, the Viterbi path q = (q1, q2, . . . , qF ) can be retrieved,

by saving all states used in (1)–(3).

We use an iterative approach similar to [20], to determine

the transition probability {aij} and to decode state sequence as

follows.

Step 1. Estimate B from vector tf , i.e., bj(of )= tfj/
∑L

j=1
tfj ,

which is to quantize the votes of states in framef .

Step 2. Initialize πi by the ratio between the number of frames

labeled by state i and the total number of frames L in

sequence states0.

Step 3. Initialize {aij} by taking the ratio between the numbers

of transitions from state i to state j and the total number of

any transitions from state i in sequence states0.

Step 4. Decode states by formula (1)–(3) and gain a new

sequence statesnew = (q1, q2, . . . , qF );
Step 5. Recalculate {πi} and {aij} based on statesnew to get

π
new and Anew. For each element, if the difference of aij

and anewij is not small enough, go to step 4. Otherwise,

convergence is reached; statesnew is the interaction labels

of our frame sequence.

E. Anomaly Detection

In our work, every visual word has been associated with one

activity, and every frame has been associated with one of the

interaction patterns. Thus, we can detect motion anomalies at

two levels, as follows:

• activity anomaly: visual words do not belong to any of the

activities;

• interaction anomaly: activities cannot coexist with others

in that frame according to the corresponding interaction

pattern.

Specifically, if a frame is classified to interaction l, all visual

words in l are Wl, the vocabulary is W = {W1, . . . ,Wl, . . . ,
WL}, and a visual word in the frame is w, then

if

{w �∈ W, activity anomaly

w ∈ W&w �∈ Wl, interaction anomaly

otherwise, normality.

IV. EXPERIMENTAL RESULTS

To analyze and understand a new monitoring scene, activities

and traffic states are first discovered. Then, the video is seg-

mented according to the labeled frames. Finally, anomalies are

detected. The video data utilized come from the Next Genera-

tion Simulation (NGSIM) program [21], which is captured from

the roof of a 36-story building with overhead view of the streets.

A. Words in Documents

The video is 2160 s long, and the frame rate is 10 frames/s. For

a fair comparison with the method in [12], the whole video is div-

ided into 216 clips, i.e., 10 s long each. The size of each frame is

640×480 pixel. For processing, we do not consider the bound-

aries of the image, so that the region of interest is 600×388 pixel.

In our experiment, LOF = 3 denotes that we totally have

three layers in the multiresolution image pyramid. At the first

layer, the size of the processing unit is 1 × 1 block, and the op-

tical flow window is set to 6 × 6 blocks. Accordingly, at the

third layer, the processing unit is 4 × 4 blocks (pixels), and the

optical flow window is 24 × 24 blocks (pixels). Therefore, we

set the patch as 4 × 4 pixels, and there are 150 × 97 patches.

Optical flows detected by the LK and MLK algorithms are

shown in Fig. 7. In our case, the MLK algorithm works much

better than the LK algorithm since the movements within two

consecutive frames are not slow enough for the LK algorithm.

Moving directions are quantized into north, south, east, and

west. Speed is quantized into five levels, using the thresholds

0.582, 2.65, 4.56, and 6.58, which represent the local minimum

values of the speed histogram, as shown in Fig. 8. The statistical

results are retrieved from an 180-s-long video, which contains

two cycles of traffic signal change. The more levels we use, the
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Fig. 7. LK and MLK optical flow results. Patch movements are represented
by red lines, and their moving directions are represented by blue arrows.

Fig. 8. Patch distribution over nonzero speeds. The X-coordinate represents
the speed, whereas the Y -coordinate represents the number of patches at each
speed. The red lines indicate local minimum values, which are the thresholds
for speed quantization.

Fig. 9. Most possible motions in each patch. Four directions are represented
by colors of red (east, dir = 3), purple (north, dir = 2), blue (west, dir = 4),
and green (south, dir = 1). The five speed levels are indicated by five grades
of color in each direction, in which lighter colors indicate lower speeds.

more details we are able to obtain and the more words we will

have, which causes more calculations. In our experiment, the

number of words is 150 × 97 × 4 × 5.

By analyzing all the words appearing in the whole video, we

can find the most likely motion in each patch, which is shown

in Fig. 9. Four directions are represented by colors of red (east,

dir = 3), purple (north, dir = 2), blue (west, dir = 4), and

green (south, dir = 1). The five speed levels are indicated by

five grades of color in each direction, in which lighter colors

indicate lower speeds.

Words in each speed level are shown in Fig. 10(a)–(e),

and the distribution over speeds and directions is shown in

Fig. 10(f). In Fig. 10(f), it is shown that the traffic volume de-

scends from direction 4, direction 3, direction 1 to direction 2.

In addition, the average speed in direction 2 is also the lowest

because most motions in this direction are in lower speed levels

as speed 1, 2, and 3.

B. Activity Learning by the First-Level LDA

Based on a number of experiments, we have found that

setting the number of activities K equal to 32 is a reasonable

choice for the data at hand. α1 and β1 are initialized as α1 =
50/K and β1 = 200/W , respectively [15]–[18]. According to

our experiments and [31], larger α1 will model each video clip

Fig. 10. Word distribution over five speed levels and four directions.
(a)–(e) Words in each speed level. (f) Word distribution over speeds and
directions. Colors represent speeds and directions, as shown in Fig. 9.

with more activities, and larger β1 will force the model to assign

more visual words to each activity. The discovered activities are

shown in Fig. 11. We use a threshold equal to 30 to remove the

noise for all these activities, i.e., to remove the visual words

that appear less than 30 times in each activity. Some activities

represent single trajectory (e.g., activities 15 and 28), whereas

some represent multiple trajectories (e.g., activities 3 and 27).

Activities 9, 18, 26, and 28 are mainly vehicles making right

turns. Activities 13, 15, 21, and 23 are vehicles making left

turns, while activities 1, 2, 6, and 12 are vehicles crossing the

intersection. The average speed of all moving patches in each

activity is calculated and shown in Fig. 11.

C. Interaction Learning by Second-Level LDA

According to the traffic signal at the intersection, it is clear

that there are five traffic states in the video, which are described

by the trajectories’ diagrammatic sketches in Fig. 12(a). Red

solid lines are trajectories of vehicles, whereas blue dotted

lines are trajectories of pedestrians. The discovered traffic states

are shown in Fig. 12(b). Since states are distributions over

activities, these distributions are shown in Fig. 12(c) as well.

The activities in each state are shown in Table I. We can easily

notice that some activities (shown in color) appear in multiple

states. With respect to the rules of the road, this appearance is

reasonable, as explained next.

Activity 10 is included in all five states, which means that

it can always happen during the video. As shown in Fig. 11,

activity 10 presents vehicles moving from east to west at a

lower speed. This activity can be part of different trajectories.

Particularly in states 1, 2, and 4, it describes vehicles slowing

down and waiting at the stop line for the green light. However,

in states 3 and 5, it describes the vehicles speeding up to cross

the intersection. Activity 28 describes a right turn, which is

legal to take place in states 2, 3, and 4 at that intersection. In ad-

dition to these activities, there are some activities only assigned

to a certain state. Those special activities are key points to

distinguish the states; hence, we call them “key activities.” For

example, when activity 23 takes place, the system is in state 1,

regardless of whether other activities in state 1 are taking place.

But if none of those “key activities” are taking place in a frame,

it would be hard to decide which state the system is in. This is

a common source of labeling errors.
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Fig. 11. Thirty-two activities and their average speeds. (1)–(32) Activities
learned by the first-level LDA. (33) Average speed of all moving patches
in each activity. The X-coordinate represents the activity index, whereas the
Y -coordinate represents the average speed of each activity.

Turning right from west to south is split into activities 26 and

28 only because of the different speeds. The right turn appears

in states 2, 3, and 4, but activity 26 only happens in state 4.

This is because vehicles making a right turn from west to south

should slow down and wait until no car is moving from north to

south, which is not necessary in states 2 and 3. Thus, compared

to other recent research results, the speed feature adopted in

this paper provides a mean to accurately characterize activities

in a scene.

Fig. 12. Five states discovered by the second-level LDA. (a) Trajectory
diagrammatic sketches in (b) traffic states. The states are numbered by 1 to 5
from left to right. (c) Mixture of activities in states, where color indicates state.
The X-coordinate represents the activity, whereas the Y -coordinate represents
the mixture over activities. (a) Trajectory diagrammatic sketches of traffic states
(from 1 to 5). (b) Traffic states (from 1 to 5). (c) Mixtures of activities in states.

D. Video Segmentation

Each video frame is labeled by the state it belongs to, i.e.,

from state 1 to 5. This provides a video segmentation, as shown

by the bar graph in Fig. 13. The X-coordinate represents the

frame number, whereas the Y -coordinate represents the state

index. The black red bars at the bottom indicate labeling errors

at the corresponding frames. The accuracy of our frame-level

segmentation is 81.25% for the whole video. It is calculated

by the ratio between the number of correctly labeled frames

and the total number of frames, which is 17551/21600 in the

experiment. Most of the errors occur at the transitions between

states. However, since the ground truth is labeled according to

the traffic signal timing record, in real traffic scenes, there is

reaction time for objects to start moving or stopping; this causes

time delay.

Three segments in Fig. 13 are zoomed in and shown in

Fig. 14. Red bars represent labeling errors. Since the frame

is our basic segmenting unit, a video clip could be segmented

into different sections. In other words, with our method, state

switches can take place within a video clip. For example, the

traffic state changes into state 2 within clip 43 (frame 4200 to

4300), as shown in Fig. 14(a). The labeling errors in Fig. 14(b)

show a late transition from state 1 to state 5 during clips 178 and

179. The 103 state switches were detected in the whole video,

but none of them happened just right at the boundary of two

consecutive video clips.

The plot on the top in Fig. 15 shows the difference in errors

with and without the use of the Viterbi algorithm. Green lines

are the frames that were mistakenly labeled and corrected by

the Viterbi algorithm, whereas the pink lines are new errors

due to the use of the Viterbi algorithm. To show more details,

three parts are zoomed in on the second row. The corresponding

frame labeling results are shown in the third and fourth rows,

in which red lines represent errors and blue lines correctly

labeled frames. It is clear to see that, in the second and third

columns, all the errors are corrected by considering the tempo-

ral constraint. However, in the first column, some new errors are
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TABLE I
ACTIVITIES IN EACH STATE

Fig. 13. Video segmentation results. The X-coordinate represents the frame index, whereas the Y -coordinate represents the state index. Red bars represent
labeling errors.

Fig. 14. State switch within a video clip. The X-coordinate represents the
frame index, and the Y -coordinate represents the state index. Red bars represent
labeling errors.

Fig. 15. Video segmentation with and without the use of the Viterbi algorithm.
Corresponding to Fig. 13, the plot on the top shows the difference in errors with
and without the use of the Viterbi algorithm. Green lines are the frames that
were mistakenly labeled and corrected by the Viterbi algorithm, whereas the
pink lines are new errors due to the use of the Viterbi algorithm. Three parts
are zoomed in on the second row. Figures in the bottom rows represent frame
labeling results of these three parts without and with the Viterbi algorithm. Red
lines are errors, whereas blue lines are correctly labeled frames.

introduced. However, the count of correct frames is increased

from 17269 to 17551 frames, and the accuracy of the frame

labeling is accordingly improved from 79.95% to 81.25% by

applying the Viterbi algorithm.

In Table II, the percentage of errors is shown, which is

calculated as the number of errors in each situation versus the

total number of errors. In particular, the number in the first

column and the last row indicates that, from all the labeling

errors, 30.2% of them are due to state 5 mistakenly labeled as

state 1. The error happens at such a high percentage mainly

because there is no key activity taking place in these frames.

TABLE II
PERCENTAGE OF ERRORS

Fig. 16. Activity in frame 1550.

The only activity taking place in those frames is a left turn from

east to south, which belongs to either state 1 or state 5, as shown

in Fig. 16. It becomes a confusing situation during labeling.

Four frames with detected events are shown in the first

column in Fig. 17. Moving pixels are colored according to their

moving direction and speed. In the second and third columns,

the bar graphs show the votes on per activity and the states for

each frame, as described in Section III-C. Most of the frames

are easily and correctly labeled according to their correspond-

ing state votes, except for Figs. 17(a) and (c), which obtain

close votes on two states. In Fig. 17(a), the key activity 25

in state 2 (a car is crossing the intersection from south to north)

is taking place, while activity 26 voting for state 4 (right turn

from west to south at lower speeds) also appears. The vote

for activity 2 is very close to activity 4, which nearly causes a

labeling error. Similarly, in Fig. 17(c), several cars are crossing

the intersection from east to west, which is the key activity 22

in state 5, while other cars are making left turns, which belong

to both activities 21 and 23. However, activity 23 is the key

activity in state 1, which obtained higher votes in this frame.

Thus, the frame is mistakenly labeled by state 1.
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Fig. 17. Event detection per frame. For each frame, the detected visual words
are shown in the first column, and the votes on activities are shown in the second
column. Votes on states are shown in the third column. (a) Frame 4258, labeled
as state 2. (b) Frame 10779, labeled as state 5. (c) Frame 14765, labeled as
state 1. (d) Frame 20714, labeled as state 1.

Fig. 18. Anomaly detection. Colored patches indicate detected anomalies, and
arrows are used to describe the motions. Green patches are activity anomalies,
whereas the red patches are interaction anomalies.

E. Anomaly Detection

Anomaly detection results for some consecutive frames are

shown in Fig. 18. Colored patches indicate detected anomalies.

Green patches are activity anomalies, whereas the red patches

are interaction anomalies. The red arrows represent their trajec-

tories. Particularly, in Fig. 18(a), an activity anomaly is shown

that of a car moving along the crosswalk. It is not one of the

legal 32 activities shown in Fig. 11. In Fig. 18(b), a car is chang-

ing lane when it is waiting at the stop line. Fig. 18(c) shows

a bus blocking the way of vehicles moving from east to south.

Some motion patches are activity anomalies, whereas others are

interaction anomalies. The trajectory of the bus matches with

Fig. 19. Twenty activities and their average speeds. The activities are num-
bered from left to right and up to down.

Fig. 20. Two states and the distributions over activities. (Left to right)
Trajectory diagrammatic sketches, learned traffic states, and their distributions
over activities. Dotted lines represent trajectories of pedestrians.

activity 13, but some patches correspond to speeding, which

are detected as activity anomalies. Notice that motion cannot

appear in state 1 when activities 23 or 27 are happening. In

Fig. 18(d), a car is making a U-turn, while others are making

a left turn. In Fig. 18(e), a pedestrian is crossing the street but

not on a crosswalk. Finally, in Fig. 18(f), a car is crossing the

intersection from east to west, which is an interaction anomaly

that cannot exist in the state (state 1) as labeled.

F. Additional Results

1) Activity Learning by the First-Level LDA: To compare

with the work of Wang, we applied our approach to the MIT

video from [12], which is 5500 s long. By dividing the video

into 10-s clips as Wang did, there are 550 clips in all. We con-

sider that the size of pixel patch is 10 × 10, which is the same as

the work of Wang. Since the image size is 720 × 480 and direc-

tions and speeds are quantized into four and five bins, the code

book is of size 72 × 48 × 5 × 4. The number of activities K is

set equal to 20. The discovered activities are shown in Fig. 19.
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Fig. 21. Results of video segmentation and event detection. The video segmentation results are shown in the middle in (a). The X-coordinate represents the
second index, and the Y -coordinate represents the state index. The three frames on the top in (a) are from state 1, while the two frames at the bottom are from state 2.
Their activity and state votes are shown in (b) and (c), respectively. (a) Video segmentation and detected words in five frames. (b) Activity votes. (c) State votes.

Among these, activities 6, 7, 15, and 16 are activities of pedes-

trians walking on sidewalks or crosswalks, whereas the rest are

vehicle activities. Different from the work of Wang, we consid-

ered moving speed as one of the parameters in visual word.

2) Interaction Learning by Second-Level LDA: There are two

traffic states in this video, i.e., horizontal and vertical. Thus, the

number of states is set equal to 2. The discovered two traffic states

are shown in Fig. 20. It is easy to figure out that state 1 shown

in Fig. 20(a) represents vertical traffic, whereas state 2 shown in

Fig. 20(b) represents horizontal traffic. The bar graph to the right

of each image is the corresponding distribution of activities.

3) Video Segmentation: The video segmentation results are

shown by the bar graph in Fig. 21(a). All video frames are

labeled by states 1 and 2. Five frames are shown with detected

events. The three frames on the top are from state 1, while the

two frames at the bottom are from state 2. Their activity and

state votes are shown in Fig. 21(b) and (c). The accuracy of our

segmentation is 84.14%.
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Fig. 22. Video segmentation in video clip. The figure on the top shows the
clip-based (each clip contains 10 s) video segmentation obtained by [12]. The
X-coordinate represents the video clip index, and the Y -coordinate represents
the interaction index. Figures on the bottom show two parts of our frame-
based video segmentation. The X-coordinate represents the second index (only
the first frame’s labeling result is sampled to show in each second), and the
Y -coordinate represents the interaction index. The frames in a clip, in which a
state transition occurred, are shown in red (clip 437 is shown on the bottom left,
and clip 464 is shown on the bottom right).

Fig. 23. Anomaly detection. Red patches indicate detected anomalies,
whereas blue dotted lines represent their trajectories.

In [12], the video was segmented based on clip clustering

with five interactions. The segmentation provided by [12] is

shown on the top in Fig. 22. Notice that clips 437 and 464 are

labeled by interactions 5 and 4, respectively. However, since

frame is our basic segmentation unit, a video clip could be seg-

mented into different sections. In other words, our method can

figure out state switches within a video clip. Our segmentation

for these two clips is shown on the bottom in Fig. 22, where

frames are labeled by the two states shown in Fig. 20. State

transitions within clips 437 and 464 are clearly shown.

4) Anomaly Detection: Anomaly detection results are

shown in Fig. 23. In Fig. 23(a), an activity anomaly is shown

that of a car making a U-turn at the intersection. In Fig. 23(b),

interaction anomalies are shown that of pedestrians walking

across the road in the west–east direction, which is not allowed

in the vertical traffic state.

V. DISCUSSION

A reasonable question arising from the presented work is

why is the two-level LDA needed. What kind of results would

we obtain if we were to use one-level LDA and set the number

of topics equal to 5 for our first data set? We address these

questions by looking at the experimental results under the two

situations. Fig. 24 shows the topics detected by LDA, when the

number of topics is set equal to 5. Comparing with our five

states detected by two-level LDA, which are shown in Fig. 12,

there is no much difference, except for some details, e.g., left

Fig. 24. Topics detected by one-level LDA.

Fig. 25. Activities learned by the first-level HDP and their average speeds.

Fig. 26. Traffic states learned by the second-level HDP and their distributions
over activities.

turn from east to south is not well shown in Fig. 24(e). It is

because, in that topic, the left turn contains much fewer words

than the rest part; these words are abandoned when we apply

a threshold to remove the noise. In our two-level LDA, we

have more topics in the first level and applied a threshold to

all topics at the first level, which makes the result better at

details. Since some parts in Fig. 24 are overlapped, when a

word happens, its harder to decide which topic it belongs to.

Therefore, more topics we have, less overlaps may occur, and

easier decision can be made during labeling process. According

to the states in Fig. 24, the accuracy of video segmentation

is 72.70%. Furthermore, based on the two-level structure, we

can classify the anomalies into either activity or interaction

anomalies, which cannot be achieved by one-level structure.

The other question is how we decide the number of the topics

in each level. As we discussed, more topics make less overlaps.

However, more topics may also bring more calculation. In our

experiments, we are trying to find a number of activities, which

can balance these two issues well. We also set the number of

activities as 16 and 48. The segmentation accuracies are 74.35%

and 74.37%, respectively.

Moreover, some models, such as the HDP [22], can be

adopted in the two-level structure, which can decide the number

of topics during modeling process. Thus, the number of activi-

ties and traffic states can be learned automatically. Particularly

for the MIT video data, Fig. 25 shows the seven activities

discovered by the first-level HDP model with the initialization

of 20 activities. In addition, the two traffic states learned by the

second-level HDP are shown in Fig. 26.

Let us now discuss how to use our method in a realistic

scenario of infinite video sequence. The method introduced

previously is applied to analyze a finite video, including activity

and traffic state mining, video segmentation, and anomaly
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detection. It is an offline process. However, the infinite video

processing contains two steps: training and testing phases.

In the training phase, finite training video data are captured

beforehand. Then, the two-level LDA model is adopted to learn

the distribution of activities over pixel patches and traffic states

over activities from the training video. Notice that the training

video and the testing infinite video scenario are captured at

the same place, with the same view of angle and camera

parameters. It is better for the training video to contain more

events. At least, it should cover a whole traffic cycle and with all

kinds of legal motions. In the testing phase, the infinite scenario

is treated as the testing data. When a frame is captured by the

camera, we first detect the visual words by the MLK algorithm

and apply the voting processing introduced in Section III-C,

according to the distributions learned in the training phase.

Then, label the frame by the traffic state that gains the highest

vote. Thus, the scenario sequence is segmented frame by frame,

and anomalies are detected as well according to our proposed

method in Section III-E.

VI. CONCLUSION

We have proposed a hierarchical motion pattern mining

approach to interpret a dynamic video scene. The LDA model

is adopted to discover both activities and interactions in videos.

The advantage of our method is that moving speed is considered

in visual word and interactions are detected and assigned to

every video frame. This enables a finer semantic interpreta-

tion and more precise anomaly detection. Experiments on real

surveillance videos show that our approach is able to interpret

every video frame by different traffic states and detect anoma-

lies in each frame.
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