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Abstract. Our long term research goal is to develop a fully automated,
image-based diagnostic system for early diagnosis of pulmonary nodules
that may lead to lung cancer. In this paper, we focus on generating new
probabilistic models for the estimated growth rate of the detected lung
nodules from Low Dose Computed Tomography (LDCT). We propose a
new methodology for 3D LDCT data registration which is non-rigid and
involves two steps: (i) global target-to-prototype alignment of one scan
to another using the learned prior appearance model followed by (ii)
local alignment in order to correct for intricate relative deformations.
Visual appearance of these chest images is described using a Markov-
Gibbs random field (MGRF) model with multiple pairwise interaction.
An affine transformation that globally registers a target to a prototype is
estimated by the gradient ascent-based maximization of a special Gibbs
energy function. To handle local deformations, we displace each voxel
of the target over evolving closed equi-spaced surfaces (iso-surfaces) to
closely match the prototype. The evolution of the iso-surfaces is guided
by a speed function in the directions that minimize distances between
the corresponding voxel pairs on the iso-surfaces in both the data sets.
Preliminary results show that the proposed accurate registration could
lead to precise diagnosis and identification of the development of the
detected pulmonary nodules.

1 Introduction

Because lung cancer is the most common cause of cancer deaths, fast and accu-
rate analysis of pulmonary nodules is of major importance for medical computer-
aided diagnostic systems (CAD).

Previous work. Tracking the temporal nodule behavior is a challenging task
because of changes in the patient’s position at each data acquisition, as well
as effects of heart beats and respiration. In order to accurately measure how
the nodules are developing in time, all these motions should be compensated
by registering LDCT data sets taken at different time. Many methods have
been proposed for solving medical image registration problems (see e.g. [1]) and
to exclude the lung motions (see [2]). Moreover, it has been reported that the
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computer-assisted volume measurement is more reliable for small pulmonary
nodules than the measurement by human experts [3]. Therefore, the remaining
principal difficulty in monitoring and evaluating the nodule growth rate is auto-
matic identification (or registration) of corresponding nodules in the follow-up
scans. Registration of the two successive CT scans determines transformation of
one image with respect to the other [4]. Some examples of previous works on
registration of CT lung images are overviewed below.

Most of them exploit corresponding local structural elements (features) in the
images. For the follow-up of small nodules, Brown et al. [5] developed a patient-
specific model with 81% success for 27 nodules. Ko et al. [6] used centroids of
local structures to apply rigid and affine image registration with 96% success for
58 nodules of 10 patients. To account for non-rigid motions and deformations of
the lung, Woods et al. [7] developed an objective function using an anisotropic
smoothness constraint and a continuous mechanical model. Feature points re-
quired by this algorithm are detected and registered as explained in [8], and then
the continuous mechanical model is used to interpolate the image displacement.

2 Lung Motion Correction Models

2.1 Global Alignment

Basic Notation. Let Q = {0, . . . , Q− 1}; R = [(x, y, z) : x = 0, . . . , X − 1; y =
0, . . . , Y − 1; z = 0, . . . , Z − 1], and Rp ⊂ R be a finite set of scalar image sig-
nals (e.g. gray levels), a 3D arithmetic lattice supporting digital LDCT image
data g : R → Q, and an arbitrary-shaped part of the lattice occupied by the
prototype, respectively. Let a finite set N = {(ξ1, η1, ζ1), . . . , (ξn, ηn, ζn)} of the
(x, y, z)-coordinate offsets define neighboring voxels, or neighbors {((x + ξ, y +
η, z + ζ), (x − ξ, y − η, z − ζ)) : (ξ, η, ζ) ∈ N} ∧ Rp interacting with each voxel
(x, y, z) ∈ Rp. The set N yields a 3D neighborhood graph on Rp that specifies
translation invariant pairwise interactions between the voxels with n families
Cξ,η,ζ of second-order cliques cξ,η,ζ(x, y, z) = ((x, y, z), (x + ξ, y + η, z + ζ)).

Interaction strengths are given by a vector VT =
[
VT

ξ,η,ζ : (ξ, η, ζ) ∈ N
]

of po-

tentials VT
ξ,η,ζ =

[
Vξ,η,ζ(q, q′) : (q, q′) ∈ Q2

]
depending on signal co-occurrences;

here T indicates transposition.

Data normalization. To account for possible monotone (order -preserving)
changes of signals (e.g. due to different sensor characteristics), everyLDCTdata set
is equalized using the cumulative empirical probability distribution of its signals.

Markov–Gibbs random field (MGRF) based appearance model. In a
generic MGRF with multiple pairwise interaction, the Gibbs probability P (g) ∝
exp(E(g)) of an object g aligned with the prototype g◦ on Rp is specified
with the Gibbs energy E(g) = |Rp|VTF(g) where FT(g) is the vector of scaled
empirical probability distributions of signal co-occurrences over each clique fam-
ily: FT(g) = [ρξ,η,ζFT

ξ,η,ζ(g) : (ξ, η, ζ) ∈ N ] where ρξ,η,ζ = |Cξ,η,ζ|
|Rp| is the rel-

ative size of the family and Fξ,η,ζ(g) = [fξ,η,ζ(q, q′|g) : (q, q′) ∈ Q2]T; here,
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fξ,η,ζ(q, q′|g) = |Cξ,η,ζ;q,q′ (g)|
|Cξ,η,ζ | are empirical probabilities of signal co-occurrences,

and Cξ,η,ζ;q,q′(g) ⊆ Cξ,η,ζ is a subfamily of the cliques cξ,η,ζ(x, y, z) supporting
the co-occurrence (gx,y,z = q, gx+ξ,y+η,z+ζ = q′) in g. The co-occurrence distri-
butions and the Gibbs energy for the object are determined over Rp, i.e. within
the prototype boundary after an object is affinely aligned with the prototype.
To account for the affine transformation, the initial image is resampled to the
back-projected Rp by interpolation.

Learning the potentials. The MLE of V is proportional in the first ap-
proximation to the scaled centered empirical co-occurrence distributions for the
prototype:

Vξ,η,ζ = λρξ,η,ζ

(
Fξ,η,ζ(g◦) − 1

Q2
U

)
; (ξ, η, ζ) ∈ N (1)

where U is the vector with unit components. The common scaling factor λ is also
computed analytically; it is approximately equal to Q2 if Q � 1 and ρξ,η,ζ ≈ 1
for all (ξ, η, ζ) ∈ N . In our case it can be set to λ = 1 because the registration
uses only relative potential values and energies.

Learning the characteristic neighbors. To find the characteristic neighbor-
hood set N , the relative Gibbs energies Eξ,η,ζ(g◦) = ρξ,η,ζVT

ξ,η,ζFξ,η,ζ(g◦) for
the clique families, i.e. the scaled variances of the corresponding empirical co-
occurrence distributions, are compared for a large number of possible candidates.

To automatically select the characteristic neighbors, we consider an empirical
probability distribution of the energies as a mixture of a large “non-characteristic”
low-energy component and a considerably smaller characteristic high-energy com-
ponent: P (E) = πPlo(E)+(1−π)Phi(E). Both the components Plo(E), Phi(E) are
of arbitrary shape and thus are approximated with linear combinations of positive
and negative discrete Gaussians (EM-based algorithms introduced in [9] are used
for both the approximation and the estimation of π). Example of the estimated
characteristic neighbors is shown in Fig. 1.

Appearance-based registration. The desired affine transformation of an ob-
ject g corresponds to a local maximum of its relative energy E(ga) = VTF(ga)

(a) (b) (c)

Fig. 1. The 3D neighborhood system (a) estimated for the lung tissues; its 2D cross sec-
tion in the plane ζ = 0 (b; in white) and its superposition onto the lungs reconstructed
from the LDCT images (c)
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under the learned appearance model [N ,V]. Here, ga is the part of the object
image reduced to Rp by the 3D affine transformation a = [a11, . . . , a34]: x′ =
a11x+a12y+a13z+a14; y′ = a21x+a22y+a23z+a24; z′ = a31x+a32y+a33z+a34.
The initial transformation step is a pure translation with a11 = a22 = a33 = 1;
a12 = a13 = a21 = a23 = a31 = a32 = 0, ensuring the most “energetic” over-
lap between the object and prototype. In other words, the chosen initial position
(a∗

14, a
∗
24, a

∗
34) maximizes the Gibbs energy. Then the gradient search for the local

energy maximum closest to the initialization selects all the 12 parameters.
Figures 2(c,d) show the results of the global alignment of two segmented lungs.

It is clear from Fig. 2(d) that the global alignment is not perfect due to local
deformation.

(a) (b) (c) (d) (e) (f)

Fig. 2. 3D global and local registration: (a) reference data, (b) target data, (c) tar-
get data after 3D affine transformation, (d) checkerboard visualization to show the
motion of lung tissues, (e) results of our non-rigid registration, and (f) checkerboard
visualization to show the quality of the proposed local deformation model.

2.2 Local Motion Model

To handle local deformations, we propose to deform the object over evolving
closed equi-spaced surfaces (distance iso-surfaces) so that it closely matches the
prototype. The evolution is guided by an exponential speed function and intends
to minimize distances between corresponding voxel pairs on the iso-surfaces in
both the images. The normalized cross correlation of the Gibbs energy is used
to find correspondences between the iso-surfaces.

Our approach involves the following steps. First, a distance map inside the
object is generated using fast marching level sets [10]. Secondly, the distance
map is used to generate iso-surfaces (Fig. 3(b)). Note that the number of iso-
surfaces is not necessarily the same for both the images and depends on the
accuracy and the speed required by the user. The third step consists in finding
correspondences between the iso-surfaces using the normalized cross correlation
of the Gibbs energy. Finally, the evolution process deforms the iso-surfaces in
the first data set (the target image) to match the iso-surfaces in the second data
set (the prototype).

The following notation is used below for defining the evolution equation:

– bh
g1

= [ph
k : k = 1, . . . , K] – K control points on a surface h on the reference

data such that pk = (xk, yk, zk) form a circularly connected chain of line
segments (p1,p2), . . . , (pK−1,pK), (pK ,p1);
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– bγ
g2

= [pγ
n : n = 1, . . . , N ] – N control points on a surface γ on the target

data such that pn = (xn, yn, zn) form a circularly connected chain of line
segments (p1,p2), . . . , (pN−1,pN ), (pN ,p1);

– S(ph
k ,pγ

n) – the Euclidean distance between a point on the surface h in the
image g1 and the corresponding point on the surface γ in the image g2;

– S(pγ
n,pγ−1

n ) – the Euclidean distance between a point on the surface γ in
the image g1 and the nearest point on the surface γ − 1 in g1, and

– ν(.) – the propagation speed function.

The evolution bτ → bτ+1 of a deformable boundary b in discrete time, τ =
0, 1, . . ., is specified by the system pγ

n,τ+1 = pγ
n,τ + ν(pγ

n,τ )un,τ ; n = 1, . . . , N
of difference equations where ν(pγ

n,τ ) is a propagation speed function for the
control point pγ

n,τ and un,τ is the unit vector along the ray between the two
corresponding points. The propagation speed function

ν(pγ
n,τ ) = min

{
S(ph

k ,pγ
n,τ ), S(pγ

n,τ ,pγ−1
n,τ ), S(pγ

n,τ ,pγ+1
n,τ )

}

satisfies the condition ν(pγ
n,τ ) = 0 if S(ph

k ,pγ
n,τ ) = 0 and prevents the current

point from cross-passing the closest neighbor surfaces as shown in Fig. 3(a). The
latter restriction is known as the smoothness constraint.

Again, the checkerboard visualization (Fig. 2(d)) of the data set in Fig. 2(a)
and the aligned data set in Fig. 2(c) highlights the effect of the motion of lung
tissues.

(a) (b)

Fig. 3. (a) The proposed evolution scenario and (b) equi-spaced surfaces

3 Experimental Results and Conclusions

The proposed registration models were tested on the clinical datasets collected
from 27 patients. Each patient has five LDCT scans, with the three months
period between each two successive scans. This preliminary clinical database
was collected by the LDCT scan protocol using a multidetector GE Light Speed
Plus scanner with the following scanning parameters: slice thickness of 2.5 mm
reconstructed every 1.5 mm, scanning pitch 1.5, pitch 1 mm, 140 KV, 100 MA,
and F.O.V 36 cm.

After the two volumes at different time instants are registered, the task is to
find out if the nodules are growing or not. For this purpose, the lung nodules
were segmented after registration using our previous approach [11]. Once the
nodules are segmented in the original and the registered image sequences, the
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Table 1. Growth rate statistics for 14 patients with malignant nodules and 13 patients
with benign nodules (p – statistical significance; μ – average rate, %; σ – standard
deviation, %)

With the proposed registration Without the registration
Scanning Malignant Benign Malignant Benign
period μM σM μB σB p μM σM μB σB p

3 months 22 16 0.9 0.7 10−4 5.6 4.8 2.8 1.9 0.1

6 months 49 20 2.9 2.3 10−4 11 6.6 8.4 5.1 0.3

9 months 91 29 4.5 3.8 10−4 24 9.3 17 11 0.1

12 months 140 32 5.4 4.3 10−4 30 11 20 16 0.1

Table 2. Statistical analysis for the growth rate of the detected lung nodules for
fourteen patients who have malignant nodules and thirteen patients who have benign
nodules using ImageChecker commercial CT CAD system

Diameter-based follow up Volume-based follow up
Scanning Malignant Benign Malignant Benign
period μM σM μB σB p μM σM μB σB p

3 months 1.1 0.97 0.71 0.59 0.2229 6.15 3.91 3.67 2.73 0.0631

6 months 1.4 1.13 1.1 1.29 0.5254 11.7 4.37 9.27 4.17 0.1525

9 months 1.8 2.77 1.6 2.51 0.8461 21.9 9.93 16.17 9.97 0.0753

12 months 1.9 2.57 1.71 2.77 0.8548 31.3 12.3 22.21 12.7 0.0705

Table 3. Statistical analysis for the growth rate of the detected lung nodules for
fourteen patients who have malignant nodules and thirteen patients who have benign
nodules using the proposed approach in [12]

Scanning Malignant Benign
period μM σM μB σB p

3 months 9.25 7.5 4.91 2.93 0.0624

6 months 16.1 11.97 9.95 6.91 0.1183

9 months 23.7 16.43 13.87 9.85 0.0737

12 months 45.57 34.87 25.57 15.77 0.0699

volumes of the nodules are calculated using the Δx, Δy, and Δz values from the
scanner (in our case, 0.7, 0.7, and 2.5 mm, respectively).

Our statistical analysis using the unpaired t-test shows that the difference be-
tween the average growth rate of malignant nodules and the average growth rate
of benign nodules found with the proposed approach is statistically significant
(as shown in Table 1). Also, Table 1 shows that no significant difference is found
if the growth rate is measured without the data alignment step.

The advantages of using the proposed CAD system to estimate the growth
rate of the detected lung nodules are highlighted by estimating the growth rate
of the same detected lung nodules with ImageChecker commercial CT CAD sys-
tem. This software provides two methods to monitor the detected lung nodules:
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(a) (b)

(c) (d)

Fig. 4. Estimated probability density functions (probabilistic models) of the relative
growth rates for 14 malignant and 13 benign nodules using our Linear Combination
of Discrete Gaussian (LCDG) model [9]: (a) three months, (b) six months, (c) nine
months, and (d) twelve months.

1) estimating the growth rate based on measuring the changes of the diameter
of the largest cross section in the detected nodules and 2) estimating the growth
rate based on measuring the volumetric changes of the detected nodules. The
estimated growth rate using this CAD system is shown in Table 2. The main
limitation of the ImageChecker CT CAD system is not considering the local
deformation of the lung tissues from breathing and the heart beating. For this
reason, the statistical analysis shown in Table 2 does not demonstrate a signifi-
cant difference between the estimated growth rate of malignant lung nodules and
the estimated growth rate of benign lung nodules, a difference which is detected
by our proposed CAD system. The same limited ability to estimate the growth
rate of the detected lung nodules exists in the most recent published work by
Reeves et al. [12]. The statistical analysis of the estimated growth rates of the
same detected nodules using the proposed approach in [12] is shown in Table 3.
A traditional Bayes classifier based on the analysis of the growth rate of both
benign and malignant nodules for 27 patients diagnosed 14 and 13 patients as
malignant and benign, respectively. For simplicity, this classifier used a multi-
variate Gaussian model of the growth rate with the rates at 3, 6, 9, and 12
months as four discriminant features. The same patients were diagnosed by
biopsy (the ground truth) showing that the classification was 100% correct.
Therefore, the proposed image analysis techniques could be a promising
supplement to the current technologies for diagnosing lung cancer.

We introduced a new approach for registering 3D spiral LDCT images that
combines an initial affine global alignment of one scan (the target) to another
scan (the reference) using the learned prior appearance model and subsequent
local alignments that account for more intricate deformations.
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