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ABSTRACT

Rapid detection of compact binary coalescence (CBC) with a network of advanced
gravitational-wave detectors will offer a unique opportunity for multi-messenger astronomy.
Prompt detection alerts for the astronomical community might make it possible to observe the
onset of electromagnetic emission from CBC. We demonstrate a computationally practical fil-
tering strategy that could produce early-warning triggers before gravitational radiation from the
final merger has arrived at the detectors.

Subject headings: gamma-ray burst: general — gravitational waves — methods: data analysis — meth-

ods: numerical

1. Introduction

As a compact binary system loses energy to
gravitational waves (GWs), its orbital separation
decays, leading to a runaway inspiral with the GW
amplitude and frequency increasing until the sys-
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tem eventually merges. If a neutron star (NS)
is involved, it might become tidally disrupted
near the merger and fuel an electromagnetic (EM)
counterpart (Shibata & Taniguchi 2008). Effort
from both the GW and the broader astronomical
communities might make it possible to use GW ob-
servations as early warning triggers for EM follow-
up. In the first generation of ground-based laser
interferometers, the GW community initiated a
project to send alerts when potential GW tran-
sients were observed in order to trigger follow-up
observations by EM telescopes. The typical la-
tencies were 30 minutes (Hughey 2011). This was
an important achievement, but too late to catch
any prompt optical flash or the onset of an on-
axis optical afterglow. Since the GW signal is
in principle detectable even before the tidal dis-
ruption, one might have the ambition of reporting
GW candidates not minutes after the merger, but
seconds before. We explore one essential ingredi-
ent of this problem, a computationally inexpen-
sive latency free, real-time filtering algorithm for
detecting inspiral signals in GW data. We also
consider the prospects for advanced GW detec-
tors and discuss other areas of work that would be
required for rapid analysis.

Compact binary coalescence (CBC) is a plau-
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sible progenitor for most short gamma-ray bursts
(short GRBs; Lee et al. 2005; Nakar 2007), but the
association is not iron-clad (Virgili et al. 2011).
The tidally disrupted material falls onto the newly
formed, rapidly spinning compact object and is
accelerated in jets along the spin axis with a
timescale of 0.1–1 s after the merger (Janka et al.
1999), matching the short GRB duration distri-
bution well. Prompt EM emission including the
GRB can arise as fast outflowing matter col-
lides with slower matter ejected earlier in inner
shocks. The same inner shocks, or potentially re-
verse shocks, can produce an accompanying opti-
cal flash (Sari & Piran 1999). The prompt emis-
sion is a probe into the extreme initial conditions
of the outflow, in contrast with afterglows, which
arise in the external shock with the local medium
and are relatively insensitive to initial conditions.
Optical flashes have been observed for a hand-
ful of long GRBs (Atteia & Boër 2011) by tele-
scopes with extremely rapid response or, in the
case of GRB 080319b, by pure serendipity, where
several telescopes were already observing the af-
terglow of another GRB in the same field of view
(FOV; Racusin et al. 2008). The observed opti-
cal flashes peaked within tens of seconds and de-
cayed quickly. For short GRB energy balance and
plasma density, however, the reverse shock model
predicts a peak flux in radio, approximately 20
minutes after the GRB, but also a relatively faint
optical flash (Nakar 2007); for a once-per-year Ad-
vanced LIGO event at 130 Mpc, the radio flux will
peak around 9 GHz at ∼5 mJy, with emission in
the R-band at ∼19 mag. Interestingly, roughly a
quarter to half of the observed short GRBs also
exhibit extended X-ray emission of 30–100 s in
duration beginning ∼10 s after the GRB and car-
rying comparable fluence to the initial outburst.
This can be explained if the merger results in the
formation of a proto-magnetar that interacts with
ejecta (Bucciantini et al. 2012). Rapid GW alerts
would enable joint EM and GW observations to
confirm the short GRB-CBC link and allow the
early EM observation of exceptionally nearby and
thus bright events.

In 2010 October, LIGO1 completed its sixth
science run (S6) and Virgo2 completed its third

1http://www.ligo.org/
2http://www.ego-gw.it/

science run (VSR3). While both LIGO detec-
tors and Virgo were operating, several all-sky de-
tection pipelines operated in a low-latency con-
figuration to send astronomical alerts, namely,
Coherent WaveBurst (cWB), Omega, and Multi-
Band Template Analysis (MBTA; Hughey 2011;
Abadie et al. 2011a, 2012, 2011c). cWB and
Omega are both unmodeled searches for bursts
based on time-frequency decomposition of the
GW data. MBTA is a novel kind of template-
based inspiral search that was purpose-built for
low latency operation. MBTA achieved the best
GW trigger-generation latencies of 2–5 minutes.
Alerts were sent with latencies of 30–60 minutes,
dominated by human vetting. Candidates were
sent for EM follow-up to several telescopes; Swift,
LOFAR, ROTSE, TAROT, QUEST, SkyMapper,
Liverpool Telescope, Pi of the Sky, Zadko, and
Palomar Transient Factory (Kanner et al. 2008;
Hughey 2011) imaged some of the most likely sky
locations.

There were a number of sources of latency asso-
ciated with the search for CBC signals in S6/VSR3
(Hughey 2011), listed here.

Data acquisition and aggregation (&100 ms)
The LIGO data acquisition system collects data
from detector subsystems 16 times a second (Bork et al.
2001). Data are also copied from all of the GW
observatories to the analysis clusters over the In-
ternet, which is capable of high bandwidth but
only modest latency. Together, these introduce
a latency of &100 ms. These technical sources of
latency could be reduced with significant engineer-
ing and capital investments, but they are minor
compared to any of the other sources of latency.

Data conditioning (∼1 min) Science data
must be calibrated using the detector’s frequency
response to gravitational radiation. Currently,
data are calibrated in blocks of 16 s. Within
∼1 minute, data quality is assessed in order to
create veto flags. These are both technical sources
of latency that might be addressed with improved
calibration and data quality software for advanced
detectors.

Trigger generation (2–5 min) Low-latency
data analysis pipelines deployed in S6/VSR3
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achieved an impressive latency of minutes. How-
ever, second to the human vetting process, this
dominated the latency of the entire EM follow-up
process. Even if no other sources of latency ex-
isted, this trigger generation latency is too long
to catch prompt or even extended emission. Low-
latency trigger generation will become more chal-
lenging with advanced detectors because inspiral
signals will stay in band up to 10 times longer. In
this work, we will focus on reducing this source of
latency.

Alert generation (2–3 min) S6/VSR3 saw
the introduction of low-latency astronomical
alerts, which required gathering event parame-
ters and sky localization from the various online
analyses, downselecting the events, and calculat-
ing telescope pointings. If other sources of latency
improve, the technical latency associated with this
infrastructure could dominate, so work should be
done to improve it.

Human validation (10–20 min) Because
the new alert system was commissioned during
S6/VSR3, all alerts were subjected to quality con-
trol checks by human operators before they were
disseminated. This was by far the largest source of
latency during S6/VSR3. Hopefully, confidence in
the system will grow to the point where no human
intervention is necessary before alerts are sent, so
we give it no further consideration here.

This work will focus on reducing the latency of
trigger production. Data analysis strategies for
advance detection of CBCs will have to strike a
balance between latency and throughput. CBC
searches consist of banks of matched filters, or
cross-correlations between the data stream and a
bank of nominal “template” signals. There are
many different implementations of matched filters,
but most have high throughput at the cost of high
latency, or low latency at the cost of low through-
put. The former are epitomized by the overlap-
save algorithm for frequency-domain (FD) con-
volution, currently the preferred method in GW
searches. The most obvious example of the latter
is direct time domain (TD) convolution, which is
latency-free. However, its cost in floating point
operations per second is linear in the length of the

templates, so it is prohibitively expensive for long
templates. The computational challenges of low-
latency CBC searches are still more daunting for
advanced detectors for which the inspiral signal re-
mains in band for a large fraction of an hour (see
the Appendix).

Fortunately, the morphology of inspiral signals
can be exploited to offset some of the compu-
tational complexity of known low-latency algo-
rithms. First, the signals evolve slowly in fre-
quency, so that they can be broken into contiguous
band-limited time intervals and processed at pos-
sibly lower sample rates. Second, inspiral filter
banks consist of highly similar templates, admit-
ting methods such as the singular value decompo-
sition (SVD) (Cannon et al. 2010) or the Gram-
Schmidt process (Field et al. 2011) to reduce the
number of templates.

Several efforts that exploit one or both of these
properties are under way to develop low-latency
CBC search pipelines with tractable computing re-
quirements. One example is MBTA (Marion & the Virgo Collaboration
2003; Buskulic et al. 2010), which was deployed
in S6/VSR3. MBTA consists of multiple, usu-
ally two, template banks for different frequency
bands, one which is matched to the early inspi-
ral and the other which is matched to the late
inspiral. An excursion in the output of any filter
bank triggers coherent reconstruction of the full
matched filtered output. Final triggers are built
from the reconstructed matched filter output. An-
other novel approach using networks of parallel,
second-order infinite impulse response (IIR) fil-
ters is being explored by Hooper et al. (2010) and
Luan et al. (2011).

We will use both properties to demonstrate that
a very low latency detection statistic is possible
with current computing resources. Assuming the
other technical sources of latency can be reduced
significantly, this could make it possible to send
prompt alerts to the astronomical community.

The paper is organized as follows. First, we dis-
cuss prospects for early-warning detection. Then,
we provide an overview of our novel method for
detecting CBC signals near real-time. We then
describe a prototype implementation using open
source signal processing software. To validate our
approach we present a case study focusing on a
particular subset of the NS–NS parameter space.
We conclude with some remarks on what remains
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to prepare for the advanced detector era.

2. Prospects for early-warning detection
and EM follow-up
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Fig. 1.— Expected number of NS–NS sources
that could be detectable by Advanced LIGO a
given number of seconds before coalescence. The
heavy solid line corresponds to the most probable
yearly rate estimate from Abadie et al. (2010b).
The shaded region represents the 5%–95% confi-
dence interval arising from substantial uncertainty
in predicted event rates.

Before the GW signal leaves the detection band,
we can imagine examining the signal-to-noise ratio
(S/N) accumulated up to that point and if it is
already significant, release an alert immediately,
trading S/N and sky localization accuracy for pre-
merger detection.

In the quadrupole approximation, the instanta-
neous frequency of the GW inspiral signal is re-
lated to the time t relative to coalescence (section
5.1 of Sathyaprakash & Schutz 2009) through

f(t) =
1

πMt

[
5

256

Mt

t

]3/8

, (1)

where M = M2/5µ3/5 is the chirp mass of the bi-
nary, Mt = GM/c3 is the chirp mass in units of
time, M is the total mass, and µ is the reduced
mass. The expected value of the single-detector
S/N for an optimally oriented (source at detec-
tor’s zenith or nadir, orbital plane face-on) inspiral
source is (Abadie et al. 2010b)

ρ =
Mt

5/6c

π2/3D

√

5

6

∫ fhigh

flow

f−7/3

S(f)
df, (2)

where D is the luminosity distance and S(f) is
the one-sided power spectral density of the detec-
tor noise. flow and fhigh are low- and high- fre-
quency limits of integration which may be chosen
to extend across the entire bandwidth of the de-
tector. If we want to trigger at a time t before
merger, then we must cut off the SNR integration
at fhigh = f(t) with f(t) given by Equation (1)
above.

Figure 1 shows projected early detectability
rates for NS–NS binaries in Advanced LIGO as-
suming the anticipated detector sensitivity for
the ‘zero detuning, high power’ configuration de-
scribed in Shoemaker (2010) and NS–NS merger
rates estimated in Abadie et al. (2010b). The
merger rates have substantial measurement uncer-
tainty due to the small sample of known double
pulsar systems that will merge within a Hubble
time; they also have systematic uncertainty due
to sensitive dependence on the pulsar luminosity
distribution function (Kalogera et al. 2004). The
most probable estimates indicate that at a single-
detector S/N threshold of 8, we will observe a to-
tal of 40 events yr−1; ∼10 yr−1 will be detectable
within 10 s of merger and ∼5 yr−1 will be de-
tectable within 25 s of merger if analysis can pro-
ceed with near zero latency.

We emphasize that any practical GW search
will include technical delays due to light travel
time between the detectors, detector infrastruc-
ture, and the selected data analysis strategy. Fig-
ure 1 must be understood in the context of all of
the potential sources of latency, some of which are
avoidable and some of which are not.

EM follow-up requires estimating the location
of the GW source. The localization uncertainty
can be estimated from the uncertainty in the time
of arrival of the GWs, which is determined by the
signal’s effective bandwidth and S/N (Fairhurst
2009). Table 1 and Figure 2 show the estimated
90% confidence area versus time of the loudest coa-
lescence events detectable by Advanced LIGO and
Advanced Virgo. This is the minimum area; local-
ization is best at high elevation from the plane con-
taining the detectors and worst at zero elevation.
Fairhurst also cautions that his Fisher matrix cal-
culation fails to capture disconnected patches of
probability, which occur prominently in networks
of three detectors where there are generally two
local maxima on opposite sides of the plane of
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Table 1: Horizon Distance, S/N at Merger, and
Area of 90% Confidence at Selected Times Before
Merger for Sources with Expected Detectability
Rates of 40, 10, 1, and 0.1 yr−1.

Rate Horizon Final A(90%) (deg2)
yr−1 (Mpc) S/N 25 s 10 s 1 s 0 s
40 445 8.0 —– —– —– 9.6
10 280 12.7 —– 1200 78 3.8
1 130 27.4 1300 260 17 0.8
0.1 60 58.9 280 56 3.6 0.2

Note.—A dash (—–) signifies that the confidence area
is omitted because at the indicated time the SNR would
not have crossed the detection threshold of 8.

the detectors. Aside from the mirror degeneracy,
characterizing the uncertainty region by the Fisher
matrix alone tends to overestimate, rather than
underestimate, the area for low-S/N events, but
this effect is generally more than compensated by
the source being in an unfavorable sky location.
For these reasons, the localization uncertainty es-
timated from timing is highly optimistic and will
only suffice for an order-of-magnitude estimate.
Once per year, we expect to observe an event with
a final single-detector S/N of ≈27 whose location
can be constrained to about 1300 deg2 (3.1% of
the sky) within 25 s of merger, 260 deg2 (0.63%
of the sky) within 10 s of merger, and 0.82 deg2

(0.0020% of the sky) at merger.

It is unfeasible to search hundreds of square de-
grees for a prompt counterpart. For comparison to
some examples of modern ground-based wide-field
survey instruments, the Palomar Transient Fac-
tory P48 (Law et al. 2009) has a 3.50× 2.31 deg2

FOV; the Pan-STARRS P1 (Kaiser et al. 2002)
has a 7 deg2 FOV. Even the eagerly awaited
LSST will have an FOV of 9.6 deg2 (Ivezic et al.
2008). However, it is possible to reduce the lo-
calization uncertainty by only looking at galax-
ies from a catalog that lie near the sky location
and luminosity distance estimate from the GW
signal (Nuttall & Sutton 2010) as was done in
S6/VSR3. Within the expected Advanced LIGO
NS–NS horizon distance, the number of galaxies
that can produce a given signal amplitude is much
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Fig. 2.— Area of the 90% confidence region as
a function of time before coalescence for sources
with anticipated detectability rates of 40, 10, 1,
and 0.1 yr−1. The heavy dot indicates the time
at which the accumulated S/N exceeds a single-
detector threshold of 8.

larger than in Initial LIGO and thus the catalog
will not be as useful for downselecting pointings
for most events. However, exceptional GW sources
will necessarily be extremely nearby. Within this
reduced volume there will be fewer galaxies to con-
sider for a given candidate and catalog complete-
ness will be less of a concern. This should reduce
the 90% confidence area substantially.

3. Novel real-time algorithm for CBC de-
tection

In this section, we describe a decomposition
of the CBC signal space that reduces TD fil-
tering cost sufficiently to allow for the possibil-
ity of early-warning detection with modest com-
puting requirements. We expand on the ideas
of Marion & the Virgo Collaboration (2003) and
Buskulic et al. (2010) that describe a multi-band
decomposition of the compact binary signal space
that resulted in a search with minutes latency
during S6/VSR3 (Hughey 2011). We combine
this with the SVD rank-reduction method of
Cannon et al. (2010) that exploits the redundancy
of the template banks.

3.1. Conventional CBC searches

Searches for inspiral signals typically employ
matched filter banks that discretely sample the
possible intrinsic parameters (Allen et al. 2011).
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Suppose that the observed data x[k] consists of
a known, nominal signal s[k], and additive, zero-
mean noise n[k]

x[k] = s[k] + n[k].

A matched filter is a linear filter, defined as

y[k] =

N−1∑

n=0

h[n]x[k − n] = ys[k] + yn[k],

where ys is the response of the filter to the sig-
nal alone and yn is the response of the signal to
noise alone. The matched filter’s coefficients max-
imize the ratio of the expectation of the filter’s
instantaneous response to the variance in the fil-
ter’s output:

(signal to noise)2 =
E [y[0]]2

var [y[k]]
=

ys[0]
2

var [yn[k]]
.

It is well known (see, for example, Turin 1960)
that if n[k] is Gaussian and wide-sense stationary,
then the optimum is obtained when

h̃[n] = s̃∗[n] S̃−1[n],

up to an arbitrary multiplicative constant. Here,
h̃[n], s̃[n], and x̃[n] are the discrete Fourier trans-
forms (DFTs) of h[k], s[k], and x[k], respectively;
S̃[n] = E [ñ[n]ñ∗[n]] is the folded, two-sided, dis-
crete power spectrum of n[k]. It is related to the
continuous, one-sided power spectral density S(f)
through

S̃[n] =







S(n) if n = 0 or n = N/2

S(nf0/2N)/2 if 0 < n < N/2

S̃[N − n] otherwise,

where N is the length of the filter and f0 is the
sample rate. (In order to satisfy the Nyquist-
Shannon sampling criterion, it is assumed that the
detector’s continuous noise power spectral den-
sity S(f) vanishes for all f > f0/2, or alterna-
tively, that the data are low-pass filtered prior to
matched filtering.) The DFT of the output is

ỹ[n] = s̃∗[n] S̃−1[n] x̃[n]

≡
(

S̃−1/2[n] s̃[n]
)∗ (

S̃−1/2[n] x̃[n]
)

. (3)

The placement of parentheses in Equation (3) em-
phasizes that the matched filter can be thought of

as a cross-correlation of a whitened version of the
data with a whitened version of the nominal signal.
In this paper, we shall not describe the exact pro-
cess by which the detector’s noise power spectrum
is estimated and deconvolved from the data; for
the remainder of this paper we shall define x[k]
as the whitened data stream. Correspondingly,
from this point on we shall use h[k] to describe
the whitened templates, being the inverse DFT of
(

S̃−1/2[n] s̃[n]
)∗

.

Inspiral signals are continuously parameterized
by a set of intrinsic source parameters θ that de-
termine the amplitude and phase evolution of the
GW strain. For systems in which the effects of
spin can be ignored, the intrinsic source parame-
ters are just the component masses of the binary,
θ = (m1,m2). For a given source, the strain ob-
served by the detector is a linear combination of
two waveforms corresponding to the ‘+’ and ‘×’
GW polarizations. Thus, we must design two fil-
ters for each θ.

The coefficients for the M filters are known as
templates, and are formed by discretizing and time
reversing the waveforms and weighting them by
the inverse amplitude spectral density of the de-
tector’s noise. To construct a template bank, tem-
plates are chosen with M/2 discrete signal param-
eters θ0, θ1, . . . , θM/2−1. These are chosen such
that any possible signal will have an inner prod-
uct >0.97 with at least one template. Such a
template bank is said to have a minimal match
of 0.97 (Owen & Sathyaprakash 1999).

Filtering the detector data involves a convolu-
tion of the data with the templates. For a unit-
normalized template hi[k] and whitened detector
data x[k], both sampled at a rate f0, the result
can be interpreted as the S/N, ρi[k], defined as

ρi[k] =

N−1∑

n=0

hi[n]x[k − n]. (4)

This results in M S/N time series. Local peak-
finding across time and template indices results in
single-detector triggers. Coincidences are sought
between triggers in different GW detectors in or-
der to form detection candidates.

Equation (4) can be implemented in the TD as
a bank of finite impulse response (FIR) filters, re-
quiringO(MN) floating point operations per sam-
ple. However, it is typically much more computa-
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tionally efficient to use the convolution theorem
and the fast Fourier transform (FFT) to imple-
ment fast convolution in the FD, requiring only
O(M lgN) operations per sample but incurring a
latency of O(N) samples.

3.2. The LLOID method

Here we describe a method for reducing the
computational cost of a TD search for CBC.
We give a zero latency, real-time algorithm that
competes in terms of floating point operations
per second with the conventional overlap-save
FD method, which by contrast requires a signifi-
cant latency due to the inherent acausality of the
Fourier transform. Our method, called LLOID
(Low Latency Online Inspiral Detection), involves
two transformations of the templates that pro-
duce a network of orthogonal filters that is far
more computationally efficient than the original
bank of matched filters.

The first transformation is to chop the tem-
plates into disjointly supported intervals, or time
slices. Since the time slices of a given template
are disjoint in time, they are orthogonal with re-
spect to time. Given the chirp-like structure of
the templates, the “early” (lowest frequency) time
slices have significantly lower bandwidth and can
be safely downsampled. Downsampling reduces
the total number of filter coefficients by a factor
of ∼100 by treating the earliest part of the wave-
form at ∼1/100 of the full sample rate. Together,
the factor of 100 reduction in the number of fil-
ter coefficients and the factor of 100 reduction in
the sample rate during the early inspiral save a
factor of ∼104 floating point operations per sec-
ond (flop s−1) over the original (full sample rate)
templates.

However, the resulting filters are still not or-
thogonal across the parameter space and are in
fact highly redundant. We use the SVD to ap-
proximate the template bank by a set of orthog-
onal basis filters (Cannon et al. 2010). We find
that this approximation reduces the number of fil-
ters needed by another factor of ∼100. These two
transformations combined reduce the number of
floating point operations to a level that is com-
petitive with the conventional high-latency FD-
matched filter approach. In the remainder of this
section we describe the LLOID algorithm in detail
and provide some basic computational cost scal-

ing.

3.2.1. Selectively reducing the sample rate of the
data and templates

The first step of our proposed method is to
divide the templates into time slices in a TD
analog to the FD decomposition employed by
MBTA (Marion & the Virgo Collaboration 2003;
Buskulic et al. 2010). The application to GW
data analysis is foreshadowed by an earlier FD
convolution algorithm, proposed by Gardner
(1995), based on splitting the impulse response
of a filter into smaller blocks. We decompose each
template hi[k] into a sum of S non-overlapping
templates

hi[k] =

S−1∑

s=0

{

hs
i [k] if ts 6 k/f0 < ts+1

0 otherwise
(5)

for S integers {f0ts} such that 0 = f0t0 < f0t1 <
· · · < f0tS = N . The outputs of these new
time-sliced filters form an ensemble of partial S/N
streams. By linearity of the filtering process, these
partial S/N streams can be summed to reproduce
the S/N of the full template.

Since waveforms with neighboring intrinsic
source parameters θ have similar time-frequency
evolution, it is possible to design computationally
efficient time slices for an extended region of pa-
rameter space rather than to design different time
slices for each template.

For concreteness and simplicity, consider an in-
spiral waveform in the quadrupole approximation,
for which the time-frequency relation is given by
Equation (1). This monotonic time-frequency re-
lationship allows us to choose time slice bound-
aries that require substantially less bandwidth at
early times in the inspiral.

An inspiral signal will enter the detection band
with some low frequency flow at time tlow before
merger. Usually the template is truncated at some
prescribed time t0, or equivalent frequency fhigh,
often chosen to correspond to the last stable orbit
(LSO). The beginning of the template is critically
sampled at 2flow, but the end of the template is
critically sampled at a rate of 2fhigh. In any time
interval smaller than the duration of the template,
the bandwidth of the filters across the entire tem-
plate bank can be significantly less than the full
sample rate at which data are acquired.
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Our goal is to reduce the filtering cost of
a large fraction of the waveform by computing
part of the convolution at a lower sample rate.
Specifically we consider here time slice bound-
aries with the smallest power-of-two sample rates
that sub-critically sample the time-sliced tem-
plates. The time slices consist of the S intervals
[
t0, t1

)
,
[
t1, t2

)
, . . . ,

[
tS−1, tS

)
, sampled at fre-

quencies f0, f1, . . . , fS−1, where f s is at least
twice the highest nonzero frequency component of
any filter in the bank for the sth time slice.

The time-sliced templates can then be down-
sampled in each interval without aliasing, so we
define them as

hs
i [k] ≡

{

hi

[

k f
fs

]

if ts 6 k/f s < ts+1

0 otherwise.
(6)

We note that the time slice decomposition in
Equation (5) is manifestly orthogonal since the
time slices are disjoint in time. In the next sec-
tion, we examine how to reduce the number of
filters within each time slice via SVD of the time-
sliced templates.

3.2.2. Reducing the number of filters with the
SVD

As noted previously, the template banks used
in inspiral searches are by design highly corre-
lated. Cannon et al. (2010) showed that apply-
ing the SVD to inspiral template banks greatly
reduces the number of filters required to achieve
a particular minimal match. A similar technique
can be applied to the time-sliced templates as de-
fined in Equation (6) above. The SVD is a matrix
factorization that takes the form

hs
i [k] =

M−1∑

l=0

vsilσ
s
l u

s
l [k] ≈

Ls−1∑

l=0

vsilσ
s
l u

s
l [k]. (7)

where us
l [k] are orthonormal basis templates re-

lated to the original time-sliced templates through
the reconstruction matrix, vsilσ

s
l . The expectation

value of the fractional loss in S/N is the SVD tol-
erance, given by

[
Ls−1∑

l=0

(σs
l )

2

][
M−1∑

l=0

(σs
l )

2

]−1

,

determined by the number Ls of basis templates
that are kept in the approximation. Cannon et al.

(2010) showed that highly accurate approxima-
tions of inspiral template banks could be achieved
with few basis templates. We find that when com-
bined with the time slice decomposition, the num-
ber of basis templates Ls is much smaller than the
original number of templates M and improves on
the rank reduction demonstrated in Cannon et al.
(2010) by nearly an order of magnitude.

Because the sets of filters from each time slice
form orthogonal subspaces, and the basis filters
within a given time slice are mutually orthogo-
nal, the set of all basis filters from all time slices
forms an orthogonal basis spanning the original
templates.

In the next section, we describe how we form
our early-warning detection statistic using the
time slice decomposition and the SVD.

3.2.3. Early-warning output

In the previous two sections, we described two
transformations that greatly reduce the computa-
tional burden of TD filtering. We are now pre-
pared to define our detection statistic, the early-
warning output, and to comment on the compu-
tational cost of evaluating it.

First, the sample rate of the detector data must
be decimated to match sample rates with each of
the time slices. We will denote the decimated de-
tector data streams using a superscript “s” to in-
dicate the time slices to which they correspond.
The operator H� will represent the appropriate
decimation filter that converts between the base
sample rate f0 and the reduced sample rate f s:

xs[k] =
(
H�x0

)
[k].

We shall use the symbol H� to represent an inter-
polation filter that converts between sample rates
f s+1 and f s of adjacent time slices,

xs[k] =
(
H�xs+1

)
[k].

From the combination of the time slice decom-
position in Equation (6) and the SVD defined in
Equation (7), we define the early-warning output
accumulated up to time slice s using the recur-
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rence relation,

ρsi [k] =

S/N from previous time slices
︷ ︸︸ ︷
(
H↑ρs+1

i

)
[k]

+

Ls−1∑

l=0

vsilσ
s
l

︸ ︷︷ ︸

reconstruction

orthogonal fir filters
︷ ︸︸ ︷

Ns−1∑

n=0

us
l [n]x

s[k − n] . (8)

Observe that the early-warning output for time
slice 0, ρ0i [k], approximates the S/N of the origi-
nal templates. The signal flow diagram in Figure 3
illustrates this recursion relation as a multirate fil-
ter network with a number of early-warning out-
puts.

Ultimately, the latency of the entire LLOID al-
gorithm is set by the decimation and interpolation
filters because they are generally time symmetric
and slightly acausal. Fortunately, as long as the
latency introduced by the decimation and inter-
polation filters for any time slice s is less than
that time slice’s delay ts, the total latency of the
LLOID algorithm will be zero. To be concrete,
suppose that the first time slice, sampled at a rate
f0 = 4096 Hz, spans times [t0, t1) = [0 s, 0.5 s),
and the second time slice, sampled at f1 = 512 Hz,
spans [t1, t2) = [0.5 s, 4.5 s). Then the second
time slice’s output, ρ1i [k], will lead the first time
slice’s output, ρ0i [k], by 0.5 s. A decimation filter
will be necessary to convert the 4096 Hz input sig-
nal x[k] ≡ x0[k] to the 512 Hz input x1[k], and an
interpolation filter will be necessary to match the
sample rates of the two early-warning outputs. In
this example, as long as the decimation and inter-
polation filters are together acausal by less than
t1 = 0.5 s, the total S/N ρ0i [k] will be available
with a latency of zero samples. When zero latency
is important, we may take this as a requirement
for the decimation and interpolation filter kernels.

In the next section, we compute the expected
computational cost scaling of this decomposition
and compare it with the direct TD implementation
of Equation (4) and higher latency blockwise FD
methods.

3.3. Comparison of computational costs

We now examine the computational cost scal-
ing of the conventional TD or FD matched filter

procedure as compared with LLOID. For conve-
nience, Table 2 provides a review of the notation
that we will need in this section.

3.3.1. Conventional TD method

The conventional, direct TD method consists of
a bank of FIR filters, or sliding-window dot prod-
ucts. If there are M templates, each N samples
in length, then each filter requires MN multipli-
cations and additions per sample, or, at a sample
rate f0,

2MNf0 flop s−1. (9)

3.3.2. Conventional FD method

The most common FD method is known as the
overlap-save algorithm, described in Press et al.
(2007). It entails splitting the input into blocks
of D samples, D > N , each block overlapping the
previous one by D − N samples. For each block,
the algorithm computes the forward FFT of the
data and each of the templates, multiplies them,
and then computes the reverse FFT.

Modern implementations of the FFT, such
as the ubiquitous fftw, require about 2D lgD
operations to evaluate a real transform of size
D (Johnson & Frigo 2007). Including the for-
ward transform of the data and M reverse trans-
forms for each of the templates, the FFT costs
2(M + 1)D lgD operations per block. The mul-
tiplication of the transforms adds a further 2MD
operations per block. Since each block produces
D−N usable samples of output, the overlap-save

Table 2: Notation Used to Describe Filters.

Definition
f s Sample rate in time slice s
M Number of templates
N Number of samples per template
S Number of time slices
Ls Number of basis templates in time slice s
Ns Number of samples in decimated time slice s
N� Length of decimation filter
N� Length of interpolation filter

9



method requires

f0 · 2(M + 1) lgD + 2M

1−N/D
flop s−1. (10)

In the limit of many templates, M ≫ 1, we can
neglect the cost of the forward transform of the
data and of the multiplication of the transforms.
The computational cost will reach an optimum at
some large but finite FFT block size D ≫ N .
In this limit, the FD method costs ≈ 2f0M lgD
flop s−1.

By adjusting the FFT block size, it is possible
to achieve low latency with FD convolution, but
the computational cost grows rapidly as the la-
tency in samples (D −N) decreases. It is easy to
show that in the limit of many templates and long
templates, M, lgN ≫ 1, the computational cost
scales as

(

1 +
template length

latency

)
(
2f0M lgN

)
.

3.3.3. LLOID method

For time slice s, the LLOID method requires
2NsLsf s flop s−1 to evaluate the orthogonal fil-
ters, 2MLsf s flop s−1 to apply the linear trans-
formation from the Ls basis templates to the M
time-sliced templates, and Mf s flop s−1 to add
the resultant partial S/N stream.

The computational cost of the decimation of
the detector data is a little bit more subtle. Dec-
imation is achieved by applying an FIR anti-
aliasing filter and then downsampling, or delet-
ing samples in order to reduce the sample rate
from f s−1 to f s. Naively, an anti-aliasing fil-
ter with (f s−1/f s)N� coefficients should demand
2N�(f s−1)2/f s flop s−1. However, it is neces-
sary to evaluate the anti-aliasing filter only for
the fraction f s/f s−1 of the samples that will not
be deleted. Consequently, an efficient decima-
tor requires only 2N�f s−1 flop s−1. (One com-
mon realization is an ingenious structure called
a polyphase decimator, described in Chapter 1 of
Jovanovic-Dolecek (2002).)

The story is similar for the interpolation fil-
ters used to match the sample rates of the par-
tial S/N streams. Interpolation of a data stream
from a sample rate f s to f s−1 consists of in-
serting zeros between the samples of the origi-
nal stream, and then applying a low-pass filter

with (f s−1/f s)N� coefficients. The low-pass fil-
ter requires 2MN�(f s−1)2/f s flop s−1. However,
by taking advantage of the fact that by construc-
tion a fraction f s/f s−1 of the samples are zero,
it is possible to build an efficient interpolator
that requires only 2MN�f s−1 flop s−1. (Again,
see Jovanovic-Dolecek (2002) for a discussion of
polyphase interpolation.)

Taking into account the decimation of the de-
tector data, the orthogonal FIR filters, the recon-
struction of the time-sliced templates, the inter-
polation of S/N from previous time slices, and the
accumulation of S/N, in total the LLOID algo-
rithm requires

S−1∑

s=0

(2NsLs + 2MLs +M) f s

+ 2
∑

fs∈{fk : 0<k<S}

(
N�f0 +MN�f s−1

)
(11)

flop s−1. The second sum is carried out over the
set of distinct sample rates (except for the base
sample rate) rather than over the time slices them-
selves, as we have found that it is sometimes desir-
able to place multiple adjacent time slices at the
same sample rate in order to keep the size of ma-
trices that enter the SVD manageable. Here we
have assumed that the decimation filters are con-
nected in parallel, converting from the base sample
rate f0 to each of the time slice sample rates f1,
f2, . . . , and that the interpolation filters are con-
nected in cascade fashion with each interpolation
filter stepping from the sample rate of one time
slice to the next.

We can simplify this expression quite a bit by
taking some limits that arise from sensible filter
design. In the limit of many templates, the cost of
the decimation filters is negligible as compared to
the cost of the interpolation filters. Typically, we
will design the interpolation filters with N� . Ls

so that the interpolation cost itself is negligible
compared with the reconstruction cost. Finally, if
the number of basis templates per time slices Ls is
not too small, the reconstruction cost dominates
over the cost of accumulating the partial S/N. In
these limits, the cost of LLOID is dominated by
the basis filters themselves and the reconstruction,
totaling 2

∑S−1
s=0 f sLs (Ns +M) flop s−1.
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3.3.4. Speedup of LLOID relative to TD method

If the cost of the basis filters dominates, and the
frequency of the templates evolves slowly enough
in time, then we can use the time-frequency rela-
tionship of Equation (1) to estimate the speedup
relative to the conventional, direct TD method.
The reduction in flop s−1 is approximately

2
∑S−1

s=0 f sLsNs

2MNf0

≈ α

(tlow − thigh) (f0)
2

∫ thigh

tlow

(2f(t))
2
dt

=
16α

(
tlowf

2(tlow)− thighf
2(thigh)

)

(f0)
2
(tlow − thigh)

(12)

where α ≈ Ls/M is the rank reduction factor, or
ratio between the number of basis templates and
the number of templates. This approximation as-
sumes that the frequency of the signal is evolv-
ing very slowly so that we can approximate the
time slice sample rate as twice the instantaneous
GW frequency, f s ≈ 2f(t), and the number of
samples in the decimated time slice as the sample
rate times an infinitesimally short time interval,
Ns ≈ 2f(t) dt. The integral is evaluated using the
power-law form of f(t) from Equation (1). Sub-
stituting approximate values for a template bank
designed for component masses around (1.4, 1.4)
M⊙, α ≈ 10−2, tlow = 103 s, flow = 101 Hz,
fhigh = fISCO ≈ 1570 Hz, f0 = 2fISCO, and
thigh = fISCO

−1, we find from Equation (12) that
the LLOID method requires only ∼ 10−6 times as
many flop s−1 as the conventional TD method.

4. Implementation

In this section we describe an implementation
of the LLOID method described in Section 3 suit-
able for rapid GW searches for CBCs. The LLOID
method requires several computations that can be
completed before the analysis is underway. Thus,
we divide the procedure into an offline planning
stage and an online, low-latency filtering stage.
The offline stage can be done before the analysis
is started and updated asynchronously, whereas
the online stage must keep up with the detector
output and produce search results as rapidly as
possible. In the next two subsections we describe
what these stages entail.

4.1. Planning stage

The planning stage begins with choosing tem-
plates that cover the space of source parameters
with a hexagonal grid (Cokelaer 2007) in order
to satisfy a minimal match criterion. This as-
sures a prescribed maximum loss in S/N for signals
whose parameters do not lie on the hexagonal grid.
Next, the grid is partitioned into groups of neigh-
bors called sub-banks that are appropriately sized
so that each sub-bank can be efficiently handled
by a single computer. Each sub-bank contains
templates of comparable chirp mass, and there-
fore similar time-frequency evolution. Dividing
the source parameter space into smaller sub-banks
also reduces the offline cost of the SVD and is
the approach considered in Cannon et al. (2010).
Next, we choose time slice boundaries as in Equa-
tion (6) such that all of the templates within a sub-
bank are sub-critically sampled at progressively
lower sample rates. For each time slice, the tem-
plates are downsampled to the appropriate sam-
ple rate. Finally, the SVD is applied to each time
slice in the sub-bank in order to produce a set of
orthonormal basis templates and a reconstruction
matrix that maps them back to the original tem-
plates as described in Equation (7). The down-
sampled basis templates, the reconstruction ma-
trix, and the time slice boundaries are all saved to
disk.

4.2. Filtering stage

The LLOID algorithm is amenable to latency-
free, real-time implementation. However, a real-
time search pipeline would require integration di-
rectly into the data acquisition and storage sys-
tems of the LIGO observatories. A slightly more
modest goal is to leverage existing low latency, but
not real-time, signal processing software in order
to implement the LLOID algorithm.

We have implemented a prototype of the low-
latency filtering stage using an open-source signal
processing environment called GStreamer3 (ver-
sion 0.10.33). GStreamer is a vital component
of many Linux systems, providing media play-
back, authoring, and streaming on devices from
cell phones to desktop computers to streaming me-
dia servers. Given the similarities of GW detec-

3http://gstreamer.net/
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tor data to audio data it is not surprising that
GStreamer is useful for our purpose. GStreamer
also provides some useful stock signal processing
elements such as resamplers and filters. We have
extended the GStreamer framework by developing
a library called gstlal4 that provides elements for
GW data analysis.

GStreamer pipelines typically operate with very
low (in some consumer applications, imperceptibly
low) latency rather than in true real time because
signals are partitioned into blocks of samples, or
buffers. This affords a number of advantages, in-
cluding amortizing the overhead of passing signals
between elements and grouping together sequences
of similar operations. However, buffering a signal
incurs a latency of up to one buffer length. This la-
tency can be made small at the cost of some addi-
tional overhead by making the buffers sufficiently
small. In any case, buffering is a reasonable strat-
egy for low-latency LIGO data analysis because,
as we previously remarked, the LIGO data acqui-
sition system has a granularity of 1/16 s.

5. Results

In this section we evaluate the accuracy of the
LLOID algorithm using our GStreamer-based im-
plementation described in the previous section.
We calculate the measured S/N loss due to the ap-
proximations of the LLOID method and our imple-
mentation of it. Using a configuration that gives
acceptable S/N loss for our chosen set of source
parameters, we then compare the computational
cost in flop s−1 for the direct TD method, the
overlap-save FD method, and LLOID.

5.1. Setup

We examine the performance of the LLOID al-
gorithm on a small region of compact binary pa-
rameter space centered on typical NS–NS masses.
We begin by constructing a template bank that
spans component masses from 1 to 3 M⊙ using
a simulated Advanced LIGO noise power spec-
trum (Shoemaker 2010)5. Waveforms are gener-
ated in the frequency domain in the stationary
phase approximation at (post)3.5-Newtonian order
in phase and Newtonian order in amplitude (the

4https://www.lsc-group.phys.uwm.edu/daswg/projects/gstlal.html
5http://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=T0900288&version=3

TaylorF2 waveforms described in Buonanno et al.
2009). Templates are truncated at 10 Hz, where
the projected sensitivity of Advanced LIGO is in-
terrupted by the “seismic wall.” This results in a
grid of 98,544 points, or 2×98, 544 = 197, 088 tem-
plates. Then we create sub-banks by partitioning
the parameter space by chirp mass. Figure 4 illus-
trates this procedure. We concentrate on a sub-
bank with 657 points with chirp masses between
1.1955 and 1.2045 M⊙, or 2 × 657 = 1314 tem-
plates. With this sub-bank we are able to con-

0.5 1.0 1.5 2.0 2.5 3.0

chirp mass, M (M⊙)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

to
ta

l 
m

as
s,

 M
 (
M
⊙)

1.1955 M/M⊙ 1.2045
1.15 1.20 1.25

2.7

2.8

2.9

3.0

Fig. 4.— Source parameters selected for sub-bank
used in this case study, consisting of component
masses m1 and m2, between 1 and 3 M⊙, and
chirp masses M between 1.1955 and 1.2045 M⊙.

struct an efficient time slice decomposition that
consists of 11 time slices with sample rates be-
tween 32 and 4096 Hz summarized in Table 3. We
use this sub-bank and decomposition for the re-
mainder of this section.

5.2. Measured S/N loss

The S/N loss is to be compared with the mis-
match of 0.03 that arises from the discreteness of
template bank designed for a minimal match of
0.97. We will consider an acceptable target S/N
loss to be a factor of 10 smaller than this, that is,
no more than 0.003.

We expect two main contributions to the S/N
loss to arise in our implementation of the LLOID
algorithm. The first is the S/N loss due to the
truncation of the SVD at Ls < M basis tem-
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Table 3: Filter Design Sub-Bank of 1314 Templates.

f s [ts, ts+1) − log10 (1−SVD tolerance)

(Hz) (s) Ns 1 2 3 4 5 6

12
.5

76
.5

14
0.
5

26
8.
5

39
6.
5

46
0.
5

58
8.
5

84
4.
5

11
00

.5

time relative to coalescence (s)

st
ra

in
 a

m
p
li
tu

d
e

32 Hz

64 Hz

128 Hz

256 Hz

512 Hz

4096 Hz

4096 [0, 0.5) 2048 1 4 6 8 10 14

512 [0.5, 4.5) 2048 2 6 8 10 12 16

256 [4.5, 12.5) 2048 2 6 8 10 12 15

128 [12.5, 76.5) 8192 6 20 25 28 30 32

64 [76.5, 140.5) 4096 1 8 15 18 20 22

64 [140.5, 268.5) 8192 1 7 21 25 28 30

64 [268.5, 396.5) 8192 1 1 15 20 23 25

32 [396.5, 460.5) 2048 1 1 3 9 12 14

32 [460.5, 588.5) 4096 1 1 7 16 18 21

32 [588.5, 844.5) 8192 1 1 8 26 30 33

32 [844.5, 1100.5) 8192 1 1 1 12 20 23

Note.—From left to right, this table shows the sample rate, time interval, number of samples, and number of orthogonal
templates for each time slice. We vary SVD tolerance from

(

1− 10−1
)

to
(

1− 10−6
)

.

plates. As remarked upon in Cannon et al. (2010)
and Section 3.2.2, this effect is measured by the
SVD tolerance. The second comes from the lim-
ited bandwidth of the interpolation filters used to
match the sample rates of the partial S/N streams.
The maximum possible bandwidth is determined
by the length of the filter, N�. S/N loss could also
arise if the combination of both the decimation
filters and the interpolation filters reduces their
bandwidth measurably, if the decimation and in-
terpolation filters do not have perfectly uniform
phase response, or if there is an unintended sub-
sample time delay at any stage.

To measure the accuracy of our GStreamer im-
plemention of LLOID including all of the above
potential sources of S/N loss, we conducted im-
pulse response tests. The GStreamer pipeline was
presented with an input consisting of a unit im-
pulse. By recording the outputs, we can effec-
tively “play back” the templates. These impulse
responses will be similar, but not identical, to the
original, nominal templates. By taking the inner
product between the impulses responses for each

output channel with the corresponding nominal
template, we can gauge exactly how much S/N is
lost due to the approximations in the LLOID algo-
rithm and any of the technical imperfections men-
tioned above. We call one minus this dot product
the mismatch relative to the nominal template.

The two adjustable parameters that affect per-
formance and mismatch the most are the SVD
tolerance and the length of the interpolation fil-
ter. The length of the decimation filter affects
mismatch as well, but has very little impact on
performance.

Effect of SVD tolerance We studied how the
SVD tolerance affected S/N loss by holding N� =
N� = 192 fixed as we varied the SVD tolerance
from

(
1− 10−1

)
to
(
1− 10−6

)
. The minimum,

maximum, and median mismatch are shown as
functions of SVD tolerance in Figure 5(a). As
the SVD tolerance increases toward 1, the SVD
becomes an exact matrix factorization, but the
computational cost increases as the number of
basis filters increases. The conditions presented

13



here are more complicated than in the original
work (Cannon et al. 2010) due to the inclusion
of the time-sliced templates and interpolation,
though we still see that the average mismatch is
approximately proportional to the SVD tolerance
down to

(
1− 10−4

)
. However, as the SVD toler-

ance becomes even higher, the median mismatch
seems to saturate around 2× 10−4. This could be
the effect of the interpolation, or an unintended
technical imperfection that we did not model or
expect. However, this is still an order of magni-
tude below our target mismatch of 0.003. We find
that an SVD tolerance of

(
1− 10−4

)
is adequate

to achieve our target S/N loss.

Effect of interpolation filter length Next,
keeping the SVD tolerance fixed at

(
1− 10−6

)

and the length of the decimation filter fixed at
N� = 192, we studied the impact of the length
N� of the interpolation filter on mismatch. We use
GStreamer’s stock audioresample element, which
provides an FIR decimation filter with a Kaiser-
windowed sinc function kernel. The mismatch as
a function of N� is shown in Figure 5(b). The
mismatch saturates at ∼2 × 10−4 with N� = 64.
We find that a filter length of 16 is sufficient to
meet our target mismatch of 0.003.

Having selected an SVD tolerance of
(
1− 10−4

)

andN� = 16, we found that we could reduceN� to
48 without exceeding a median mismatch of 0.003.

We found that careful design of the decimation
and interpolation stages made a crucial difference
in terms of computational overhead. Connecting
the interpolation filters in cascade fashion rather
than in parallel resulted in a significant speedup.
Also, only the shortest interpolation filters that
met our maximum mismatch constraint resulted
in a sub-dominant contribution to the overall cost.
There is possibly further room for optimization
beyond minimizing N�. We could design custom
decimation and interpolation filters, or we could
tune these filters separately for each time slice.

5.3. Other potential sources of S/N loss

One possible source of S/N loss for which we
have not accounted is the leakage of sharp spec-
tral features in the detector’s noise spectrum due
to the short durations of the time slices. In the
LLOID algorithm, as with many other GW search

methods, whitening is treated as an entirely sep-
arate data conditioning stage. In this paper, we
assume that the input to the filter bank is already
whitened, having been passed through a filter that
flattens and normalizes its spectrum. We elected
to omit a detailed description of the whitening pro-
cedure since the focus here is on the implementa-
tion of a scalable inspiral filter bank.

However, the inspiral templates themselves con-
sist of the GW time series convolved with the im-
pulse response of the whitening filter. As a con-
sequence, the LLOID algorithm must faithfully
replicate the effect of the whitening filter. Since
in practice the noise spectra of ground-based GW
detectors contain both high-Q lines at mechanical,
electronic, and control resonances and a very sharp
rolloff at the seismic wall, the frequency response
of the LLOID filter bank must contain both high-
Q notches and a very abrupt high-pass filter. FIR
filters with rapidly varying frequency responses
tend to have long impulse responses and many co-
efficients. Since the LLOID basis filters have, by
design, short impulse responses and very few co-
efficients, one might be concerned about spectral
leakage contaminating the frequency response of
the LLOID filter bank.

The usual statement of the famous Nyquist-
Shannon theorem, stated below as Theorem 1, has
a natural dual, Theorem 2, that addresses the fre-
quency resolution that can be achieved with an
FIR filter of a given length.

Theorem 1. (After Oppenheim et al. 1997, p.
518) Let x(t) be a band-limited signal with con-
tinuous Fourier transform x̃(f) such that x̃(f ′) =
0 ∀ f ′ : |f ′| > fM . Then, x(t) is uniquely de-
termined by its discrete samples x(n/f0), n =
0,±1,±2, . . . , if f0 > 2fM .

Theorem 2. Let x(t) be a compactly supported
signal such that x(t′) = 0 ∀ t′ : |t′| > tM . Then
its continuous Fourier transform x̃(f) is uniquely
determined by the discrete frequency components
x̃(n∆f), n = 0,±1,±2, . . . , if ∆f < 1/(2tM ).

Another way of stating Theorem 2 is that, pro-
vided x(t) is nonzero only for |t| < 1/(2∆f),
the continuous Fourier transform can be recon-
structed at any frequency f from a weighted sum
of sinc functions centered at each of the discrete
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frequency components, namely,

x̃(f) ∝
∞∑

n=−∞

x̃ (n∆f) sinc [π(f − n∆f)/∆f ] .

Failure to meet the conditions of this dual of the
sampling theorem results in spectral leakage. For
a TD signal to capture spectral features that are
the size of the central lobe of the sinc function, the
signal must have a duration greater than 1/∆f . If
the signal x(t) is truncated by sampling it for a
shorter duration, then its Fourier transform be-
comes smeared out; conceptually, power “leaks”
out into the side lobes of the sinc functions and
washes away sharp spectral features. In the GW
data analysis literature, the synthesis of inspi-
ral matched filters involves a step called inverse
spectrum truncation (see Allen et al. 2011, Section
VII) that fixes the number of coefficients based on
the desired frequency resolution.

In order to effectively flatten a line in the de-
tector’s noise power spectrum, the timescale of the
templates must be at least as long as the damping
time τ of the line, τ = 2Q/ω0, where Q is the qual-
ity factor of the line and w0 is the central angular
frequency. To put this into the context of the sam-
pling theorem, in order to resolve a notch with a
particular Q and f0, an FIR filter must achieve a
frequency resolution of ∆f & πf0/Q and there-
fore its impulse response must last for at least a
time 1/∆f = Q/πf0. For example, in the S6 de-
tector configuration known as “Enhanced LIGO,”
the violin modes (Penn et al. 2007) had Q ∼ 105

and ω0 ∼ (2π)340 rad s−1, for a coherence time
τ ∼ 102 s.

In our example template bank, many of the
time slices are much shorter than this. However,
in summation the time slices have the same du-
ration as the full templates themselves, and the
full templates are much longer than many coher-
ence times of the violin mode. For this reason, we
speculate that LLOID should be just as robust
to sharp line features as traditional FFT-based
searches currently employed in the GW field. Fu-
ture works must verify this reasonable supposition
with numerical experiments, including impulse re-
sponse studies similar to the ones presented here
but with detector noise power spectra containing
lines with realistically high quality factors.

There could, in principle, be lines with coher-

ence times many times longer than the template
duration. For example, the Q of the violin modes
may increase by orders of magnitude in Advanced
LIGO (Strain & Cagnoli 2006). Also, there are
certainly narrow lines that are non-stationary.
Both of these cases can be dealt with by prepro-
cessing h(t) with bandstop filters that attenuates
the lines themselves but also conservatively large
neighborhoods around them. If such bandstops
were implemented as an FIR filter, they could be
built into the time slices without any difficulty.

Another way to deal with line features with
coherence times much longer than the templates
would be to entirely ‘factor’ the whitening out of
the LLOID filter bank. Any line features could be
notched out in the whitening stage with IIR filters,
which can achieve infinitely high Q at just second
order. If the detector data were passed through
the whitening filter twice, then time-sliced filters
need not depend on the detector’s noise power
spectral density at all. In such a variation on
the LLOID method, the basis filters could be cal-
culated from the weighted SVD (Gabriel & Zamir
1979; Jackson 2003, Chapter 3.6) of the time-sliced
templates, using the covariance of the detector
noise as a weight matrix.

5.4. Lower bounds on computational cost
and latency compared to other meth-
ods

We are now prepared to offer the estimated
computational cost of filtering this sub-bank of
templates compared to other methods. We used
the results of the previous subsections to set the
SVD tolerance to

(
1− 10−4

)
, the interpolation fil-

ter length to 16, and the decimation filter length
to 48. Table 4 shows the computational cost in
flop s−1 for the sub-bank we described above. For
the overlap-save FD method, an FFT block size
of D = 2N is assumed, resulting in a latency of
(
N/f0

)
seconds. Both the FD method and LLOID

are five orders of magnitude faster than the con-
ventional, direct TD method. However, the FD
method has a latency of over half of an hour,
whereas the LLOID method, with suitable design
of the decimation and interpolation filters, has no
more latency than the direct TD method.
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Table 4: Computational Cost in Flop s−1 and Latency in Seconds of the Direct TD Method, the Overlap-Save
FD Method, and LLOID.

Flop s−1 Flop s−1 number of
Method (Sub-bank) Latency (s) (NS–NS) Machines

Direct (TD) 4.9× 1013 0 3.8× 1015 ∼3.8× 105

Overlap-save (FD) 5.2× 108 2× 103 5.9× 1010 ∼5.9
LLOID (theory) 6.6× 108 0 1.1× 1011 ∼11
LLOID (prototype) (0.9 cores) 0.5 ———— &10

Note.—Cost is given for both the sub-bank described in Section 5.1 and a full 1–3 M⊙ NS–NS search. The last column gives
the approximate number of machines per detector required for a full Advanced LIGO NS–NS search.

5.5. Extrapolation of computational cost
to an Advanced LIGO search

Table 4 shows that the LLOID method re-
quires 6.6× 108 flop s−1 to cover a sub-bank com-
prising 657 out of the total 98,544 mass pairs.
Assuming that other regions of the parameter
space have similar computational scaling, an en-
tire single-detector search for NS–NS signals in the
1–3 M⊙ component mass range could be imple-
mented with (98, 544/657) ≈ 150 times the cost,
or 9.9× 1010 flop s−1.

We computed the computational cost of a full
Advanced LIGO NS–NS search a second way by
dividing the entire 1–3 M⊙ parameter space into
sub-banks of 657 points apiece, performing time
slices and SVDs for each sub-bank, and tabulating
the number of floating point operations using Ex-
pression (11). This should be a much more accu-
rate measure because template length varies over
the parameter space. Lower chirp mass templates
sweep through frequency more slowly and require
more computations while higher chirp mass tem-
plates are shorter and require fewer computations.
Despite these subtleties, this estimate gave us
1.1×1011 flop s−1, agreeing with the simple scaling
argument above.

Modern (ca. 2011) workstations can achieve
peak computation rates up to ∼1011 flop s−1. In
practice, we expect that a software implementa-
tion of LLOID will reach average computation
rates that are perhaps a factor 10 less than this,
∼1010 flop s−1 per machine, due to non-floating
point tasks including bookkeeping and thread syn-

chronization. Given these considerations, we esti-
mate that a full Advanced LIGO, single-detector,
NS–NS search with LLOID in will require∼10 ma-
chines.

By comparison, using the conventional TD
method to achieve the same latency costs 4.9 ×
1013 flop s−1 for this particular sub-bank, and so
simply scaling up by the factor of 150 suggests
that it would require 7.4× 1015 flop s−1 to search
the full parameter space. To account for the vary-
ing sample rate and template duration across the
parameter space, we can also directly calculate the
cost for the full TD method search using expres-
sion (9), resulting in 3.8× 1015 flop s−1, agreeing
within an order of magnitude. This would re-
quire &105 current-day machines. Presently, the
LIGO Data Grid6 consists of only ∼104 machines,
so direct TD convolution is clearly impractical.

The overlap-save FD method is slightly more
efficient than LLOID for this particular sub-bank,
requiring 5.2 × 108 flop s−1. The scaling argu-
ment projects that a full FD search would require
7.8 × 1010 flop s−1. The direct calculation from
Expression (10) gives 5.9× 1010 flop s−1, in order-
of-magnitude agreement. In this application, the
conventional FD search is scarcely a factor of two
faster than LLOID while gaining only 0.3% in
S/N, but only at the price of thousands of seconds
of latency.

6https://www.lsc-group.phys.uwm.edu/lscdatagrid/
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5.6. Measured latency and overhead

Our GStreamer pipeline for measuring impulse
responses contained instrumentation that would
not be necessary for an actual search, including
additional interpolation filters to bring the early-
warning outputs back to the full sample rate and
additional outputs for recording signals to disk.

We wrote a second, stripped pipeline to eval-
uate the actual latency and computational over-
head. We executed this pipeline on one of the
submit machines of the LIGO-Caltech cluster, a
Sun Microsystems Sun FireTM X4600 M2 server
with eight quad-core 2.7 GHz AMD OpteronTM

8384 processors. This test consumed ∼90% of the
capacity of just one out of the 32 cores, maintain-
ing a constant latency of ∼0.5 s.

The measured overhead is consistent to within
an order of magnitude with the lower bound from
the flop s−1 budget. Additional overhead is pos-
sibly dominated by thread synchronization. A
carefully optimized GStreamer pipeline or a hand-
tuned C implementation of the pipeline might re-
duce overhead further.

The 0.5 s latency is probably due to buffering
and synchronization. The latency might be re-
duced by carefully tuning buffer lengths at every
stage in the pipeline. Even without further re-
finements, our implementation of the LLOID al-
gorithm has achieved latencies comparable to the
LIGO data acquisition system itself.

6. Conclusions

We have demonstrated a computationally feasi-
ble filtering algorithm for the rapid and even early-
warning detection of GWs emitted during the co-
alescence of NSs and stellar-mass black holes. It is
one part of a complicated analysis and observation
strategy that will unfortunately have other sources
of latency. However, we hope that it will motivate
further work to reduce such technical sources of
GW observation latency and encourage the possi-
bility of even more rapid EM follow-up observa-
tions to catch prompt emission in the advanced
detector era.

CBC events may be the progenitors of some
short hard GRBs and are expected to be accom-
panied by a broad spectrum of EM signals. Rapid
alerts to the wider astronomical community will

improve the chances of detecting an EM coun-
terpart in bands from gamma-rays down to ra-
dio. In the Advanced LIGO era, it appears possi-
ble to usefully localize a few rare events prior to
the GRB, allowing multi-wavelength observations
of prompt emission. More frequently, low-latency
alerts will be released after merger but may still
yield extended X-ray tails and early on-axis after-
glows.

The LLOID method is as fast as conventional
FFT-based, FD convolution but allows for latency
free, real-time operation. We anticipate requiring
&40 modern multi-core computers to search for bi-
nary NSs using coincident GW data from a four-
detector network. In the future, additional com-
putational savings could be achieved by condition-
ally reconstructing the S/N time series only during
times when a composite detection statistic crosses
a threshold (Cannon et al. 2011). However, the
anticipated required number of computers is well
within the current computing capabilities of the
LIGO Data Grid.

We have shown a prototype implementation of
the LLOID algorithm using GStreamer, an open-
source signal processing platform. Although our
prototype already achieves latencies of less than
one second, further fine tuning may reduce the
latency even further. Ultimately the best possi-
ble latency would be achieved by tighter integra-
tion between data acquisition and analysis with
dedicated hardware and software. This could be
considered for third-generation detector design.
Also possible for third-generation instruments, the
LLOID method could provide the input for a dy-
namic tuning of detector response via the signal
recycling mirror to match the frequency of max-
imum sensitivity to the instantaneous frequency
of the GW waveform. This is a challenging tech-
nique, but it has the potential for substantial gains
in S/N and timing accuracy (Meers et al. 1993).

Although we have demonstrated a computa-
tionally feasible statistic for advance detection, we
have not yet explored data calibration and whiten-
ing, triggering, coincidence, and ranking of GW
candidates in a framework that supports early EM
follow-up. One might explore these and also using
the time slice decomposition and the SVD to form
low-latency signal-based vetoes (e.g., χ2 statistics)
that have been essential for glitch rejection used
in previous GW CBC searches. These additional
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stages may incur some extra overhead, so comput-
ing requirements will likely be somewhat higher
than our estimates.

Future work must more deeply address sky lo-
calization accuracy in a realistic setting as well
as observing strategies. Here, we have followed
Fairhurst (2009) in estimating the area of 90%
localization confidence in terms of timing uncer-
tainties alone, but it would be advantageous to
use a galaxy catalog to inform the telescope tiling
(Nuttall & Sutton 2010). Because early detec-
tions will arise from nearby sources, the galaxy
catalog technique might be an important ingredi-
ent in reducing the fraction of sky that must be
imaged. Extensive simulation campaigns incorpo-
rating realistic binary merger rates and detector
networks will be necessary in order to fully under-
stand the prospects for early-warning detection,
localization, and EM follow-up using the tech-
niques we have described.
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Fig. 3.— Schematic of LLOID pipeline illustrating signal flow. Circles with arrows represent interpolation
↑ or decimation ↓ . Circles with plus signs represent summing junctions . Squares stand for FIR
filters. Sample rate decreases from the top of the diagram to the bottom. In this diagram, each time slice
contains three FIR filters that are linearly combined to produce four output channels. In a typical pipeline,
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A. Low frequency cutoff for inspiral searches

Ground-based GW detectors are unavoidably affected at low frequencies by seismic and anthro-
pogenic ground motion. The LIGO test masses are suspended from multiple-stage pendula, which
attenuate ground motion down to the pole frequency. In the detector configuration in place dur-
ing S6, seismic noise dominated the instrumental background below about 40 Hz. Considerable effort
is being invested in improving seismic attenuation in Advanced LIGO using active and passive isola-
tion (Harry & the LIGO Scientific Collaboration 2010), so that suspension thermal noise will dominate
down to 10–15 Hz. Inspiral waveforms are chirps of infinite duration, but since an interferometric detector’s
noise diverges at this so-called “seismic wall,” templates for matched filter searches are truncated at a
low-frequency cutoff flow in order to save computational overhead with negligible loss of SNR.

The expected matched-filter SNR, integrated from flow to fhigh, is given by Equation (2). The high-
frequency cutoff for the inspiral is frequently taken to be the GW frequency at the LSO; for non-
spinning systems, fLSO = 4400(M⊙/M) Hz, where M is the total mass of the binary (section 3.4.1 of
Sathyaprakash & Schutz 2009). The choice of flow is based on the fraction of the total SNR that is accumu-
lated at frequencies above flow. To illustrate the relative contributions to the SNR at different frequencies
for a (1.4, 1.4) M⊙ binary, we normalized and plotted the integrand of Equation (2), the noise-weighted
power spectral density of the inspiral waveform, in Figure 6(b). This is the quantity

1

ρ2
dρ2

df
=

f−7/3

S(f)

(
∫ fLSO

0

f ′−7/3

S(f ′)
df ′

)−1

,

which is normalized by the total SNR squared in order to put detectors with different absolute sensitivities
on the same footing. We used several different noise power spectra: all of the envisioned Advanced LIGO
configurations from Shoemaker (2010); the best-achieved sensitivity at LIGO Hanford Observatory (LHO) in
LIGO’s fifth science run (S5), measured by Abadie et al. (2010a); and the best-achieved sensitivity at LHO
during S6, measured by Abadie et al. (2011b). (The noise spectra themselves are shown in Figure 6(a).) It
is plain that during S5 and S6 the greatest contribution to the S/N was between 100 and 150 Hz, but for
all of the proposed Advanced LIGO configurations the bulk of the S/N is accumulated below 60 Hz. This
information is presented in a complementary way in Figure 6(c), as the square root of the cumulative integral
from flow to fLSO, interpreted as a fraction of the total “available” S/N,

ρfrac(flow) =

√
√
√
√

(
∫ fLSO

flow

f−7/3

S(f)
df

)(
∫ fLSO

0

f−7/3

S(f)
df

)−1

.

Table 5 shows the fractional accumulated S/N for four selected low-frequency cutoffs, 40 Hz, 30 Hz, 20 Hz,
and 10 Hz. In S5 and S6, all of the S/N is accumulated above 40 Hz. For the ‘high frequency’ Advanced
LIGO configuration, scarcely half of the S/N is accumulated above 40 Hz. For the preferred final configu-
ration, ‘zero detuning, high power,’ 86.1% of the S/N is above 40 Hz, 93.2% is above 30 Hz, and 98.1% is
above 20 Hz. (Since S/N accumulates in quadrature, this means, on the other hand, that under the ‘high
frequency’ configuration a template encompassing just the early inspiral from 10 to 40 Hz would accumulate√
1− 0.5332 ≈ 84.6% of the total S/N! In the ‘zero detuning, high power,’ configuration, integration from 10

to 40 Hz alone would yield 50.9% of the total S/N, from 10 to 30 Hz, 36.2%, and from 10 to 20 Hz, 19.4%.)

Since the GW amplitude is inversely proportional to the luminosity distance of the source, and the
sensitive volume is proportional to distance cubed, the rate of detectable coalescences depends on the choice
of low-frequency cutoff. An inspiral search that is designed with a low-frequency cutoff at the seismic wall
would gain an increase in detection rate of ρ−3

frac(flow) relative to a search with a low-frequency cutoff of
flow. This would represent almost a twofold increase in the rate of detection over a search with a fractional
accumulated S/N of 80%, and still a 37% increase over a search with ρfrac = 90%. Existing coalescing binary
detection pipelines strive to sacrifice no more than 3% of the available S/N; this forfeits less than a 10% gain
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Table 5: Fractional Accumulated S/N ρfrac(flow) for Four Selected Low Frequency Cutoffs, flow = 40 Hz,
30 Hz, 20 Hz, and 10 Hz.

Noise model 40 Hz 30 Hz 20 Hz 10 Hz
LHO (best S5) 100.0 100.0 100.0 100.0
LHO (best S6) 100.0 100.0 100.0 100.0
High frequency 53.3 80.1 97.6 100.0

No SRM 87.8 95.1 98.7 100.0
BHBH 20◦ 71.1 84.2 96.2 100.0

NSNS optimized 91.5 96.3 99.0 100.0
Zero detuning, low power 67.9 80.0 93.5 100.0
Zero detuning, high power 86.1 93.2 98.1 100.0

in detection rate. In order to satisfy this constraint, the low-frequency cutoff would have to be placed below
30 Hz for all of the conceived Advanced LIGO configurations.

The instantaneous GW frequency, given by Equation (1), is a power law function of time, so the amount
of time for the GW frequency to evolve from flow to fLSO depends strongly on flow. The duration of a
(1.4, 1.4) M⊙ inspiral is show in Figure 6(d). The inspiral takes only 25 s to evolve from 40 Hz to fLSO, but
takes 54 s to evolve from 30 Hz to fLSO, 158 s from 20 Hz, and 1002 s from 10 Hz.
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Fig. 6.— From top left: (a) noise amplitude spectral density for a variety of Advanced LIGO noise models,
S5, and S6. (b) Normalized signal-to-noise per unit frequency, (dρ2/df)/ρ2, for a (1.4, 1.4) M⊙ inspiral.
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of flow. For (a)–(c), the line style indicates which noise model was used.
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