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ABSTRACT Nowadays video content has contributed to the majority of Internet traffic, which brings

great challenge to the network infrastructure. Fortunately, the emergence of edge computing has provided a

promising way to reduce the video load on the network by caching contents closer to users.But caching

replacement algorithm is essential for the cache efficiency considering the limited cache space under

existing edge-assisted network architecture. To investigate the challenges and opportunities inside, we first

measure the performance of five state-of-the-art caching algorithms based on three real-world datasets.

Our observation shows that state-of-the-art caching replacement algorithms suffer from following weak-

nesses: 1) the rule-based replacement approachs (e.g., LFU,LRU) cannot adapt under different scenarios;

2) data-driven forecast approaches only work efficiently on specific scenarios or datasets, as the extracted

features working on one dataset may not work on another one. Motivated by these observations and edge-

assisted computation capacity, we then propose an edge-assisted intelligent caching replacement frame-

work LSTM-C based on deep Long Short-Term Memory network, which contains two types of modules:

1) four basic modules manage the coordination among content requests, content replace, cache space,

service management; 2) three learning-based modules enable the online deep learning to provide intelligent

caching strategy. Supported by this design, LSTM-C learns the pattern of content popularity at long and

short time scales as well as determines the cache replacement policy. Most important, LSTM-C represents

the request pattern with built-in memory cells, thus requires no data pre-processing, pre-programmed

model or additional information. Our experiment results show that LSTM-C outperforms state-of-the-art

methods in cache hit rate on three real-traces of video requests. When the cache size is limited, LSTM-C

outperforms baselines by 20%∼32% in cache hit rate. We also show that the training and predicting time of

one iteration are 8.6 ms and 300 µs on average respectively, which are fast enough for online operations.

INDEX TERMS Edge-assisted caching replacement, intelligent content caching, long short term memory.

I. INTRODUCTION

In the past decade, we are witnessing the explosive growth

of Internet video, which accounts for 60% of the Internet

traffic in 2016, and is forecasted to double by 2021 according

to Cisco’s recent report [1]. The quality of individual video

streams is rapidly improving as well, with a majority of them

The associate editor coordinating the review of this manuscript and

approving it for publication was Honghao Gao .

have become 1080p high resolution (HD) or even 4K ultra

HD (UHD), posing significant challenges towards delivering

high Quality of Service (QoS) to video consumers.

Caching near the end users has become an indispens-

able component in Internet content distribution systems for

decades. Given the sheer volume of video traffic, caching

is critical to Internet video streaming, too [2]. For instance,

iQiyi [3], a major video service providers in China, has

nearly 6 billion hours of viewing per month [4], and the
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corresponding data size is in an EB scale; As such, each

1% hit ratio can easily translate into PBs of data savings.

Improving the cache hit ratio however is easy said than

done, particularly for video, which has much large size and

longer playback duration as compared to conventional data

objects. The user preferences on videos also vary over time

and geo-locations. This will further be aggregated in future

5G networks with massive small cells, where base stations

will be equipped with storage capacity and serve local users

with caching [5], [6].

Another important caching component is to employ a

proper cache replacement algorithm in content distribution

systems. Most of today’s caching systems rely on such

rule-based cache replacement algorithms as FIFO [7], Least

Recently Used (LRU), Least Frequently Used (LFU), or their

variants [8]–[10]. These algorithms follow simplified rules

and are easy to implement in reality, but the fixed rules can

hardly adapt to the dynamic video access patterns. With the

advancement in data analytics, forecast-based cache replace-

ment algorithms have recently been suggested [11]. Using

a data-driven machine learning design, they integrate three

cascaded components: (1) extracting key features from con-

tent request dataset; (2) training a model with the dataset,

and (3) forecasting the objects to be evicted with the model.

A well-trained model with proper feature engineering can

achieve high hit ratio. Yet it heavily depends on the specific

data for training, and is hardly adaptive, neither in temporal

nor in spatial domains. Recent studies have suggested the

use of multi-source input (e.g., location-based [11], [12] and

social-based information [13]) to improve accuracy. They

however further complicates the algorithm design and limits

the applicability given the extra demands on input data.

In this paper, using real-world datasets for video accesses,

we examine the representative state-of-the-art algorithms

for video caching and systematically analyze their limits,

shedding lights into the design of adaptive video caching

to approximate the optimal. Our observation shows that

state-of-the-art caching replacement algorithms suffer from

following weaknesses: 1) the algorithms using rule-based

replacement approach (e.g., LFU, LRU) cannot adapt under

different scenarios, while the algorithms using data-driven

forecast approach only work efficiently on specific scenar-

ios or datasets, as the extracted features working on one

dataset may not work on another one.

Recently, edge computing has emerged as a promis-

ing solution to shift a part of computation-intensive work-

loads at edge network in lots of practical applications [14].

Besides, more and more edge nodes with light-weight com-

puting capacity have been deployed in a large number

of scenarios to enable learning-based tasks [15]. Moti-

vated by the aforementioned observations and the enhanced

computation capacity from edge nodes, We accordingly pro-

pose LSTM-C, an edge-assisted intelligent caching frame-

work that learns the caching strategy automatically from

the request sequence in real-time, without using any data

pre-processing or feature engineering. Given the dynamics

of video access patterns in both short- and long-terms,

LSTM-C employs a deep LSTM network [16], an advanced

neural network architecture with memory to characterize the

sequential pattern. Approaching the optimal caching requires

the knowledge of future information, which is not available

in reality. We develop an approximate method in the training

process, together with an asynchronous operation to reduce

the computation cost for training. As such, LSTM-C auto-

matically learns the cache replacement strategy that adapts to

a wide range of scenarios.

Our experiment results show that LSTM-C outperforms

state-of-the-art methods in cache hit rate on three real-traces

of video requests (including one small cell caching trace)

across different cache sizes. In particular, when the cache

size is limited, LSTM-C outperforms baselines by 20%∼32%

in cache hit rate. Moreover, both the training and predicting

processes are executed with fast speeds. Each iteration is con-

fined to 8.6ms (training) and 300 µs (predicting) only, which

are fast enough for online operations. Using only the request

sequence data as the input, LSTM-C can be applied to many

other contexts as well, especially to such human-in-the-loop

applications as web browsing and picture viewing, where the

access patterns are highly dynamic and heterogeneous.

The remainder of the paper is organized as follows.

We illustrate our motivation toward a better cache algorithm

for video caching in Section II. The deep-learning-based

cache system model and the design of LSTM-C is intro-

duced in Section III. Experimental results are provided in

Section IV. We show the related work in Section V and

conclude the paper in Section VI.

II. MOTIVATION FOR A BETTER CACHING ALGORITHM

In this section, we investigate the performance of state-of-

the-art algorithms. We first introduce the caching mech-

anism of these algorithms and optimal method and the

real-world datasets used in our work. Then, we illustrate

the caching model and measurement methods. The met-

rics we focus on are the hit rate of algorithms on a spe-

cific dataset, the gap in hit rate between the algorithms

and the optimal policy, and the scalability of algorithms

across multiple datasets. Finally, we provide the observa-

tions, which also motivate us to design a better algorithm

for caching replacement under current edge-assisted network

architecture.

A. EXISTING CACHING REPLACEMENT METHODS

1) ORDER-BASED METHOD—FIFO

The cache replacement follows the Fisrt-In-First-Out princi-

ple: the earliest stored content is replaced by the new content

when the cache space is full.

2) RECENCY-BASED METHOD—LRU

An ordered list is maintained to track the most recent request

of all cached contents. The least recently requested one is

replaced by the new content when the cache is full.
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3) FREQUENCY-BASED METHOD—LFU

An ordered list is maintained to track the requested numbers

of all contents. The content which is least frequently used in

a time window is replaced by the new content when the cache

is full.

4) FREQUENCY-BASED METHOD—LFUDA

Note that LFU may have very poor long-term performance

due to a cache pollution problem [9]: if a previously popular

content becomes unpopular, LFU may still hold it for a long

time, resulting in inefficient utilization of the cache. Further-

more, we introduce a method called LFUDA [17], which

maintains the cache age count to solve the cache pollution

problem.

5) FORECAST-BASED METHOD—POP

Recently, some works collect the request data and use

machine learning based methods to forecast the popularity

of the contents [11], [12], [18], [19]. PopCaching [18] is a

recent representative algorithm, which learns the relationship

between the future popularity of a content and its recent

request pattern. Using the popularity forecasting result, Pop-

Caching makes proper cache replacement decisions to maxi-

mize the cache hit rate.

6) OPTIMAL METHOD—OPT

Belady’s MIN algorithm [20] can achieve theoretically opti-

mal performance with complete information. The key idea is

to evict the content which has the largest next-access time.

Note that Belady’s algorithm is not implementable in a real

system due to the fact that it needs future information.

B. DATASETS

We present how we collect the datasets used in our study.

In order to provide convincing experiment results and test

the algorithm scalability across different scenarios, we imple-

ment the above algorithms on the three datasets.

1) IQIYI DATASET

We collected the mobile video request dataset from iQiyi,

which is one of the largest video providers in China [3]. How

users view videos in the mobile video streaming app has been

recorded. The dataset spans 2 weeks and covers 2 million

users watching 0.3 million unique videos in Beijing City.

In each trace item, the following information is recorded:

(1) The device identifier, which is unique for different devices

and can be used to track users; (2) The timestamp when the

user starts to watch the video; (3) The location where the

user watches the video: the video player reports the location

collected from the device’s built-in GPS function; (4) The title

of the video, which is unique for different video contents.

2) IQIYI SMALL CELL DATASET

With the emerging technologies like femto-caching [6],

an important trend in content caching is to cache contents in

edge networks covering small regions. Most important, due

to the advantages of mobile networking communication, e.g.,

4G/5G, a large number of mobile users prefer watching high-

definition videos using 4G/5G technologies. We therefore

study how the algorithms perform for content delivery in

today’s edge network.

We jointly utilize the iQiyi Dataset and the base station

dataset. The base station dataset contains the locations, IDs,

and location area codes (LACs) of over 70 thousand base

stations in Beijing. With the knowledge of the location and

signal radius of a base station, we can filter user requests

sent from the coverage, which is used to obtain the small cell

dataset.

3) MOVIELENS DATASET

MovieLens [21] is a website providing user ratings on

movies. To simulate the content request process, we take each

comment on a video content by a user as the request for this

content. The idea of using video comments to simulate the

video requests is provided in [12], [18], where the authors

believe users usually give a comment when they finish watch-

ing a movie. By analyzing the timestamp of submitting a

review, we can know the sequence of video content requests.

C. CACHING MODEL

Consider one content provider (CP) who provides a set of

contents C = {1, 2, . . . ,C} to end users. User requests arrive

in a sequential fashion in discrete time slots. The content

provider employs a cache system, aiming to offload the user

requests to its local cache at its best effort. In this paper,

we focus on a single cache node in such a system. But

the location of the cache node is different under different

scenario. The cache node in the first dataset is located at a

datacenter of a video streaming service provider, it serves all

of the viewers in Beijing area under this dataset. The cache

node in the second dataset is located at a base station, it serves

the viewers in a small area. The cache node in the third dataset

is controlled by a CDN service provider, it serves all of the

viewers from lots of different areas. So the networking setting

in this work covers the large scale and small scale streaming

services in various scenarios.

Let s < C be the capacity of the node. The videos in

the Internet are divided into a sequence of contents with

similar sizes and delivered to users. For simplicity, we assume

that the contents have the same size, so the node can cache

up to s contents [18] or we can cache the prefix of video

contents [22], [23] with the same data size. We denote the

users’ request sequence that the CP receives as Seq =

{c1, c2, . . . ct , . . . , cT }, where t denotes the time slot of the

request, and ct ∈ C, ∀t ∈ [1,T ]. In each time slot, there

may exist multiple contents being cached. We use one-hot

encoding to represent the cached contents in time slot t: Yt =

[Yt (1),Yt (2), . . . ,Yt (C)], where Yt (c) ∈ {0, 1}, ∀c ∈ [1,C].

Specifically, Yt (ct ) = 1means that request ct can be delivered

by the local cache, and Yt (ct ) = 0 means that request for

ct should be delivered from the remote server.
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FIGURE 1. Hit rate of the algorithms.

When a new content request ct arrives, we first check if

the requested content is cached locally. The cache algorithm

works in a passive way, i.e., when a requested content is not

cached, we should decide whether to cache the content and if

so, which content to replace from the cache server. When the

requested content is cached in advance, the cache does not

update. In this way, we use the cache hit rate as the system

objective. Formally, the cache hit rate is defined as:

1

T

∑

t∈[1,T ]

Yt (ct ). (1)

Generally speaking, the cache hit rate is defined as follows:

the cache hit number of requested contents divide the number

of requested contents. When the size is changed, the cache

hit rate will not change. In our work, we define the caching

model according to the research work in [18]. The cache hit

rate reflects the percentage of requests that are served from

the local cache up to the user request in the T -th time slot.

D. METHODS PERFORMANCE MEASUREMENT

For convenience, we set the cache size as 10, i.e., at most

10 video contents can be cached on one caching node. Then

we test the above caching algorithms, with the optimal algo-

rithm as the upper bound of the caching hit rate. We com-

pare the caching hit rates under the three datasets, and find

that there exists a large gap between the algorithms and the

optimal one as depicted in Fig. 1. We find that LFU is the

best algorithm under iQiyi dataset, and PopCaching is the

best algorithm under iQiyi Small Cell dataset and Movie-

lens dataset. Moreover, the best algorithm can only reach

52.6%∼75.5% of the optimal solution in cache hit rate. Thus,

there exists much room for optimization.

To better understand the reason why the gap exists, we fur-

ther provide the measurement result on how good each deci-

sion step is in the whole dataset. Specifically, when the cache

replacement is triggered, with all the future information,

we can rank the currently cached contents in the order of

future arrival interval. The optimal method (Belady’s MIN

algorithm) is to evict the content with the largest future arrival

interval. We provide an illustration example in Fig. 2. The left

part shows a caching node with three units of cache size. The

FIGURE 2. Illustration of the optimal policy.

cached contents are A, B, and C . As shown in the right part

in Fig. 2, when a new content D arrives, the optimal solution

is to evict content C , which has the largest arrival interval 7,

and the order of arrival interval is 3. Suppose an algorithm

decides to evict A, it makes the worst decision (arrival interval

of A is 1, and the order of arrival interval is 1). To measure

the performance of the algorithms, we investigate in which

order of the future arrival interval an algorithm can achieve.

We provide the distribution of the order of an algorithm

on three datasets is provided in Fig. 3. We assume that the

caching size is 10, so the range of order (i.e., the index in the

caching space) on the x-axis is from 1 to 10. Taking order 2

as an example, if there is an evicted operation at index 2,

the number of operation at index 2 is added one. Therefore,

the optimal method always evicts the item in the last index,

i.e. order 10. The observations are illustrated as follows: all

the algorithms bear large gap with the optimal solution. Pop-

Caching algorithm can make 45% and 60% optimal decision

under iQiyi Small Cell dataset and Movielens dataset. But

PopCaching can onlymake 12% optimal decision under iQiyi

dataset. We pay particular attention to Fig. 3(b), where the

performances of LFU and PopCaching are quite close. The

probability that PopCaching makes an optimal decision is

7% lower than that of LFU, but PopCaching makes fewer

worst decisions. PopCaching obtains higher cache hit rate

according to Fig. 1. This is because once a mistaken decision

is made, it may have cascading effects on the caching hit

rate. For example, replacing the most popular content with an

unpopular content may causemany cachemisses and replace-

ment executions, because the probability of an unpopular

content being requested is low, making cache misses happen

again. This makes it more important to find an algorithm

closer to optimality.

E. INSIGHTS FOR A BETTER CACHING ALGORITHM

The limitation of the rule-based algorithms is that there may

be different performances under different request patterns.

Data-driven algorithms rely too much on manual feature-

engineering repeatedly, as the extracted features working on

one dataset may not work on the other. Ideally, we need an

algorithm relying on no pre-determined rules or manually

extracted features, with powerful representation ability to

capture the inherent patterns, and can adjust with timely

request pattern. Existing works already showed the superior

of deep learning-based design in term of resource manage-

ment [24], adaptive quality selection [25], viewers’ behavior

VOLUME 7, 2019 152835
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FIGURE 3. Distribution of prediction order in arrival interval on three datasets.

prediction [26], etc. Such designs enable automatic feature

extraction and timely pattern capture. We therefore believe

that deep learning has the potential to address the above

challenges.

III. CONTENT CACHING WITH DEEP LSTM (LSTM-C)

A. DEEP LEARNING-BASED CACHE SYSTEM

We first introduce the content caching model with the novel

deep learning technique. Learning-based caching algorithm

has the potential to achieve good caching performance, as the

learning model can capture the time-variant pattern adap-

tively by learning online [9]. However, previous learning-

based caching algorithms have the following weaknesses:

1) Conventional learning methods rely too much on artificial

feature engineering and parameter tuning, causing poor scala-

bility across different scenarios. 2) The representation ability

of suchmodels is usually limited, thus cannot well capture the

complex and variant pattern in real-world caching systems.

The newly emerged deep learning technique has the poten-

tial to overcome the above weaknesses. Specifically, deep

learning can take the ‘‘raw’’ data as input (requires no pre-

processing), and characterize the inherent pattern precisely

with the powerful representation ability of the neural network.

We present the architecture of the deep learning-based

cache system in Fig. 4. In addition to basic modules,

i.e., Request Database, Service Module, Local Cache, and

Replace Module, the deep learning-based caching node also

includes the Training Trigger, Training Module, and Predic-

tion Module to enable the online deep learning.

When a User Request arrives at the cache system, the new

request will be stored in the Request Database and sent to

Training Trigger as well as Service Module at the same time.

The Request Database stores historical requests and feed the

request data for training or predicting. The training trigger is

designed to make the training and predicting processes asyn-

chronous for the system robustness and lower the computing

load. It determines whether to trigger the training process

of the deep learning module, and if so, it will instruct the

Training Module of the deep learning module to perform the

training process. The Service Module determines where to

fetch the content, i.e., from the local cache or the remote

FIGURE 4. Framework of LSTM-C-based cache system.

server. When the content is not locally cached, it will be

fetched from the remote server and a replacement order will

be made by the Replace Module. The replace module sends

an order to the Prediction Module, and the PredictionModule

returns which content to evict from Local Cache. In the end,

the replace module executes the content eviction.

The deep learning module requires no feature extraction

process, which is a necessary module in the conventional

learning-based cache systems [18]. This improves the scal-

ability of the deep learning based caching system, as the

feature extraction is artificial and becomes the barrier when

applied to another scenario. In addition, the deployment of the

deep learning model requires little modification of the cache

system. Specifically, we only need to equip the cache sys-

tem with a light-weighted neural network model consuming

affordable storage space and computation resource. We pro-

vide the result of the computation cost in Section IV, which

is quite low and thus satisfies the online training process.

B. CONVENTIONAL LSTM CELL

Inspired by the recent success of deep LSTM network pro-

cessing streaming data, e.g., speech recognition [27], [28],

we design a novel LSTM network algorithm for content

caching. Despite the large number of neural network types in

deep learning, we select the LSTM as the network unit as it

has the potential to address the challenges for our problem:
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FIGURE 5. LSTM cell architecture.

1) the video content requests form a time sequence natu-

rally, while LSTM is especially good at sequence modeling

task. 2) LSTM’s sophisticated network structure enable itself

with strong representation ability from raw data input, thus

requires little data pre-processing. 3) The memory structure

inside LSTM can make full use of the historical sequence

information when making decisions or predictions. 4) The

LSTM network can be updated online to capture the timely

popularity of the contents. We provide the description of

LSTM as follows.

LSTM is a variant of recurrent neural networks (RNNs)

that is specifically designed for sequence labeling of temporal

data. In LSTM, the input and output gates incorporate the

incoming and outgoing signals to the memory cell, and the

forget gate controls whether to forget the previous state of

the memory cell. Fig. 5 shows the structure of an LSTM cell.

The input gate (it ), forget gate (ft ), and candidate memory

cell state (gt ) at time t are computed by Equations (2) ∼ (4),

respectively, in which W and U are weight matrices for the

input (xt ) at time t and the cell output (ht ) at time t−1, b is the

bias vector of each unit, and σ as well as tanh are the logistic

sigmoid and hyperbolic tangent function, respectively.

it = σ (Wixt + Uiht−1 + bi) (2)

ft = σ (Wf xt + Uf ht−1 + bf ) (3)

gt = tanh(Wrxt + Urht−1 + br ) (4)

Once these three vectors are computed, the currentmemory

cell’s state is updated to a new state (ct ) by incorporating the

currentmemory candidate value (gt ) via the input gate (it ) and

the previous memory cell state (ct−1) via the forget gate (ft ).

This step is described in Equation (5):

ct = it ⊙ gt + ft ⊙ ct−1 (5)

where⊙ stands for element-wise multiplication. This process

decides whether to forget the previous memory cell state via

the forget gate and regulates the candidate of the current

memory cell state via the input gate. In Equation (7), the out-

put gate (ot ) is utilized to compute thememory cell output (ht )

of the LSTM memory block at time t , based on the updated

cell state (ct ) as in Equation (6):

ot = σ (Woxt + Uoht−1 + bo) (6)

ht = ot ⊙ tanh(ct ) (7)

The cell output (ht ) is used to predict the label of the current

training instance.

C. DEEP LSTM NETWORK FOR CACHING

Although a single LSTM cell has sequential architecture by

memorizing former inputs, the input features in a given time

slot are only processed by a single non-linear layer before

contributing the output. However, in deep LSTM networks

the input in a given time slot goes through multiple LSTM

layers with different parameters in addition to propagation

through time. The real-world caching replacement problem is

time-variant and complicated, thus requires the strong ability

of the prediction model. To this end, we use the deep network

architecture as an expressive and scalable way to incorporate

the sequential requests into the caching policy.

We utilize the deep LSTM network for the content caching

problem, which is built by stacking multiple LSTM layers.

Fig. 6 shows the architecture of the proposed network, which

has multiple fully-connected LSTM layers (e.g., 2 layers in

the example), and one softmax layer which outputs the pre-

diction result. Specifically, the LSTM layers take the histori-

cal sequence as input and output a vector xwith dimensionC .

Then, we output the vector x to a softmax layer to calculate the

probability for each content to arrive. The softmax function

is an activation function that transfers the input into proba-

bilities that sum to one. In our network, the input to softmax

layer is the output of the last LSTM layer in the stacked LSTM

layers, which can be considered as the score for each content

to arrive and normalized by a softmax function. The softmax

function is defined as follows:

softmaxi =
exi

∑C
i′=1 e

x ′
i

(8)

The full connection architecture enables the network to fully

exploit the inherent correlations among cells, hence represent

the complicated content request pattern better. In order to

achieve better performance, we explore two hyperparameters

in LSTM network: the number of a hidden layer, and the

number of cells in each layer, both of which have potential

to influence the performance.

In the deep LSTM network, the content request sequence

can be naturally considered as the feature to predict which

content to evict when a content out of the local cache arrives.

Specifically, each content is represented as one-hot encod-

ing. We can train the model by feeding the ‘‘raw’’ request

sequence to the deep LSTM model in an online fashion.

It gradually learns to make better caching replacement deci-

sions through the online training process, in which the algo-

rithm try to achieve the optimal caching performance on

the historical data. For example, when we feed the latest

request sequence to the model, it makes caching decision-

based on which content will be least popular according to the

long-term and short-term memory. By keeping feeding the

latest information to our model, it can better characterize the

popularity of different contents. By contrast, algorithms using

fixed rules or simplified models are unable to optimize their

VOLUME 7, 2019 152837
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FIGURE 6. Deep LSTM network architecture.

caching choice based on all available information about the

content request sequence. Although a ‘‘deep’’ network is used

in our problem, it is quite light-weighted, which converges

fast and induces small computation overhead (results are

provided in Section IV).

D. APPROXIMATE METHOD FOR MODEL TRAINING

Unlike most sequential learning tasks which predict the next-

step instance with the highest probability, whose ground

truth can be obtained when the next-step instance arrives,

we aim to decide which content to evict from the cache

space. Specifically, we want to find the content which is most

unlikely to arrive among the cached contents. Because we use

an approximate method in the training phase, which is not

designed for the prediction of next-step arrives, we cannot

use F1 and accuracy to show the performance of the proposed

framework in the performance evaluation. In this problem,

challenges arise in two aspects: On one hand, it is hard to let

the neural network output which content should be evicted

directly, because this depends on the knowledge of which

contents are cached currently. On the other hand, the ground

truth for training cannot be obtained in the near future.

In order to meet the first challenge, we define caching

priority as the benefit of keeping a content in the cache,

and calculate the caching priority of all the contents

with LSTM-C. Then we rank the cached contents by the

caching priority score and evict the content with the lowest

priority score.

We design an approximate method to cope with the second

challenge. The optimal strategy is to evict the content which

ranks last in order in the future [20]. However, the optimal

strategy relies on all the future information, which cannot

be obtained in reality. The most commonly used one-hot

encoding in prediction tasks is not applicable either, as it

cannot reflect the priority of the cached contents. In this way,

we design a method that uses a request sequence to approxi-

mate the ground truth. Fig. 7 shows the training phase, where

{c1, c2, . . . , cM } is the input sequence with length M , and

{cM+1, cM+2, . . . , cM+N } is the output sequence of length N

used to generate the approximate caching priority. We pay

FIGURE 7. Input and output in the training phase.

particular attention to the output sequence. Inspired by the

optimal strategy of content replacement, we notice that the

order of the future contents is important information. We first

set the caching priority in the n-th order as f (n), which is

monotonously decreasing with n. This is consistent with the

fact that a content arriving in the near future should be kept in

the local cache. In addition, the number of a content arriving

is another important factor, as a content being requestedmany

times should be kept in the local cache. Incorporating the

influence of both the order and the number of a content,

we compute the overall priority of content c as W (c):

W (c) =
∑

I (cM+n=c)

f (n), (9)

where I (x) = 1, when x is true. In summary,W (c) is the sum

weight of a content in all arrivals.

Note that the neural network training indeed requires look-

ing at the future as the output. But the training is conducted

offline, the testing stage does not need future information.

Specifically, when the framework is deployed in a real sys-

tem, it predicts the future using the trained neural network

model, which only generates a short delay (300µs) and does

not affect the performance in practice.

Generally speaking, the video request datasets can be

divided into two categories. In one category, the popularity

of video contents is highly time-variant, and the lifespan of

a content is short. For example, video contents like weekly

TV shows and TV series burst in views and die down soon.

In the other one, the popularity of video contents is stable,

and the lifespan of a content is long. For example, most movie

contents release long ago, and still attract the fans to watch. In

order to characterize the patterns of different video contents,

we provide a generalized formulation of f (n) for all possible

datasets as:

f (n) = 1 − (
n− 1

N
)α, α > 0, (10)

where α is a parameter that is different among datasets, andN

is the output length. In the example depicted in Fig. 7, we set

α = 1. The priority of content 1 is 1 − 1
N

as it arrives in

the second order once. The priority of content 2 is 1 + 1
N
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FIGURE 8. Examples of f (n).

as it arrives in the first order (f (1) = 1) and the N -th order

(f (N ) = 1
N
), respectively.

The formulation of f (n) has the following properties:

(1) it is monotonously decreasing with n, (2) the descent rate

can be adjusted by α. Examples of f (n) under N = 200

are depicted in Fig. 8, where a larger α implies that the

content frequency is more important for caching priority

(e.g., movies), as the values of f (n) are large. A smaller α

implies that the content recency is more important for caching

priority (e.g., TV shows), as the values of f (n) decrease

fast with n. Similarly, the output length N can also reflect

the content request patterns. A larger N fits contents with

stable request pattern (e.g., movies), because the long-term

history corresponds to precise content popularity. A smaller

N fits contents with bursty request pattern (e.g., TV shows),

because only the short-term history can represent the content

popularity. The above insight can be used to determine the

parameter setup (i.e., N and α): if the request pattern of most

contents in a dataset is bursty, we should set smaller N and

α; if the request pattern of most contents is stable, we should

set larger N and α.

After deriving the weights of all contents, we employ a

softmax function with W (c), c ∈ C as the input and the

output probability distribution is denoted as P(c). We train

the LSTM-C model in a supervised learning framework, and

define the loss function as the cross-entropy error:

loss =

C∑

c=1

Pg(c) · log(P(c)), (11)

where Pg(c) is the approximate priority, and P(c) is the

predicted priority of content c. We take the derivative of

loss function through back-propagation with respect to all

parameters, and update parameters with stochastic gradient

descent.

E. ASYNCHRONOUS TRAINING

Considering practical deployment, we implement an asyn-

chronous mechanism between the prediction process and the

training process by introducing a training trigger module.

In a real content cache system, the number of user requests

is very large even in a short-time period. The prediction

process is invoked every time when the requested content

is not locally cached. However, compared to the prediction

process, the training process is more time-consuming and

FIGURE 9. Illustration of the training process when Lag = 3.

computing-consuming. It may harm the robustness of the

system if the training and predicting processes are triggered

at the same time. Moreover, frequent training may cause too

much computing load to the cache node.

In this way, we employ an asynchronous method to decide

when to invoke the training process. We define a parame-

ter Lag as the training lag threshold. When the number of

cache misses reaches Lag since last training, a new train-

ing process is triggered. Fig. 9 show an example when

Lag = 3, from which we can see the training frequency

is largely lowered. With this mechanism, we decouple the

training and the predicting process, and reduce the computing

load of the cache node. The benefit of this method is that

when the prediction performs good, i.e., few cache misses

happening, the prediction model is not updated frequently.

When the prediction performance is bad, i.e., many cache

misses happening, the prediction is updated frequently until

it captures the current request pattern.

F. DYNAMIC CONTENT INVENTORY

The proposed method can be directly applied to the task

with static content inventory, thus the size of the inventory

is a constant. However, the practical scenario in reality is

that the video contents provided by a content provider are

usually dynamic. For example, videos out-of-date will be

removed from the inventory, and new video contents like

newly released talk shows will be added to the inventory.

An important issue arises with the dynamic content inventory,

as the input length of the model and representation of each

bit cannot be changed. In this way, we provide an approach

to deal with the issue without much modification to the

proposed algorithm.

We calculate the current inventory size, and then set the

input size in the model larger than that to reserve void bits

for future video contents. As these void bits are not mapped

to any contents, they will never be put into the local cache,

hence the training process will not be polluted by the void

bits. When a content is deleted or out-of-date, the content

is removed from the inventory and the corresponding bit is

marked as void. As the real-time training goes, the model

will rate the content on this bit with lower cache priority.

Thus, the void bits can be ranked by the order of the latest

use, which is the last time it represents a video content that

has been deleted currently. The bit with the largest latest use

has a relatively low cache priority. Once a new video content

arrives (not in the inventory before), it is allocated to the

void bit with the largest latest use and added to the inventory.

This design is to avoid the pollution of the previous deleted
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content (the same bit) on the new content. If the new content

is popular, the model will capture the real-time pattern, and

keep improving the cache priority of the content just as the

contents in the inventory. Once the void bits drain, we need to

train the model with a larger input size. Since the convergence

of the algorithm is fast (the result is provided in Section IV),

we can simply use the latest requests to retrain the model.

IV. EXPERIMENT RESULT

We provide a public uniform experiment environment as the

platform to compare and evaluate algorithms.We evaluate the

performance of LSTM-C on the three datasets with state-of-

the-art algorithms introduced in Section II.We further discuss

the parameter settings and the training time of LSTM-C.

A. UNIFORM EXPERIMENTAL ENVIRONMENT

Previous work has done experiments of content caching on

different real-world datasets or simulated datasets. Consider-

ing the heterogeneous environments researchers use in doing

such research, the performance of different algorithms is

not convenient to compare with each other under the same

environment. Moreover, building an environment to test the

content caching algorithms is time-consuming. In this way,

we aim to provide a uniform experiment platform to evalu-

ate different content caching algorithms on different public

datasets conveniently.

Taking advantage of OpenAI Gym, which is a toolkit for

artificial intelligence research [29], we formalize the content

caching problem as a benchmark problem that exposes a

common interface. Specifically, we define the state in this

problem as follows:

• The cache size.

• The contents that are currently cached.

• The newly requested content.

• The historical requests.

Based on the state, the agent, i.e., the cache system, has to

decide the action, i.e., choosing which content to be evicted.

After taking the action, the state will transit to a new one,

i.e. the requests are served, until a new content which is not

cached arrives. This process continues until all the requests in

the experiment are served. We provide a uniform experiment

environment in [30]. Researchers on this topic can share

their results, and compare the performance of algorithms on

the uniform experimental environment. To better scale the

environment, we allow for multiple datasets, thus researchers

can upload and incorporate their own datasets into the envi-

ronment.

B. PARAMETER SETTINGS IN LSTM-C

Without additionalmention, the default parameter settings are

as follows: We set the default network layer as 2, and the

cell number in each layer as 16. We further set the training

lag as 5, and the default input length as 5 for all datasets.

With careful tuning, we set the default α as 0.06, 0.1, and

0.125, respectively in the three datasets, and we set the default

output length to calculate the label as 100, 200, and 1000,

respectively in the three datasets.

C. PERFORMANCE COMPARISON

To evaluate the performance of LSTM-C, we compare it

with baseline caching algorithms on the three datasets.

In each experiment, LSTM-C is trained online aiming to

evict the most unpopular contents. According to the previous

works [8], [11], [18], we select the five state-of-the-art algo-

rithms introduced in Section II as the comparisons. We also

present results of the offline optimal algorithm, which serves

as the upper bound of the cache hit rate with complete future

information. Fig. 10(a), 10(b), and 10(c) show the cache

hit rate of different algorithms with different cache spaces

on iQiyi Dataset, iQiyi Small Cell Dataset, and Movielens

Dataset. There are three key observations from the result.

First, we find that LSTM-C outperforms the baseline algo-

rithms on cache hit rate in all datasets and cache size settings.

In particular, the performance improvement is more signif-

icant when the cache size is small. For example, LSTM-C

outperforms the best baseline algorithm by 20%∼32% when

the cache size is limited in iQiyi Dataset and iQiyi Small Cell

Dataset. The closest competing algorithms are LFU under

iQiyi Dataset, andMovielens Dataset, and PopCaching under

iQiyi Small Cell Dataset, respectively. When the cache space

is 10, LSTM-C can outperform baselines by 28%∼ 54%.

Second, we observe that the performance of existing

caching algorithms struggle to optimize for different datasets

and cache sizes. PopCaching achieves the best performance

in {iQiyi Small Cell Dataset, s < 30}, and {Movielens

Dataset, s < 22}. LRU achieves the best performance in

{iQiyi Dataset, s > 60}, and {iQiyi Small Cell Dataset, s >

50}. LFU achieves the best performance in {iQiyi Dataset,

s < 20}, and {Movielens Dataset, s > 22}. LFUDA achieves

the best performance in {iQiyi Dataset, 20 < s < 60},

and {iQiyi Small Cell Dataset, 30 < s < 50}. The reason

for the intense competition among the baselines is that these

algorithms utilize fixed replacement rules or extract features

in advance, while optimization for different datasets requires

inherently different strategies. However, LSTM-C is able

to automatically learn these strategies and generalize under

different scenarios.

Third, the average hit rate on the iQiyi Small Cell Dataset

is significantly lower than on the other two datasets. Specif-

ically, the hit rate when s = 100 on the iQiyi Small Cell

Dataset is 41%, while the hit rates are over 60% on the

other two datasets. Furthermore, the gap between the best

algorithm and the optimal solution is also larger. Specifically,

the average hit rate of LSTM-C is 61% of the optimal solution

on the iQiyi Small Cell Dataset. While the average hit rates

are above 80% of the optimal solution on the other datasets.

This indicates that edge caching in small regions is more

challenging as the group pattern is harder to represent.

With the above observations, we find that the advantages of

LSTM-C are manifold: (1) Higher cache hit rate compared to

the state-of-the-art method. (2) Better generalization ability
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FIGURE 10. Cache hit rate on three datasets.

FIGURE 11. Accumulated hit number on three datasets.

FIGURE 12. Convergence on three datasets.

across datasets and cache sizes compared to the state-of-the-

art methods. (3) Adaptation to novel scenarios such as edge

caching.

We further look into the cache hit number with the content

requests in Fig. 11(a), 11(b) (s = 30), and 11(c). We notice

that in the beginning of the video requests, LSTM-C is the

worst among all the algorithms, as LSTM-C is learning-

based and needs iteration to achieve relatively good perfor-

mance. Other algorithms are rule-based and do not need the

learning process. After some iteration times, LSTM-C can

always achieve the higher cache hit rate compared to other

algorithms. Another observation is that the performance of

PopCaching in Fig. 11(a) decrease when the request number

is large, as the historical request pattern cannot be wiped out.

Once the request pattern has changed, the cache hit rate will

decrease, causing cache inefficiency.

We investigate the convergence speed of the LSTM-C

algorithm by looking into the instant cache hit rate in the

request process (s = 30). Fig. 12(a), 12(b), and 12(c) show

the convergence pattern on the three datasets, where x-axis

is the request number, and y-axis is the instant hit rate in

the time unit. We pay particular attention to two moments:

the time when the instant hit rate of LSTM-C first reaches

baselines, and the time when the instant hit rate of LSTM-

C first outperforms all baselines. We notice that in different

datasets, the first time when LSTM-C reaches baselines are

close, which is around 2000 requests (i.e., about 400 training

iterations as the training lag is 5). The convergence speed is
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FIGURE 13. Probability of optimal decisions on three datasets.

relatively fast. While the time when LSTM-C outperforms

all baselines is quite varied, as the long-term patterns are

different across datasets. As the hit rate of LSTM-C is low

before convergence, we recommend that before applying

LSTM-C to online real systems, an offline training process

with at least 2000 requests should be performed to obtain

the initial model. We also find that when the cache hit rate

reaches a stable high level, the loss we defined in optimizing

the model approximates zero. This indicates that there exists

no underfit or overfit in the model.

Next, we investigate how close the algorithms are with the

optimal one. We provide the probability of the algorithms

make the optimal decisions in all datasets and different cache

sizes in Fig. 13(a), 13(b) and 13(c). We find that in all cases,

the LSTM-C algorithm obtains the highest optimal decision

probability. If the cache size is larger, it is harder for an

algorithm to find the optimal solution, because there exist

too many candidates to choose from. However, even when

the cache size s = 60, LSTM-C has 22%∼42% probability

to make an optimal decision, which is much higher than

the baseline algorithms. We also notice that the baselines

perform differently under different datasets and cache sizes.

This also validates that without adaptation, algorithms are

hard to satisfy diverse scenarios.

D. PARAMETERS DISCUSSION

Based on the default learning architecture, we sweep a range

of neural network hyperparameters to understand the impact

that each has on cache hit rate. We choose the iQiyi dataset

and set the cache size as s = 10. First, using a two fixed

hidden layer, we varied the number of cells in each hidden

later. Results are presented in Table 1. As shown, performance

begins to plateau once the number of cells each exceeds 16,

and when the cell number reaches 128, the hit rate starts to

decrease.

Next, after fixing the number of cells to 16, we varied the

number of hidden layers in the LSTM-C architecture. The

result cache hit rate is listed in Table 2. We find that the

shallowest network of 1 hidden layer yields the worst per-

formance. Performance remains the plateau when the hidden

layer is more than 1. The reason that the performance of

the first layer network is poor may be due to the fact that

TABLE 1. Hit rate versus cell number.

TABLE 2. Hit rate versus layer number.

the complicated request pattern cannot be well captured with

only one layer.

We discuss the parameter selection in the train phase,

i.e., how to set the output length for the LSTM-C model,

and the cache size is set as s = 80. Then, we investigate the

output length setup in the three datasets in Table 3. We find

that the hit rate increases with the output length at first, and

then decreases when the output length reaches a threshold

in all datasets. Note that when the output length equals 1,

the approximate training method reduces to the commonly

used one-hot encoding, i.e., predicting which content will

arrive next. We can see that our proposed approximate train-

ing method can improve the hit rate by 68%∼75% compared

to the one-hot encoding.

Then, we vary α and look into the cache hit rate in Table 4.

The relationship between hit rate and α bears similar pat-

tern as with output length, which is a single-peak function.

We find it important to set α as it affects the hit rate greatly.

Recall the analysis of request pattern we provide in the

approximate method, we also observe the principle to set

the parameters N , and α. Movielens is a dataset with all the

contents are movies, and the request pattern of each content is

relatively stable. While most contents in the iQiyi dataset are

TV shows and talk shows, which have burst request pattern.
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TABLE 3. Hit rate versus output length.

TABLE 4. Hit rate versus α.

TABLE 5. Hit rate versus input length.

To this end, the parameters N and α of Movielens should be

set with larger values to obtain precise historical information,

and those of iQiyi should be set with smaller values to capture

the recent pattern. In addition, the user request pattern in

iQiyi Small Cell dataset is more static, as the regional users

tend to watch specific contents. Thus, the parameters in iQiyi

small cell dataset are larger than those in iQiyi dataset. The

experiments in Table 3 and Table 4 provide consistent results

with the analysis.

Next, after fixing other parameters, we investigate the

input length. We find that the hit rate increases with

input length, after the input length reaches 5, the maxi-

mum of hit rate is achieved. We see that increasing the

input length in the LSTM-C model more than 5 does

not give performance improvements. Consider that process-

ing time will grow dramatically if we increase the input

length, we take 5 as the default input length in the optimal

setting.

E. PROCESSING TIME ANALYSIS

To measure the overhead of generating caching algorithms

using LSTM-C, we profile LSTM-C’s training and predicting

processes. The running time measurement was conducted on

a laptop with Intel Core i7-6700HQ CPU@ 2.6GHz*4. Note

that we train the neural network using CPU as there may

be no available GPU on cache nodes. Table 6 shows the

predicting time of all algorithms. As we can see in Table 6,

the average predicting time for LSTM-C is 300 µs. Although

the time consumption of LSTM-C is larger than the base-

lines, the predicting time is small enough in such a sys-

tem. In addition, training the algorithm of requests in two

weeks (about 7,300,000 requests) online requires approxi-

mately 1,460,000 training iterations (training processes every

5 cache misses). The total time for training is 3.5 hours,

where each training iteration takes about 8.6 ms. To this end,

our algorithms can be applied to most human-in-the-loop

scenarios, like video watching, web browsing, and picture

browsing, where the bottleneck of running speed is not the

caching algorithm and the request frequency is relatively low.

We also admit that the LSTM-C algorithm cannot be applied

to scenarios where the running speed of the caching algorithm

is very important, e.g., RAM cache in embedded system [31].

V. RELATED WORK

A. CONTENT CACHING

Content caching has been widely adopted in the Internet.

A large number of previous works focus on the network

architecture optimization for content caching. Reference [32]

designed a low-complexity algorithm for caching in net-

works with arbitrary topologies. Reference [5] studied the

techniques for caching in the future 5G mobile network.

Reference [33] introduced the concept of content caching

in an information-centric network, taking into account the

information about the locations of caches. A delivery path

selection approach is also proposed. Currently, most deployed

caching algorithms in real systems are still FIFO [7], LFU,

LRU, and their variations [8]. Some other works design

data-driven cache algorithms. Researchers in [18] proposed

a popularity based learning algorithm for cache replacement,

and proved the learning regret is sublinear with the request

number. Reference [12] captured the regional video prefer-

ence and used a matrix factorization method to decide the

video contents placement. In [13], propagation information

of content over social media is utilized to optimize content

replication strategies. Reference [11] conducted extensive

measurement on a video request dataset, and designed cache

algorithm based on the derived insights. Reference [34] con-

ducted measurement on a dataset of TV series requests, and

designed a learning algorithm based on the insights that users

tend to watch TV series sequentially. Above works use data

analysis to improve cache performance, with additional infor-

mation on content type (TV series, social video), regional

information or user preference. These algorithms require

specific information and data pre-processing, hence may be
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TABLE 6. Comparison of running speed. Results are shown in average time for once content replacement decision.

hard to generalize. Our previous work has proposed a deep-

learning based solution to understand the request patterns

in individual base stations and accordingly make intelligent

cache decisions [35]. We consider the previous design as a

sub-module in the proposed framework of this paper.

B. EDGE CACHING FOR SMALL REGION

A newly-emerged scenario of content caching is edge

caching, which is a key feature in the 5G network [36]–[39].

An example is that contents can be cached in the small cell

base stations with storage capacity. Reference [11] conducted

data measurement on a real dataset to prove the effectiveness

of edge caching, and designed a caching strategy based on

the measurement insights. Reference [40] investigated the

challenges of caching with a small population, i.e., making

timely estimates of content popularity and inferring popular

content from a small sample. They designed an age-based

threshold policy to estimate the varying popularity to alle-

viate the limitations. Reference [41] optimized the profit of

service providers, content providers, and users with contract

theory. Reference [42] designed an approximation algorithm

to maximize the content requests served by the small cell.

Reference [43] introduced an efficient cooperative caching

scheme among small cells. References [19], [44] employed

multi-armed bandit method to decide the caching policy in

the range of small Base Stations. Small cell caching is differ-

ent from caching in representative caching scenarios, as the

request number is small and regional pattern is important.

In order to justify the generalization of caching algorithms,

we compare the algorithms on a small cell caching dataset in

the experiment section.

C. LSTM FOR SEQUENTIAL LEARNING

As a type of recurrent neural network with a more com-

plex computational unit, LSTM network [16] has shown its

superior ability to preserve sequence information over time,

and obtained an excellent result on many sequence modeling

tasks. Reference [45] utilized the LSTM network to address

the ad recommendation problem. LSTM network has also

been widely adopted in the natural language processing prob-

lems [46], [47]. Reference [48] used a tree-structured LSTM

network to improve semantic representation. LSTM has also

been applied to speech recognition tasks, and achieved great

performance [27], [28], [49]. For our problem, the users’

video requests form a sequence by nature, and we employ

the LSTM network to model the request sequence in order

to make an efficient caching decision. To the best of our

knowledge, we are the first to apply the LSTM network to

the content caching problem.

VI. CONCLUSION

We propose an edge-assisted intelligent caching replacement

algorithm named LSTM-C. LSTM-C requires no data pre-

processing, pre-programmed model or additional informa-

tion to decide the cache replacement. Instead, it learns to

make replacement decision bymemorizing the former request

sequence with the built-in memory cells. We propose a deep

network architecture, and design an approximate training

method. We set multiple conditions in the experiment, and

LSTM-C outperforms state-of-the-art algorithms on all con-

ditions, which validate the effectiveness and generalization

ability of our algorithm.

Deploying in practice: In our current experiment,

the LSTM-C runs under the OpenAI-Gym environment. This

setup offers the advantage over deployment in real-world

caching system for research purpose, as it is convenient to

compare the performance of different methods and hyper-

parameter settings. However, based on the analysis above,

LSTM-C can be deployed in a real-world caching system

conveniently. First, the LSTM-C approach requires no modi-

fication of the caching server. As introduced in Section III,

the LSTM-C-enabled caching node only need the predic-

tion module and the training module additionally (the other

modules are already provided in the current cache server).

The two modules only depend on installation of the python

development environment and the tensorflow library. The

running of LSTM-C requires no GPU, as we have examined

that the processing time with CPU can satisfy the real-world

request sequence.

The potential to improve edge caching: The large scale

model has a global view of the content requests, compared

to the small cell caching that only have limited requests.

Thus, the global caching model can converge faster with

more requests. It also has a better understanding of the video

popularity. While the model in the small cell certainly has

the most accurate information about the regional caching.

We plan to improve the performance of the small cell caching

by incorporating the global model in future work.
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