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ABSTRACT Recently groundwater scarcity has accelerated drilling operations worldwide as drilled

boreholes are substantial for replenishing the needs of safe drinking water and achieving long-term

sustainable development goals. However, the quest for achieving optimal drilling efficiency is ever

continued. This paper aims to provide valuable insights into borehole drilling data utilizing the potential of

advanced analytics by employing several enhanced cluster analysis techniques to propel drilling efficiency

optimization and knowledge discovery. The study proposed an L2-weighted K-mean clustering algorithm

in which the mean is computed from transformed weighted feature space. To verify the effectiveness of our

proposed L2-weighted K-mean algorithm, we performed a comparative analysis of the proposed work with

traditional clustering algorithms to estimate the digging time and depth for different soil materials and land

layers. The proposed clustering scheme is evaluated widely used evaluation metrics such as Dunn Index,

Davies–Bouldin index (DBI), Silhouette coefficient (SC), and Calinski–Harabaz Index (CHI). The study

results highlight the significance of the proposed clustering algorithm as it achieved better clustering results

than conventional clustering approaches. Moreover, for facilitation of subsequent learning, achievement

of reliable classification, and generalization, we performed feature extraction based on the time interval

of the drilling process according to soil material and land layer. We formulated the solution by grouping

the extracted features into six different blocks to achieve our desired objective. Each block corresponds

to various characteristics of soil materials and land layers. Extracted features are examined and visualized

in point cloud space to analyze the water level patterns, depth, and days required to complete the drilling

operations.

INDEX TERMS data analysis; features extraction; unsupervised learning; machine learning; strategic

planning and management;

I. INTRODUCTION

A. BACKGROUND

Humans need fast and easy access to safe and potable drink-

ing water to maintain a healthy and quality life. Over the

past few decades, groundwater acquisition through drilled

borewells has provided access to scarce and precious ground-

water resources. Since the evolution of the world, ground-

water has played a significant role in the determination of

origin and fate of all living beings [1]. The accessibility

of groundwater has become a driving force for agriculture

and economic productivity and has increased it to manifolds.

Unfortunately, the world is facing growing water shortages,

as reliable water availability is still taken for granted with-

out considering its vast sustainability implications. However,
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access to water resources and fulfilling the need of water

for the entire population is an open challenge. In developing

countries, millions of people walk miles away in quest of safe

drinking water. Moreover, the task of fetching water is often

assigned to children and women, compromising education,

health, and leisure, leading to improper growth and lack of

personal development [2]. Therefore devising efficient and

cost-effective solutions for accessing groundwater is crucial

for ensuring food security and protection of living beings [3].

Drilling borewells to access water is a technology-

intensive domain involving vast amounts of data requiring

advanced data analytics techniques to extract knowledge

discovery to bring improvements in drilling and water man-

agement and enable efficient decision-making. Over the past

few years, the drilling industry has generated huge revenues,

and currently, companies are investing billion dollars for

research and development, rendering a time and resource-

intensive process, as inefficient drilling operations could lead

to potential resources loss.

The use of advanced data analytics aids in improving

safety, cost-effectiveness, and quality of drilling operations.

These problems can be analyzed and solved by applying dif-

ferent Machine Learning (ML) techniques [4]–[6]. The ML

models have already penetrated critical decision-making pro-

cesses such as predicting the timespan required to complete

a drilling process at some specific location. It is also possible

to predict how many days will be required to complete a

drilling process in some specific location. This study mainly

focuses on mining the groundwater bore drilling data to

trace hidden patterns and relationships by clustering different

regions based on distance, soil color, Korean layer, and water

level. Moreover, for the discovery of distinct locations of

boreholes, they are visualized in 2D and 3D contour and

surface plot, i.e., point cloud [7]. The purpose of clustering

the data is to get different patterns and regions suitable for

the drilling. The dataset contains information for each bore

location. Location is based on two coordinates, i.e., x and

y. The bore location data is clustered into k distinct groups

using different unsupervised techniques

As a data mining tool, clustering serves as a fundamen-

tal tool for combining similar data samples into k distinct

clusters and gain valuable insights to data distribution for

observing characteristics of individual clusters [8]. Previ-

ous research studies employed various clustering techniques

that include Hierarchical Clustering [9], a distance-based

approach that works by calculating the distance between the

sample and the cluster. The idea of hierarchical clustering is

to assign nearer objects to one cluster. Similarly, Balanced

Iterative Reducing Clustering Hierarchies (BIRCH) [10] and

Agglomerative clustering [11] are well-known algorithms

that belong to this category. The partitioning method [12] is

the second category of clustering family, which constructs

k (where k < n) clusters and then evaluates the correctness

of the method using some evaluation metrics, for instance,

minimizing the mean square error. The third category of

clustering is density-based clustering [13], which groups the

dense areas based on the number of samples in the closed

region. The last type of clustering is model-based clustering

[14], which assumes that data is produced by a model and

works by recovering the original model by using the data,

thus making an attempt to finds the best fit of that model.

The Gaussian Mixture Model (GMM) clustering is another

widely used model-based clustering technique [15]. Seven

clustering algorithms from all four types are used to cluster

the different locations. Any particular clustering technique

requires the number of clusters to be specified as an input,

such as K-mean and Mini batch K-mean clustering [16]. For

these clustering types, the first elbow curve is generated to get

the optimal value of k. Affinity propagation and Mean shift

are partitioning-based clusters, but the difference is that these

methods don’t require the number of clusters to be specified

advance. The GMM is applied to distribute the data using the

Gaussian distribution technique.

Likewise, in the case of unsupervised learning techniques,

the evaluation criteria to measure clusters’ effectiveness is

based on the wellness of cluster formation considering fac-

tors such as intra-cluster distance and inter-cluster distance.

For instance, the traditional K-mean clustering algorithm

lacks the ability to cluster data when dealing with varied

and dense clusters. Especially if data points are; scattered

along with different densities and sizes, the mean can stumble

towards the dense area. Hence due to dense data points,

the radius of clusters turns larger; moreover, clusters will

not be optimally separated. Our proposed method provides a

solution to this problem by assigning a weight to each sample

based on their distance from the mean value and calculate

the weighted mean from that weighted feature space. The

mean calculated from the transformed feature space shift

towards the scattered points, resulting the inter and intra-

cluster distance is minimized.

B. MOTIVATION

The quest for developing efficient and robust models in the

field of exploration and developmental projects such as city

construction and groundwater resource management with

optimal drilling operations has ever continued. As discussed

earlier, there is a dire need to optimize the efficiency of

drilling operations for sustainable water resource manage-

ment by minimizing the time and efforts required to improve

the process of drilling for all stakeholders. As the process

is resource-intensive involving costly equipment incurring

multibillion-dollar budgets. Hence drilling optimization has

a vital role in improving drilling performance that further

helps in lowering the operational costs, drilling time and ob-

tain superior performance in terms of high productivity and

profitability. Furthermore, discovering land types in different

areas and layers can significantly reduce risks such as stuck

pipes, formation fracturing, and lost circulation. As different

layers of the land possess various soil colors. These soil

colors play an essential role if we have knowledge about the

pattern of soil colors that lead us to the water. Moreover, the

estimated number of days and the maximum depth should
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also be known to plan the project and gain the water. By

considering all these problems, we devised a solution based

on the cluster formation with different structures of land,

containing the information about the maximum depth, water

level, and cost in terms of time.

C. CONTRIBUTION

The core contributions of this study are followed as:

• Soil color and land layer on different depths are an-

alyzed, and average digging capacity per day is com-

puted. The analysis aims to minimize the risk, such as

stuck pipe, by selecting the area with soft soil and land

layers

• Enhanced weighted K-mean is proposed in which the

mean is computed from transformed weighted feature

space

• Drilling time, productivity, and profitability factor are

optimized by selecting the water level area on minimum

depth.

• Dynamic feature sets are extracted, such as time interval

of the drilling process, aggregated sum of borehole

depths for each location, average digging capacity for

each location based on soil color and land layer

• Comparative analysis is presented to show the effec-

tiveness and significance of the proposed clustering

algorithm based on extracted features groups.

The paper is structured as follows. Section II discusses

the existing studies related to drilling process management;

Section III presents the methodology of the proposed clus-

tering approaches based on borehole depth and soil material.

In section IV, we present the implementation environment,

experimental and performance analysis results. Section V

concludes the paper with possible future direction.

II. RELATED WORK

The scarcity of groundwater resources is becoming a global

challenge. Over the past few years, the surge for groundwa-

ter exploration has risen beyond limits. The growing water

demand has led to more water extraction through the drilling

process [17]. Recently drilling has seen significant devel-

opments to cater to the vast water needs worldwide. The

drilling industry consumes massive budgets because of its

multidisciplinary nature, a requirement of the skilled task

force, and dynamic real-time operations [18]. Gaining water

has so many application areas; some include exploration of

a non-renewable resource, construction sector needs drilling

for underground projects, mining sector and engineering

sector and geotechnical research projects also require drilling

operations for their projects. As the drilling process for

groundwater extraction requires the latest machines and tools

that are costly and hardly affordable for developing countries.

Over the past few years, the drilling industry has evolved into

a multibillion-dollar industry. Therefore, the water gaining

process must be optimized and given thorough attention to

avoid any resource loss [19]. An uncontrolled and inefficient

process could pose a potential threat to a country’s economy

and sustainability. Hence, groundwater exploration through

the bore log process must be time and cost-effective. Addi-

tionally, the process involves making complex and optimal

decisions; inappropriate decisions can significantly impact

the performance and cost [20].

Like all other branches of science, drilling, hydrology, and

geosciences are also undergoing breakthrough transforma-

tions based on research, technological advancements, and big

data analytics [21]. Big data analytics have revolutionized

these research domains through advanced analytical tech-

niques for leveraging a massive amount of heterogenous

drilling data [22]. The explosive rise in drilling groundwater

resources and advances in drilling tools generate massive

data, and managing such data is a significant concern of

drilling companies. Big data analytics is a powerful tool for

managing and processing vast amounts of drilling data to

reveal underlying hidden patterns and equations related to

sophisticated drilling groundwater processes [23].

Big data analytics and ML methods are highly preferred

and adopted by scientists for geoscience datasets. For in-

stance, the authors in [24] employed ML techniques for the

scientific ocean drilling dataset. ML methods are categorized

as supervised and unsupervised. Unsupervised learning has

no response variable; it only attempts to find the hidden pat-

terns in input data. In contrast, supervised learning has target

variables and labeled inputs. Data exploration is the process

of finding patterns and identifying trends in data regardless

of prior knowledge [25]. For discovering a hidden pattern in

drilling, data clustering is a suitable technique, as it can iden-

tify the density and sparsity of particular regions in a dataset

having their attributes—clustering group similar objects into

one group by calculating the distances between objects. In

[26], the authors presented a maximum likelihood-based

approach for clustering to improve drilling performance.

The proposed approach generated patterns for recommending

optimal drilling parameters. Another study [27] presented

a cluster-based analysis for classifying groundwater wells

based on water quality. In another study [28], the authors

presented a correlation analysis between drilling parameters

and geological parameters of rock and soil by considering

mechanics and energy factors.

Nowadays, statistical analysis-based methods are also be-

ing extensively applied to the drilling domain due to their

computationally inexpensive nature and non-requirement of

physical application scope. In [29], the authors proposed an

automatic drilling hazard detection method based on statisti-

cal analysis. Groundwater drilling data comprise continuous

time-series data. The analysis of drilling time-series data is

done as whole rather than individual parts. As drilling and

hydrogeological time series data possess a dynamic behavior

and their physical and chemical properties change over time

[30]. Fuzzy clustering approaches are well-known clustering

techniques applied to hydrogeological drilling data due to

their ability to provide extra information related to mem-

bership degrees and variation detection in various hydroge-

ological parameters [31]. For instance, data for classification
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applied a fuzzy logic-based clustering technique to cluster

data samples [32]. Clustering is an unsupervised collection

of data exploration methods employed to group together nat-

urally occurring similar objects [33]. The authors proposed a

method to determine the relationship between various drilling

parameters by applying K-means clustering. The proposed

work aims to optimize the drilling parameters based on

conditions resulting in high penetration rates [8]. Experi-

mental findings suggest direct and inverse relations among

various drilling parameters. The authors employed partitional

cluster analysis to identify the relationship between hydraulic

connectivity, lithology, and geotechnical attributes [34].

Clustering approaches are extensively applied to multivari-

ate hydrogeological and drilling time-series data to discover

knowledge, and hidden patterns among such datasets [35].

Cluster analysis comprises two basic approaches that are

variable clustering and partitional clustering. C-mean and

fuzzy c-mean are the most widely used partition clustering al-

gorithms for drilling and hydrogeochemical data [36]. Vary-

ing clustering techniques define multivariate relationships

among data, while partition-based clustering techniques as-

sign samples to specific groups.

Classification algorithms are often applied to the explo-

ration of underground non-renewable resources. Firstly, these

methods train the classifier using drilling data acquired from

the preliminary and detailed drilling process [37]. Afterward,

the trained classifier is evaluated by classifying test data by

assigning them to various classes. Thus, classification meth-

ods are efficient at providing relevant results comparative to

cluster-based analysis. However, training data requirements

for classification restrict such algorithms for drilling and

hydrogeological datasets. Additionally, the availability of

drilling data is possible because of the real-time drilling data

process and is often scarce. Hence, the classification model

cannot provide precise and reliable results [38]. Therefore to

overcome the problems in existing classification techniques,

unsupervised and semi-supervised clustering techniques are

an efficient choice.

Although many existing techniques are applied to enhance

the efficiency and planning of borehole resources. However,

due to variations in hydrological patterns, it is still an open re-

search area to investigate different characteristics of the bore-

hole process to facilitate drilling management. The proposed

model utilizes different clustering techniques to divide the

regions based on different hydrological characteristics. The

ultimate goal of the study is to help the drilling industry figure

out the region’s situation before starting the drilling process.

Furthermore, underground surveillance management can in-

vestigate the water level, state of the soil material, and the

whole process’s cost. The proposed L2 Weighted K-mean

is applied and compared with traditional machine learning

algorithms. For future the ensemble clustering techniques

[39], [40] can also be applied on different feature sets to

extract hidden patterns from the data.

TABLE 1: Description of the dataset

Attribute Description

X x coordinate of the drilling point
location

Y y coordinate of the drilling point
location

Starting depth Shows the start of the drilling depth
on a specific day

Ending depth Shows the end of the drilling depth
on a specific day

Total depth

Derived attribute from ending depth
Shows the total depth of each single
drilling point

Ground water level The value shows the water level on
different locations

Number of days Shows total days spent on each
single bore.

Korean and layers The layer of the land having nine
discrete values

Soil color
The soil color on different depth.
Having ten different soil colors.

III. PROPOSED CLUSTERING APPROACHES

This section presents a methodology of the proposed clus-

tering approaches based on drilling depth and soil materials.

Figure 1 shows the basic flow of the proposed approach. The

methodology of the proposed study consists of the following

steps; acquisition of drilling dataset, preprocessing, features

extraction and grouping, ML-based clustering approaches,

performance evaluation, and visualization of resulting data

in a 3D format for better understanding.

A. BORE-LOG DATA

The proposed study employed a real borehole drilling dataset

acquired from Jeju National University, Republic of Korea.

A visual representation of the dataset containing attributes

related to drilling is shown in Figure 1. Each feature contains

different characteristics of drilling points, including location,

depth, and soil color. As each attribute has different char-

acteristics of drilling point so, the attributes are grouped

into six different feature groups. Each feature group contains

different drilling information like level of water in different

areas, soil color on different depths, Korean layer on different

locations. All the extracted feature groups from MySQL

workbench are shown in Figure 2. All the attributes which

are considered in the experiments are listed in Table 1.

B. PREPROCESSING OF BOREHOLE-LOG DATA

Preprocessing is one of the essential steps of the experiment

leading to a cleaner, meaningful and manageable datasets.

Hence data transformation is vital for meeting the require-

ments of ML models. Various methods are used to remove

unwanted data and fill missing values to increase the reliabil-

ity of the dataset. Before passing the data to the clustering

model, it is required to process data samples in order to

transform raw data samples into a reliable format. As we have

categorical features, the string values are encoded to numeric

by using the ordinal encoder [41]. In an ordinal encoder,

a unique number is assigned to each unique category; for
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FIGURE 1: Basic flow of the proposed clustering approaches
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FIGURE 2: Feature groups retrieved from MySQL

Workbench

instance, we have ten soil colors and nine land layer names

as a string value, so the ordinal encoder assigns values from

0-10 and 0-9, respectively. After encoding the data, some

features are dropped. The dropped features have no pattern

and possess a unique effect for each sample of the data, e.g.,

drilling resonance and borehole code, which is unique for

each sample. Hence relevant features are selected, and other

features are dropped.

After the feature selection, we dealt with missing val-

ues as they can drastically affect the performance of ML

algorithms. Dealing with null values before applying any

algorithm is essential because they generate an error during

the calculation. One way of dealing with missing values

is to remove the samples with null values, but generally,

its a non-preferred choice. Missing values can be tackled

using various techniques depending upon the nature of the

problem. In this study, a k-Nearest Neighbor (KNN) imputer

is utilized as a standard technique to fill the missing values

[42]. This method uses the KNN technique to replace the

missing values with the calculated value. The KNN based

imputer works by calculating value is based on the mean of

its selected neighbors. In our case, the minimum number of

instances for each borehole is 3, and the maximum is 9, so

the average number (6) is used to fill the missing value. The

Euclidean distance is the default distance metric to impute

the missing values. The flow of feature selection, extraction,

and preprocessing is shown in Figure 1.

Once the data is preprocessed, all the features are selected,

and the data is passed to the features extraction and grouping

phase.

C. FEATURES EXTRACTION AND GROUPING

The data contains multiple features, including starting depth

of the bore, ending depth of the bore, and location, i.e., x and

y coordinates. To extract the new features from the existing

one, data is analyzed in geological terms. The first feature

which is computed from the data is the depth difference.

The depth difference is computed as the difference between

ending and starting drilling depths. The starting depth (SD)

shows the depth at which drilling is started that day; similarly,

the ending depth (ED) is the end of the depth in meters on

the same day, as shown in Figure 3. The depth difference is

computed as shown in equation 1.

difference(D) = ED − SD (1)

where ED is ending depth and SD is the starting depth.

The total depth is the sum of the difference between ending

and starting depths for drilling location i. The total depth is

VOLUME 4, 2016 5
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FIGURE 3: One sample of Drilling point with number of

days, soil color and land layer

the depth of the drilling location i where the water is gained.

The total depth is calculated as shown in equation 2.

totaldepth(TD) =

n
∑

i=0

Di (2)

where D is depth difference calculated from equation 1.

Another feature is computed as called number of days

spent by counting the instance of one borehole. Different

depth range is achieved in different days as shown in Figure

3.

D. DESCRIPTIVE ANALYSIS OF BORE-LOG DATA

Data analysis is the process of analyzing hidden patterns

and characteristics of the dataset. This study applies data

analysis techniques to discover underlying patterns related to

soil color and land layer. We discovered different soil colors

acquired during the drilling process: the data analysis yielded

ten different soil colors and eight significant land layers in the

given data. As time factor is critical to drilling operations, it

is essential to know how many days will be spent on each soil

color and land layer. Figure 4 shows the relationship between

the number of days spent and the total depth achieved on

each soil color. It is evident from the figure that the soil with

brown color has the highest average digging rate per day and

consumers more days comparative to other soil colors. The

Average digging capacity per day on each soil color is also

mentioned. The average depth reflects the hardness level of

the soil color. The hardness of the soil is an essential factor to

know to reduce the risk of stuck pipes. The dark brown soil

color is spongy and soft compared to the rest of all because

the digging capacity incurred by the dark brown soil is 4.34

meters per day. Moreover, partridge and gray soils are more

challenging than all others because the digging capacity is

2 meters in both cases. The soil color with less value of

total depth also illustrates the thickness of the layer of that

FIGURE 4: Analysis of soil color based on number of days,

maximum and average depth achieved per day

FIGURE 5: Analysis of Korean land layer based on number

of days, maximum and avg depth achieved per day

soil color. The soil with tan color is rare in Korea because

the total amount of soil found with tan color possesses 165-

meter depth. Hence brown color stands first in achieving the

highest depth, and this indicates that the brown color is the

most expected occurring soil color in the drilling process.

Likewise, the land layer also holds attributes such as

hardness and depth range per day, similar to soil color. Figure

5 shows that the sedimentary layer is most common in Korea;

moreover, the layer’s digging capacity is 2 meters, which

shows that the layer is too hard compared to others. On the

flip side, the burlap layer is rare, but the hardness level is

the same as the sedimentary layer. The hardness of the layer

can be seen in the same figure, which shows one-day digging

capacity of the particular land layer. The digging capacity on

the Gyeongam formation layer is double the ordinary rock

layer. The softness level of the landfill layer, weathered rock

layer, soft rock layer, and ordinary rock layer is the same

because the digging capacity is 3 meters per day for all of

these layers.

Each unique drilling point has different characteristics in

terms of days, depth, and water level. Figure 6a shows the

relationship between groundwater level and total depth of

different boreholes. Each drilling point has its own different

depth, which shows the water level from the ground and the
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(a)

(b)

FIGURE 6: Relationship between Total depth of borehole

with water level and number of days spent

right y-axis of the figure shows the level of the water on

that depth. In most of the locations, water is achieved on

10 meters, while the water level is too low in some areas.

The number of days with the total depth of different drilling

points is given in Figure 6b. The illustration shows that the

maximum number of drilling points are finished within 4-6

days. The maximum number of days spent on any drilling

point is 14.

The acquisition of groundwater involves digging through a

sequence of layers and soil colors that ultimately leads us to

the water. To ascertain the sequence, samples of soil color

and the Korean layer are grouped. To aim this objective,

we grouped and visualized the samples based on starting

and ending depth. The resulting sequence is visualized and

illustrated in Figures 7.

The samples of the Korean layer are grouped, and their

mean is visualized based on the frequency of the samples

within one group. Starting depth is on the x-axis, while

the y-axis shows the ending depth. At first glance, it can

be clearly seen from Figure 7 that the Landfill layer is the

most commonly occurring layer encountered by the drilling

industry at the start of the digging process. The sedimentary

layer is followed by the soft rock layer, while the soft layer is

less common because the frequency measure of that layer is

FIGURE 7: Hidden patterns of soil color and land layers

lower than all others. When Gyeongam formation or ordinary

rock formation layers appear in the drilling process, there is

a high probability that the water could be approached after

these layers. Now, by taking into account the pattern of soil

color, the brown color is a sign of water discovery in the near

premises. Usually, water can be found after that. Similarly,

each Korean layer can relate the soil color to get the color of

the Korean layer, e.g., landfill layer is in the color of partridge

or bitumen because these are appearing on the same depth.

The overlapping of layers and soils colors are showing the

mixed pattern on the same depth.

The visualization of the extracted features on a 3D surface

plot is done to analyze the patterns. The underground water

table is at a different depth from the ground surface. The

pattern visualized in Figure 8 shows the water table. The

figure also presents the information from where the water is

started. In some areas, the water level is high, while in others,

it is low.

The attributes are displayed in contour and surface plots to

get the whole surface’s view. The given data is visualized in

3D space by selecting some features and target attributes. The

entire surface of the given data is shown in Figure 9, along

with the maximum depth of each drilling point. The surface

shows that some areas have water at maximum depth while

the water is on minimum depth in some areas. The blue area

on the map shows minimum depth or 0 depth (no drilling

point). The red peaks of the surface indicate the maximum

depth of any drilling point. The map is plotted on x and y

coordinates of the given data.

Moreover, a 2D surface plot is also visualized to partition

the areas based on different characteristics. Figure 10a shows

the soil color on different regions. We have ten distinct

soil colors in the dataset, listed on the right bar of the

figure. Multiple soil colors are found at different depths of

drilling points. The underground quantity of soil color is

also different in different areas. By examining the quantity

of soil in different places, Figure 10a is plotted. Similarly,

each drilling point’s depth is varied at different locations,

illustrated in Figure 10b. For the sake of clarity, the regions

are also divided by various depths of drilling points. The right

color bar presents the depth range with a different shade.
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FIGURE 8: Analysis of water level on different locations

FIGURE 9: Point cloud visualization of total depth on differ-

ent locations

Furthermore, the map is also divided based on these depths.

The blue area of the map shows the smallest depth or water

level at minimum depth, and the reddish area determines the

highest depth of drilling points.

E. CLUSTERING APPROACHES

Once features are obtained and grouped, clustering tech-

niques cluster the input data samples into distinct groups

based on hidden characteristics and patterns. All six feature

combinations are given as input to the clustering model. In

this study, several clustering algorithms are implemented,

and results are compared with the proposed weighted K-

Mean clustering algorithm to get desired results to improve

the overall drilling process. First, K-mean and mini-batch

K-mean are applied to cluster drilling data using extracted

feature groups. These partitioning algorithms divide the data

based on the value of k, required in the first step.

K-mean clustering is the more commonly used clustering

algorithm in many unsupervised learning problems. The K-

means clustering algorithm’s main objective is to groups the

data samples into k distinct groups and discover underlying

patterns. K-means looks for a constant k to cluster the data

and achieve the objective. Therefore, it is needed to deter-

mine the total number of clusters for the prepared dataset. In

this study, an elbow curve method is employed as a standard

(a) 2D contour plot shows the soil color
on different areas

(b) Maximum depth range on different
areas

FIGURE 10: Contour plots show the soil color and

maximum depth on different locations

to determine the optimal value of k. The elbow curve method

is the fundamental step for unsupervised learning to deter-

mine the optimal value of k. After determining the optimal

value of k, the value is passed to the K-mean model. Initially,

K-means select the initial centroids randomly and group the

samples based on Euclidian distance. The following equation

3 is used to calculate the distance between each data sample

xi and each cluster centroid ci [43].

distance(xi, ci) =

√

√

√

√

n
∑

i=1

(xi − ci)2 (3)

Figure 11 shows the elbow curve analysis based on ex-

tracted features groups using K-means clustering. It can be

observed that optimal k is 2 or 3 for each feature group,

which indicates that the given data samples are grouped into

two or three distinct groups. This elbow curve is helpful

in terms of partitioning clustering techniques because these

clustering techniques require the number of partitions in

advance.

Another clustering algorithm that is similar to K-mean is

mini-batch K-mean. The difference is that it first fragments

the data into multiple batches. The main idea of the algo-

rithms is to use small random batches of data of fixed size

so that they can be stored in memory easily. In each iteration

of the mini-batch K-mean, a new random sample from the

dataset is obtained and used to update the cluster and repeated

the steps until convergence. The mini-batch processing is

faster than traditional K-mean clustering because of small

batches. The primary objective of applying mini-batch K-
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(a) (b)

(c) (d)

(e) (f)

FIGURE 11: Elbow curves of all six feature groups

mean is to cluster the data samples faster than the traditional

K-mean clustering algorithm.

The density-based clustering algorithms, i.e., Mean shift

(MS) and AP accept the processed FGs and cluster the data

based on dense area. These types of algorithms do not require

the number of clusters in advance. MS algorithm first sets

the window randomly on the data and then extends the

window based on the distance of the input samples. On the

other hand, AP constructs a similarity matrix by deciding

the exemplar and clusters the dense areas of the surface.

BIRCH and Agglomerative Clustering techniques generate

the hierarchical flow in Feature Tree (FT) and Dengrogram,

respectively. From the model-based clustering, GMM is po-

tent and extensively applied in various tasks requiring data

clustering.

ln p(X) =
N
∑

n=1

ln

K
∑

k=1

πkN(xn|µk,
∑

k) (4)

Gaussian distribution, a model-based clustering technique, is

used to distinguish between the samples in the GM model.

GM first compose the model and apply gaussian distribution

to similar group samples. By minimizing the likelihood (4)

GMM finds the optimal value clusters [44].

OPTICS is a density-based hierarchical clustering tech-

nique that identifies absolute shaped clusters and reduces

FIGURE 12: Hierarchical density based selection of points

by Ordering points to identify the clustering structure (OP-

TICS)

noise using flexible reachability measure thresholds [45].

The OPTICS algorithm is considered challenging because it

exhibits an entirely regular data access plan. Optics initially

select arbitrary points from the dataset and then identify all

reachable density points concerning EPSI value and min-

imum neighbor points, as shown in Figure 12 . OPTICS

accepts these two attributes in advance.

Algorithm 1 is used to presents the basic flow of the clus-

tering approach. The data passed to the algorithm is fetched

from the MySQL database, and the output of the algorithm

is optimal clusters based on different characteristics of the

land area. First of all, data is divided into different feature

groups that represent hidden patterns and characteristics.

Then, by getting the optimal value of k, an elbow curve-

based heuristic method is utilized to determine optimal k.

Data samples along with optimal k are then passed to the

clustering algorithm. In data preprocessing, the KNN imputer

is used to fill missing values, and the ordinal encoder is used

to encode values from string to integer. Next, by initializing

the clustering algorithms, each technique is used to cluster

the data. Lastly, different evaluation measures are utilized

to evaluate the implemented clustering techniques, such as

Dunn Index, DB Index, SC, and CHI, by getting the clusters

from the clustering technique.

F. PROPOSED L2 BASED WEIGHTED K-MEAN

CLUSTERING MODEL

K-mean clustering algorithm clusters data by using the mean

of the cluster and then compute the distance from the mean to

any sample. The smallest distance from the mean shows that

the sample belongs to that particular cluster. However, when

we have dense and scattered points in different clusters, the

mean tends to shift towards dense areas, due to which some

samples can be incorrectly clustered. Likewise, if clusters

are far apart from each other, the mean strategy can work,

but in the case of mixed clusters, the mean will not be an

effective solution. Hence the optimal number of clusters is

chosen based on the elbow curve and passed to the proposed

model for further processing.

Different reservoir-based and hash-based sampling algo-

rithms are proposed to overcome biased density sampling

on large dataset [46]. The reservoir sampling algorithm

is unbiased and random. The algorithm is used in many
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Algorithm 1: Clustering the Data

Data: Training set S = (x1,x2,x3,...xn) drilling Data

Result: Optimal Number of clusters based on

different characteristics of land

initialization;

data← (RequestSQL);
FeatureGroups← SplitFeatures(data)
k← ElbowCurve

for each FeatureGroup do
FeatureGroup

← KNNImputer(FeatureGroup)
if AlphaNumericFeatures then

Ordinal Encode Features;

Merge with existing features;

ClusteringAlgorithms

← InitilizeParameters()
for each ClusteringAlgorithms do

starttime← currenttime();
Clusters←
ClusteringAlgorithm(FeatureGroup);
endtime← currenttime();
Evaluate;

DunnIndex(U)←

min1<i<c

{

min1<j<c

{

δ(Xi, Xj)

min1<k<c{△Xk}

}}

DBIndex(U)

← 1
k

∑k

i=1 max1<i<c

{

∆(Xi) + ∆(Xj)

∆(Xi, Xj)

}

SC ←
b− a

max(a, b)

CHI ←
SSB

SSw

×
N − k

k − 1
T ime← endtime− starttime;

areas to assign weights to scan the dataset and assign

weights—similarly, the hash-based [47]–[49] . The genetic

K-mean (GWKMA) [50] is also proposed and uses a Ge-

netic Algorithm (GA) to assign weights to the samples. In

hash-based and reservoir-based weighted k-mean clustering

methods, the weight function is used to scan the data at once

and compute the weighted mean of each cluster. The scan

is done after completing clusters using traditional k-mean,

while in the proposed weighted K-mean clustering algorithm,

weights are assigned to each sample of the data. The weights

are based on the distance of that sample from the mean value.

The first step of the proposed method is to compute the mean

by using the following equation.

x̄ =

∑n

i=1 xi

n
(5)

Where x̄ represents the mean of the cluster, n is the total

samples in that particular cluster, and xi is the sample of that

cluster.

After calculating the mean value, the R̄ radius of the

cluster is computed. The value of radius is the maximum

distance of any sample from the mean value i.e.

R̄ = maxi‖xi − x̄‖22 (6)

the radius of the cluster shows the area covered by that

particular cluster. next weight for each sample within the

cluster is computed by using

weight xi = ‖x̄− xi‖
2
2 (7)

where x̄ is the mean value, and xi is the sample for which

the weight is being computed.

The weights are assigned to each sample to transform the

original feature space into a weighted feature space. The

weight to each sample is assigned by using the following

formula

x̄(w) =

∑n

i=1 xi.weight xi
∑n

i=1 weight xi

(8)

After transforming the samples from the original to

weighted feature space, the mean is again computed by

using 5. The weighted mean computed from the weighted

feature space reduces the area covered by the cluster and

creates the optimal cluster. The distance between clusters is

evaluated using a radius of the cluster, while the distance

among the cluster is evaluated using DUNN and DB index.

The mathematical model of the proposed weighted K-mean

algorithm is shown in Figure 13.

Algorithm 2 shows the proposed model based on two steps.

The first step is to apply K-mean to get the mean value of the

cluster and then transform the data into a weighted feature

space to calculate the weighted mean.

IV. EXPERIMENTAL ENVIRONMENT AND CLUSTERING

RESULTS

This section presents the experimental environment, cluster-

ing results, and performance analysis.

A. EXPERIMENTAL ENVIRONMENT

Experiments are conducted on a Windows PC with 12GB

RAM. A front end (Desktop application) is developed using

Java, and the clustering techniques are applied in python.

Well-know python libraries, including NumPy, SkLearn, and

Scipy, are used for clustering experiments. In addition, NCSS

is used for the visualization of data in PC. The required

software and hardware components are listed in Table 2.

First, the preprocessed data is loaded from CSV to MySQL

Workbench using the data loader SQL command. Next, the

chunks of data are picked from the table by using SQL

query. The query is directly executed from the simulation

environment, i.e., python (Anaconda). As the data is divided

into six feature groups, each has an SQL procedure that

returns related attributes. By calling SQL procedure from the

simulation environment, data is available in the form of a

data frame in a simulation environment. Next, all the feature
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Cluster data using 

Weighted Mean

 

 

Compute Mean of 

cluster  

 

 

Compute Mean and Radius 
of the cluster in original 

feature space

Compute weighted mean and radius 
from weighted feature space

 

Add new sample in cluster by computing its distance from 
weighted mean

Where R is radius of the 

cluster Where R is radius of the cluster by 

using weighted mean

FIGURE 13: Mathematical model of the proposed weighted K-mean clustering algorithm

FIGURE 14: Flow of the data from MySQL to Clustering

algorithm

groups are passed to clustering models as shown in Figure

14.

B. CLUSTERING RESULTS AND ANALYSIS

We applied clustering evaluation metrics to evaluate the

performance of clustering algorithms in terms of the division

of areas based on different characteristics. These clustering

metrics are suitable when the ground truth label is not given.

Dunn Index is a metric to evaluate clustering algorithms.

Like all other cluster evaluation metrics, identifying the well-

separated clusters and minor variance between members of

clusters is the main strategy of the Dunn index. Moreover, it

evaluates the intra-cluster variations and checks if the mean

of clusters is sufficiently far apart. The higher value of the

Dunn index shows the better separation of the clusters. The

optimal number of k can maximize the value of the Dunn

index. The Dunn index is not high because multiple soil

colors and the Korean layer lie in the same location. The

Dunn index with c number of clusters is defined as,

DunnIndex(U)← min
1<i<c

{

min
1<j<c

{

δ(Xi, Xj)

min1<k<c{△Xk}

}}

(9)

where,

δ(Xi, Xj) ) is inter-cluster distance i.e., distance between

cluster Xi and Xj . △Xk) is the intra-cluster distance of

cluster Xk i.e., distance within the cluster Xk.
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Algorithm 2: Proposed 2 Step Weighted K-Mean

Clustering Algorithm.

Data: Training set S = ((x1),(x2)„...(xn)), k as

number of cluster

Result: Optimal Clusters and the Radius of each

cluster

initialization;

Initialize cluster centroids←µ1,µ2...µk ∈ R
n ;

Folds← SplitDatatoFolds(S)
for xj ← S do

Step 1:

Compute Mean Value

µk =
∑

n

i=1
xi

n

For new sample xj , compute distance from

centroid of each cluster

d =
√

∑n

j,k=1(µk − xj)2

Assign cluster based on minimum distance

Step 2:

Compute Radius

R = maxi ‖ xi − µk ‖
2
2

Compute weight for each sample

weightxi =‖ x− xi ‖
2
2

Weighted Feature Space

µ
(w)
k =

∑
n

i=1
xi.weightxi∑

n

i=1
.weightxi

TABLE 2: Experimental setup and required components

Sr# Component Description

1 Hardware PC
2 Operating System Window 10
3 Memory 8GB
4 Server SQL Server
5 Libraries Pandas, Mysql, SKLearn,
6 Front End Java
7 Storage MySQL, MS Excel
8 Core Programming Language Python, Java, SQL

9 IDE
Anaconda Navigator (3)
Jupyter Lab

Davies–Bouldin index (DBI) is another clustering metric

used to evaluate the clusters based on internal evaluation

schema, where the validation of how well the clustering has

been done is made using quantities and features inherent

to the dataset. The DB index with k number of clusters is

defined as,

DBIndex(U)←
1

k

k
∑

i=1

max
1<i<c

{

∆(Xi) + ∆(Xj)

∆(Xi, Xj)

}

(10)

where,

∆(Xi) and ∆(Xj) are intra-cluster distance of Xi and Xj

respectively.∆(Xi, Xj) is inter-cluster distance i.e., distance

between cluster Xi and Xj .

Silhouette coefficient (SC) is another evaluation metric

used here to evaluate the performance of clusters. The higher

value of SC defines better cluster separation. SC for a sample

is

SC ←
b− a

max(a, b)
(11)

where b is the distance between a sample and the nearest

cluster that the sample is not a part of it. The a is the mean

intra-cluster distance

Calinski–Harabaz index (CHI) is the metric to evaluate the

clustering algorithm. CHI can be computed by

CHI ←
SSB

SSw

×
N − k

k − 1
(12)

Where k represents the number of clusters generated by the

algorithm, and N is the total number of observations, i.e.,

data points within the cluster. SSB represents the overall

intra-cluster variance, and SSW represents inter-cluster vari-

ance.

The clustering techniques are applied to six different

feature groups, and the area is divided based on different

attributes of the land. The first feature group kept the location

information along with soil color and starting and ending

depth. This feature group reflects the information related to

soil colors on different depths at distinct locations. These

clusters can be used to pick the area with soft soil. The value

of the Dunn index is based on the distance between clusters,

i.e., intra-cluster distance. Due to the same color on the same

depths in different regions, these clusters may overlap each

other for some feature value, and the value of the Dunn

index is low. Figure 15 shows the example data divided into

different clusters. The illustration makes the fact clear that

weighted mean of sample shift towards the scattered points

of the cluster. It is also evident that the clusters defined by

L2 weighted K-mean are more well defined in terms of inter-

cluster and intra-cluster distance.

The different number of clusters are produced by algo-

rithms applied on different feature combinations as shown

in Figure 16. The type of algorithms that accept the number

of clusters as input, including K-mean, Mini-batch K-mean,

and GMM, computes the value of k based on the elbow

curve. An elbow curve is generated to get the number of

optimal clusters, and the value of k is then passed to the

partitioning algorithms. The clusters generated by affinity

propagation and OPTICS are too high because the dense

area influences the cluster separation. The division of groups

based on distance is too high in all feature groups. These

clusters provide little information of the area based on the

characteristics of the land. For example, the soil color and

land layer have different hardness levels in different regions.

The soil, water level, total depth, and land layer analysis show

the suitable areas for drilling. The drilling industry should

not select the cluster with hard soil or layer, or the related

resources should be managed before starting the drilling

process. The hard surface can take time to drill, and the risk

of pipe stuck is also involved. Because of the hard surface,

the drilling fluid can be broken, and the labor cost is also

high because of the slow drilling speed.
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TABLE 3: Comparison of proposed clustering approaches using extracted features groups

Indexes

Features Groups Clustering Techniques Dunn Index DB Index SC Index CHI Index

Feature
Group

1

OPTICS 0.034 1.235 0.473 27
Mini Batch K-mean 0.051 0.967 0.729 3325
K-mean 0.059 1.019 0.625 3273
BIRCH 0.046 1.522 0.763 1316
Affinity Propagation 0.167 1.063 0.293 1874
Gaussian Mixture Model 0.046 1.524 0.163 1312
Proposed L2-W K-mean 0.267 0.563 0.948 3645

Feature
Group

2

Mean Shift 0.215 0.821 0.849 946
OPTICS 0.079 0.741 -0.223 27
Mini Batch K-mean 0.122 0.956 0.792 879
K-mean 0.193 0.881 0.637 973
BIRCH 0.171 0.947 0.817 938
Affinity Propagation 0.215 0.861 0.398 968
Gaussian Mixture Model 0.036 1.159 0.344 687
Proposed L2-W K-mean 0.318 0.789 0.879 1145

Feature
Group

3

Mean Shift 0.068 0.57 0.594 1101
OPTICS 0.017 1.788 0.124 118
Mini Batch K-mean 0.157 0.596 0.828 1119
K-mean 0.173 0.464 0.759 1474
BIRCH 0.263 0.568 0.864 1109
Affinity Propagation 0.211 0.486 0.605 2225
Gaussian Mixture Model 0.023 0.897 0.399 3046
Proposed L2-W K-mean 0.293 0.318 0.871 3179

Feature
Group

4

Mean Shift 0.049 0.554 0.683 6589
OPTICS 0.006 2.406 -0.305 32
Mini Batch K-mean 0.036 0.762 0.985 1636
K-mean 0.019 0.701 0.816 6331
BIRCH 0.013 1.325 0.565 4555
Affinity Propagation 0.02 0.777 0.395 4595
Gaussian Mixture Model 0.018 1.339 0.224 4472
Proposed L2-W K-mean 0.075 0.493 0.845 7457

Feature
Group

5

Mean Shift 0.427 0.792 0.787 304
OPTICS 0.175 1.262 -0.335 20
Mini Batch K-mean 1.039 0.797 0.804 600
K-mean 0.898 0.879 0.897 621
BIRCH 0.397 0.925 0.544 458
Affinity Propagation 0.316 0.96 0.285 530
Gaussian Mixture Model 0.653 0.937 0.382 49
Proposed L2-W K-mean 0.965 0.676 0.938 645

Feature
Group

6

Mean Shift 0.043 0.493 0.935 2137
OPTICS 0.011 0.412 0.201 74
Mini Batch K-mean 0.239 0.617 0.862 2790
K-mean 0.239 0.615 0.865 2782
BIRCH 0.093 0.943 0.862 1249
Affinity Propagation 0.066 0.564 0.571 4195
Gaussian Mixture Model 0.008 0.945 0.563 1253
Proposed L2-W K-mean 0.246 0.469 0.968 4586

In the category of partitioning algorithms, K-mean ac-

cepts the value of k and divides the data into k number of

clusters. The separation is evaluated based on the variance,

minimizing the inertia and sum of squares. K-mean first

selects k number of points called centroids and then clusters

the samples in different groups based on Euclidian distance.

Finally, K-mean determines the centroid that minimizes the

inertia, i.e., the sum of square error within a cluster (13). The

proposed L2-Weighted K-mean clustering algorithm also

gets the optimal number of clusters from the elbow curve.

The proposed model performs efficiently comparative to the

traditional K-mean algorithm. Instead of getting the mean

value from the original feature space, the proposed methods

transform the feature space and compute the weighted mean

from the transformed weighted feature space.

n
∑

i=0

min
µǫC

(‖xi − µj‖
2
) (13)

All the clustering techniques are evaluated by using dif-

ferent metrics shown in Table 3. The value of the DUNN

index in the proposed model is high compared to all other

traditional models. The value indicates the better separability

of the clusters. In FG5, i.e., the clusters based on water level,

number of days, and the total depth, mini-batch K-mean

performs better in terms of the DUNN index. The conven-

tional K-mean selects initial centroids randomly, while the

proposed model selects the optimal value of k by generating

an elbow curve.

The value of the DUNN index in all feature groups is low,

and it shows the distance between the clusters, i.e., intra-
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FIGURE 15: Clusters separated by L2 Weighted K- Mean

Clustering Algorithm

FIGURE 16: Comparison of number of cluster generated for

each feature group

cluster distance. For FG1 and FG4, the value of the DUNN

index indicates that the clusters are too close. In case of

high cluster closure, it is required to minimize the radius of

the clusters. The proposed model focuses on minimizing the

radius of clusters so that if clusters reside in the close vicinity,

the chances of overlapping will be reduced. At the same time,

the samples will be correctly clustered.

By considering the dispersion value, i.e., CHI value, which

shows the better-defined clusters, the value of CHI for each

clustering technique and feature group is depicted in the bar

graph in Figure 17. The high value of CHI demonstrates well-

defined clusters. Except for OPTICS, a density-based algo-

rithm that generates many tiny clusters, all other techniques

established better performance in terms of CHI. The number

of clusters increases the value of CHI decreases because the

clusters are too close to each other. In terms of CHI index,

FIGURE 17: Comparison of clustering results based on CHI

index

the proposed model outperforms in all feature groups. As the

model focuses on the distance between the clusters, so the

clusters are well separated.

In general, K-mean and mini-batch K-means are better in

terms of the separation of optimal clusters from traditional

clustering techniques because the elbow curve method is used

to get the optimal number of clusters. Furthermore, AP and

OPTICS generate a higher number of clusters than all others.

The Dunn index value in the case of AP is high in some

cases because the higher number of clusters in scattered areas

can increase the inter-cluster distance. On the other hand, in

terms of DB index and SC index, which shows the clusters’

better separability, the value of OPTICS is too low because

the clusters are not well separated.

The proposed model is an improved version of the K-

mean. In terms of all evaluation metrics, the proposed model

performs well as compared to K-mean. It is because the mean

value will always shift from dense to scattered points, and

the cluster radius will always be decreased. The weights are

assigned to each sample using the L2 norm, which is the

distance from the mean to that sample. L2-based weighted

K-mean generates better and well-separated clusters as com-

pared to all other clustering techniques.

The comparison of all the models in terms of DUNN

index, DB index SC and CHI index for each feature group

is shown in Figure 18. The proposed model is effective when

we have closely formed clusters. However, when the clusters

are closer to each other, they can overlap, and the samples

can be incorrectly clustered.

V. CONCLUSIONS

Drilling and groundwater science is generating huge amounts

of data from a variety of mediums and scientific experi-

mentation. Hence, spiked attention is being given to lever-

aging this huge data to devise new solutions for sustainable

groundwater management and overcoming hurdles endured

by the drilling industry to achieve optimal drilling efficiency

during borehole drilling operations. To this aim, acquiring
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FIGURE 18: Comparison of DUNN, DB, SC and CHI indexes

prerequisite information about the drilling area and model-

ing groundwater processes through advanced data analytics

techniques. Hence we need to analyze the area with various

characteristics and attributes. To ascertain the appropriate

location for digging a bore-well, some key factors should be

taken into account, like the water level, number of days spent,

soil color, to name a few. Hence it is imperative to analyze

the given factors before initiating the drilling process; the

risk factors can be minimized, such that issues like pipe

stuck and high cost can be mitigated. To achieve the desired

objective, we proposed a clustering model that clusters the

regions based on discovering natural groupings and hidden

characteristics of instances. Firstly, the data is divided into six

different feature blocks, where each feature block represents

the specific information. Then, by considering the specific

information within these feature blocks, various clustering

algorithms from four different categories are applied, and

results are compared with the proposed L2 weighted K-mean

clustering algorithm. The clustering techniques lead us to

discover various locations based on different attributes like

water level and soil color. To evaluate the effectiveness of

the proposed model, unsupervised-based evaluation metrics

were used. It is evident from the experimental results that the

proposed model efficiently groups the data into meaningful

and well-defined clusters and achieved superior performance

compared to the existing ML-based clustering approaches.

Furthermore, the analysis part yields useful information

about soil color and the land layer’s hardness level. Lastly, the

data is visualized in 3D and 2D surface plots to estimate and

divide different locations based on the water level, maximum

depth, and soil color. The experimental results indicate that

the proposed clustering algorithm’s performance is fairly

well and competitive to counterpart implemented clustering

algorithms. The experimental results aim to improve the

borehole drilling process’s planning, efficiency, and man-

agement and sustainable groundwater resource management.

Future work involves finding solutions for the drilling chal-

lenges based on specific use cases such as various feature

sets and the development of data-driven sciences for efficient

drilling operations and groundwater resource management.

Furthermore, ensemble clustering techniques can be used to

find more hidden patterns from different feature sets.
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