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Abstract. In this paper we initiate an investigation of generalizations of the Probably Approximately Correct 
(PAC) learning model that attempt to significantly weaken the target function assumptions. The ultimate goal 
in this direction is informally termed agnostic learning, in which we make virtually no assumptions on the 
target function. The name derives from the fact that as designers of learning algorithms, we give up the belief 
that Nature (as represented by the target function) has a simple or succinct explanation. We give a number 
of positive and negative results that provide an initial outline of the possibilities for agnostic learning. Our 
results include hardness results for the most obvious generalization of the PAC model to an agnostic setting, 
an efficient and general agnostic learning method based on dynamic programming, relationships between loss 
functions for agnostic learning, and an algorithm for a learning problem that involves hidden variables. 
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1. Introduct ion 

One of the major limitations of the Probably Approximately Correct (or PAC) learn- 

ing model (Valiant, 1984) (and related models) is the strong assumptions placed on the 

so-called target funct ion that the learning algorithm is attempting to approximate from 

examples. While such restrictions have permitted a rigorous study of the computational 

complexity of learning as a function of the representational complexity of the target 

function, the PAC family of models diverges from the setting typically encountered in 

practice and in empirical machine learning research. Empirical approaches often make 

few or no assumptions on the target function, but search a limited space of hypothe- 
sis functions in an attempt to find the "best" approximation to the target function; in 

cases where the target function is too complex, even this best approximation may incur 

significant error. 

In this paper we initiate an investigation of generalizations of the PAC model in an 

attempt to significantly weaken the target function assumptions whenever possible. Our 
ultimate goal is informally termed agnostic learning, 1 in which we make virtually no 

assumptions on the target function. We use the word "agnostic" - -  whose root means 

literally "not known" - -  to emphasize the fact that as designers of learning algorithms, we 

may have no prior knowledge about the target function. It is important to note that in this 
paper we make no attempt to remove the assumption of statistical independence between 

the examples seen by a learning algorithm, another worthwhile research direction that 
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has been pursued by a number of authors (Aldous & Vazirani, 1990; Helmbold & Long, 
1994). 

This paper describes a preliminary study of the possibilities and limitations for efficient 
agnostic learning. As such, we do not claim to have a definitive model but instead use 
a rather general model (based on the work of Haussler (1992)) that allows easy con- 
sideration of many natural modifications. Perhaps not surprisingly in light of evidence 
from the standard PAC model, efficient agnostic learning in its purest form (no assump- 
tions on target function or distribution) is hard to come by, as some of our results will 
demonstrate. Thus, we will consider several variations of these perhaps overly ambitious 
criteria in an attempt to find positive results with target assumptions that are at least 
significantly weakened over the standard PAC setting. 

There are several prior studies of weakened target assumptions for PAC learning that 
are relevant to our work. The first is due to Haussler (1992) who describes a powerful 
generalization of the standard PAC model based on decision theory and uniform con- 
vergence results. Haussler's results are of central importance to much of the research 
described here. Indeed, the agnostic model that we describe is quite similar to Haus- 
sler's, differing only in the introduction of a "touchstone" class (see Section 2). However, 
while Haussler's concern is exclusively on the information-theoretic and statistical issues 
in agnostic learning, we are here concerned almost exclusively with efficient computa- 
tion. Also relevant is the large body of research on nonparametric density estimation in 
the field of statistics (see, for instance, Izenman's (1991) excellent survey). 

Another relevant investigation is the work on probabilistic concepts of Kearns and 
Schapire (1990), as well as the work of Yamanishi (1992a) on stochastic rules. Here, 
the target function is a conditional probability distribution, typically on a discrete range 
space, such as {0, 1}. A significant portion of the research described in this paper extends 
this work. Some of the results presented are also closely related to the work of Pitt and 
Valiant on heuristic learning (Pitt & Valiant, 1988; Valiant, 1985), which can be viewed 
as a variant of our agnostic PAC model. 

The following is a brief overview of the paper: in Section 2 we motivate and develop 
in detail the general learning fi'amework we will use. In Section 3 we consider the 
restriction of this general model to the case of agnostic PAC learning and give strong 
evidence for the intractability of even rather simple learning problems in this model. 
In Section 4 we discuss the empirical minimization of loss and give a general method 
for agnostic learning of "piecewise" functions that is based on dynamic programming. 
Section 5 gives a useful relationship in the agnostic setting between two common loss 
functions, the quadratic and prediction loss, and gives applications of this relationship. 
In Section 6 we investigate a compromise between agnostic learning and the strong target 
assumptions of the standard PAC model by providing an efficient learning algorithm in 
a model for learning problems involving hidden variables. Finally, in Section 7, we list 
a few of the many problems that remain open in this area. 
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2. Definitions and models 

In this section we define our notation and the generalized framework we will use in 
our attempt to weaken the target function assumptions needed for efficient learning. 
Our approach is strongly influenced by the decision-theoretic learning model that was 
introduced to the computational learning theory community by Haussler (1992). In giving 
our definitions, we err on the side of  formality - -  in order to lay the groundwork for 
future research on agnostic learning, we wish to give a model that is both precise and 
quite general. For most of  the paper, however, we will be using various restrictions of 
this general model that will be locally specified using less cumbersome notation. 

Let X be a set called the domain; we refer to points in X as instances, and we 
intuitively think of instances as the inputs to a "black box" whose behavior we wish 
to learn or to model. Let Y~ be a set called the range, and let Y be a set called the 
observed range. We think of Y~ as the space of  possible values that might be output 
by the black box; however, we introduce Y because we may not have direct access to 
the output value, but only to some quantity derived from it. In general, we make no 
assumptions about the relationship between Y and Y~. We call a pair (x, y) E X x Y 
an observation. 

2.1. The assumption class 

The assumption class A is a class of probability distributions on the observation space 
X x Y. We use .4 to represent our assumptions on the phenomenon we are trying to 
learn or model, and the nature of our observations of this phenomenon. Note that in 
this definition of  A, there may be no functional relationship between x and y in an 
observation (x, y). However, there are two special cases of  this generalized definition 
that we wish to define. 

In the first special case, there is a functional relationship, and an arbitrary domain 
distribution. Thus, consider the case where Y = Y~ and there is a class of  functions f"  
mapping X to Y~. Suppose .A is the class obtained by choosing any distribution D over 
X and any f E F ,  and letting ADd C A be the distribution generating observations 
(x, f (z)) ,  where x is drawn randomly from D. Then we say that A is the functional 
decomposition using F, and we have a familiar distribution-free function learning model. 

In the second special case, we have Y '  = [0, 1], Y = {0, 1} and there is again a class 
of functions F mapping X to Y~. Now, however, the functional value is not directly 
observed. Instead, let A be the class obtained by choosing any distribution D over X 
and any f E F ,  and letting AD,y E A be the distribution generating observations (x, b), 
where x is drawn randomly from D and b = 1 with probability f (x)  and b = 0 with 
probability I - f(x).  We call 5 c a class of probabilistic concepts (or p-concepts), and 
we say that ~1. is the p-concept decomposition using F. Here we have a distribution-free 
p-concept learning model. 

In the case that .A is either the functional or p-concept decomposition using a class F ,  
we refer to .7- as the target class, and if the distribution AD,I E ¢4 generates the obser- 
vations we call f the target function or target p-concept and D the target distribution. 
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2.2. The hypothesis class 7-¢ and the touchstone class 7" 

We next introduce two classes of  functions from X to y l :  the hypothesis class ~ ,  and 
the touchstone class 7". Usually it will be the case that 7- C_ 7-/. The intuition is that 
a learning algorithm will attempt to model the behavior from ,A that it observes with 
a hypothesis function h E 7-[. In our model, where we seek to eliminate restrictions 
on ,,4 as much as possible, we must ask against what standard the hypothesis function 
will be measured, since nearness to the target may be impossible or undefined. This is 
the purpose of the touchstone class 7-. This class provides a standard of measurement 
for hypotheses, and we will ask that the performance of  the hypothesis h E 7-( be 
"near" the performance of the "best" t c 7-, where "near" and "best" will be formalized 
shortly. Although it seems natural to ask that the hypothesis chosen approach the best 
performance in the class 7-I (corresponding to the case 7- = ~ ) ,  we will see that in some 
circumstances it is interesting and important to relax this restriction. By leaving the 
class 7-fixed and increasing the power of 7-t, we may overcome certain representational 
hurdles presented by the choice 7" = ~ ,  in the same way that k-term DNF (disjunctive 
normal form) formulas are efficiently learnable in the standard PAC model provided we 
allow the more expressive k-CNF (conjunctive normal form) hypothesis representation 
(Kearns, Li, Pitt & Valiant, 1987; Pitt & Valiant, 1988). 

2.3. The loss function L 

Now we formalize the possible meanings of the "best" function in a class. Given the 
domain X,  the range Y' ,  and the observed range Y, a loss function is a mapping L : 
Y' x Y ---, [0, M] for some positive real number M.  Given an observation (x, y) E X x Y 
and a function h :  X ~ Y' ,  the loss of h on (z, y) is denoted Lh(X, y) = L(h(z) ,  y). 
The loss function measures the "distance" or discrepancy between h(x) and the observed 
value y. Typical examples include the prediction toss (also known as the discrete toss), 

where 

f o if v' --  y 
Z(y',  Y) ). 1 i f J ~ y  

and the quadratic loss 

0 ( v ' ,  v) = (y' - v)2.  

Since observations are drawn according to a distribution A E A, we can define the 
expected loss E(~,y)cA[L~(x, y)] of  the function h, which we abbreviate E[Lh] when A 
is clear from the context. Now we are prepared to define the best possible performance 
in a class of  functions with respect to the loss function L. For the hypothesis class ~ ,  
we define opt(~) = infhc~{E[Lh]}. Similarly, for the touchstone class T,  we define 
opt(7.) = inftcT{E[Lt]}. Note that opt(7-() and opt(7.) have an implicit dependence 
on A c A that we omit for notational brevity. 
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We will often need to refer to estimates of these quantities from empirical data. Thus, 
if S is a sequence of observations, we can estimate E[Lh] by 

1 
E s [ L h ] :  ~ I "  E Lh(x,y) .  

(~,y)~S 

This allows us to define the estimated optimal performance for 7-15 and 7-, defined by 
o ) t s ( ~  ) = infhcv~{Es[Lh] } and opts(7- ) = inftcz-{F,s[Lt]}. Usually S will be clear 
from the context, and we will write I~[LI], opt(7-l) and @(7-). 

2.4. The learning model 

We are now ready to give our generalized definition of learning. 

Definition. Let X be the domain, let Y'  be the range, let Y be the observed range, and 
let L : Y '  x Y ~ [0, M] be the loss function. Let .A be a class of distributions on X x Y, 
and let ~ and 7" be classes of functions mapping X to Y'.  We say that 7" is learnable by 

assuming A (with respect to L) if there is an algorithm Learn and a function re(e, 5) 
that is bounded by a fixed polynomial in 1/e and 1/5 such that for any distribution 
A E A, and any inputs 0 < e, 6 < 1, Learn draws re(e, 6) observations according to 
A, halts and outputs a hypothesis h E 7-/ that with probability at least 1 - 6 satisfies 
E[Lh] < opt(7") + e. If  the running time of Learn is bounded by a fixed polynomial in 
1/e and 1/6, we say that 7" is efficiently learnable by ~ assuming .A (with respect to 

L). 

In the case that A is the functional decomposition using a class F ,  we replace the phrase 
"assuming .A" with the phrase "assuming the function class P ' ;  in the case that .A is 
the p-concept decomposition using a class 5-, we replace it with the phrase "assuming 
the p-concept class 5"2' If we wish to indicate that the touchstone class 7- is learnable 
by some ~ assuming .A without reference to a specific ~ ,  we will say 7- is (efficiently) 
learnable assuming A. 

There will often be a natural complexity parameter n associated with the domain X,  
the distribution class .,4 and the function classes ~ and 7-, in which case it will be 
understood that X = I-in_>1X,~, A = I-in_>1A,~, 7~ = U n > l  "~n, and 7- = [.]n_>l T~. 
Standard examples for n are the number of boolean variables or the number of real 
dimensions. In these cases, we allow the number of observations and the running time 
of the algorithm in Definition 2.4 to also have a polynomial dependence on n. 

2.5. Generating some old and new models 

We now define several previously studied and new models of learning by appropriate 
settings of the parameters A, 7-g, 7" and L. 

First of all, if 5" is any class of boolean functions, .A is the functional decomposition 
using 5", 7-[ = 7- = F ,  and L is the prediction loss function Z, then we obtain the 
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restricted PAC model (Valiant, 1984), where the hypothesis class is the same as the 
target class. If  we retain the condition 7- = 5 c but allow ~ _~ 5 c, we obtain the standard 

PAC model (Kearns et al., 1987), where the hypothesis class may be more powerful than 
the target class. 

Next, if A is the p-concept decomposition using a class 5 c of p-concepts, 7- = 5 c, and 
7-{ _D F ,  then we obtain the p-concept learning model (Kearns & Schapire, 1990), and 
there are at least two interesting choices of loss functions. If we choose the prediction 
loss function Z then we ask for the optimal predictive model for the {0, 1} observations 

(also known as the Bayes optimal decision), which may be quite different from the ac- 
tual probabilities given by f E F .  This rule has the minimum probability of incorrectly 
predicting the y-value of a random observation, given the observation's z-value. Alterna- 
tively, we may choose the quadratic loss function Q. Here it is known that the quadratic 
loss will lead us to find a hypothesis h minimizing the quadratic distance between f and 
h, i.e., E[ ( f  - h) 2] (Kearns & Schapire, 1990; White, 1989). 

Now consider the following generalization of the standard PAC model: let 5 c be 
the class of all boolean functions over the domain X,  and let A be the functional 
decomposition using F .  Thus we remove all assumptions on the target concept (except 
the existence of some concept consistent with the data). Now if we let 7~ = 7-, and 
choose the prediction loss function Z, then we wish to find a good predictive concept in 

regardless of the nature of the target concept. We will refer to this particular choice 
of the parameters as the agnostic PAC model. 

3. Agnostic PAC learning 

In this section we examine the agnostic PAC model. Our main results here demonstrate 
relationships between the agnostic PAC model and some other previously studied varia- 
tions of the standard PAC model, and provide a strong argument for the need for further 
restrictions or different models if we wish learning algorithms to be efficient. Related 
results, also indicating intractability for learning with weakened target concept assump- 
tions, are given by Valiant (1985) and Pitt and Valiant (1988) for a model of heuristic 

learning. 

3.1. Agnostic learning and malicious errors 

Our first result shows that agnostic PAC learning is at least as hard as PAC learning 
with malicious errors (Kearns & Li, 1993; Valiant, 1985) (and in fact, a partial converse 
holds as well). Although we will not formally define the latter model, it is equivalent to 
the standard PAC model with the addition of a new parameter called the error rate g, 

and now each observation has probability g of being generated by a malicious adversary 
rather than by the target function and target distribution. The goal in the malicious 
error model remains that of achieving an arbitrarily good predictive approximation to the 
underlying target function. 
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THEOREM 1 Let T be a class of boolean functions over X that is efficiently learnable 

in the agnostic PAC model, and assume that the Vapnik-Chervonenkis dimension of 

T is bounded by a polynomial in the complexity parameter n. Then T is efficiently 

learnable (using T)  in the PAC model by an algorithm tolerating a malicious error rate 

of 3 = e(c). 

Proof: The idea is to demonstrate the equivalence of the problem of learning 7- in 
the agnostic PAC model and a natural combinatorial optimization problem based on 
T, the disagreement minimization problem for T,  a problem known to be equivalent 
(up to constant approximation factors) to the problem of learning with malicious errors 
(Kearns & Li, 1993). In this problem, we are given as input an arbitrary multiset S = 
{(Xl, b l ) , . . . ,  (Xm, b,~)} of pairs, where xi C X and bi c {0, 1} for all 1 < i < m. The 
correct output for the instance S is the h* c T that minimizes ds(h) = I{i : h(x~) ¢ b~}I 
over all h E T.  

It follows from standard arguments (Blumer, Ehrenfeucht, Haussler & Warmuth, 1989) 
that if the Vapnik-Chervonenkis dimension of T is polynomially bounded by the com- 
plexity parameter n, an algorithm that efficiently solves the disagreement minimization 
problem for T can be used as a subroutine by an efficient algorithm for learning fir" in 
the agnostic PAC model. (See Section 4.1 for more details.) 

For the other direction of the equivalence, suppose we have an algorithm for efficiently 
learning T in the agnostic PAC model, and wish to use this algorithm in order to solve 
the disagreement minimization problem for T on a fixed instance S. We first give the 
argument assuming that no instance xi appears with two different labels in S; thus, the 
pairs of S may be thought of as being consistent with a boolean function f ,  where 
f ( x i )  = b~ for each 1 < i < n. 

Let us create the distribution D on the instances xi in the multiset S, giving equal 
weight 1/m to each instance (instances appearing more than once in S will receive 
proportionally more weight, and instances outside S receive zero weight). We run the 
agnostic learning algorithm, choosing e < i / m ,  and drawing instances from D and 
labeling them according to the target function f (note that this is equivalent to simply 
drawing labeled pairs randomly from S). The algorithm must then output a hypothesis 
h E T that satisfies 

1 
P r [ h C f ] < P r [ h * C f ] + e < P r [ h * C f ] + - -  

m 

where h* minimizes ds(h) over all h E T.  This implies Pr[h ¢ f] = Pr[h* ¢ f] 
because a single disagreement with f incurs error 1/m with respect to D. Since for 
any h we have Pr[h ¢ f] = ds(h) /m,  we have ds(h) = ds(h*), and our optimization 
problem is solved. 

In the case that S contains conflicting labels for some instance and thus is not consistent 
with any function, we can simply remove from S all pairs of conflicting instances (xi, 0) 
and (xi, 1) until the remaining multiset S ~ is consistent with a function. Notice that any 
function disagrees with exactly half of S - S ~, and thus minimization of ds(h) reduces 
to minimization of ds, (h). We now simply perform the above reduction on S ~. 



122 M.J. KEARNS, R.E. SCHAPIRE AND L.M. SELLIE 

Finally, the desired algorithm for learning in the malicious error models follows from 
the above equivalence of agnostic learning and disagreement minimization, and an equiv- 
alence up to constant approximation factors between disagreement minimization and 
learning T in the restricted PAC model with malicious errors, a fact proved by Kearns 
and Li (1993, Theorem 19). In fact, this latter equivalence can be used to obtain a weak- 
ened converse to Theorem 1: learning T with malicious error rate/3 = O(e) implies an 
algorithm finding an h C T satisfying Pr[h 7~ f] <_ e.  opt(T) for some constant c (a 
weaker multiplicative rather than additive error bound). [] 

Although there are a number of variations of agnostic PAC learning that may not be 
directly covered by Theorem 1, we essentially interpret the result as negative evidence for 
hopes of efficient agnostic PAC learning algorithms, because previous results indicate that 
a @(e) malicious error rate can be achieved for only the most limited classes T (Kearns 
& Li, 1993) (such as the class of symmetric functions on n boolean variables). 

Other results for agnostic PAC learning may be obtained via Theorem 1 and the previous 
work on learning in the presence of malicious errors. For instance, if T is any class of 
boolean functions, and T is (efficiently) learnable in the error-free PAC model, then there 
is an (efficient) algorithm for finding h E T satisfying Pr[h ¢ f] < O(dT~ • opt(T)) 

where f is the target function and dT~ is the Vapnik-Chervonenkis dimension of the 
hypothesis class 7-[ (this follows from Theorems 11 and 19 of Kearns and Li (1993).) 

3.2. Intractability of  agnostic PAC learning of conjunctions 

Now we give a reduction indicating the difficulty of learning simple boolean conjunctions 
in the agnostic PAC model. If we let X,~ = {0, 1} '~ and set T~ = 7-{~ to be the class 
of all conjunctions of literals over the boolean variables Z l , . . . ,  z~, then in the agnostic 
PAC model we wish to find an algorithm that can find a conjunction in T~ that has a 
near-minimum rate of disagreement with an unknown boolean target function f .  We can 
show this problem to be hard even for rather restricted f :  

THEOaEM 2 Let X~ = {0, 1} ~, and let ~ be the class of polynomial-size disjunctive 

normal form formulas over {0, 1 }n. Let Tn be the class of conjunctions of literaIs over 

the boolean variables z l , . . . ,  zn. Then T is not efficiently learnable using 7- assuming 

the function class S,  unless RP = NP. 

Proof: Suppose to the contrary of the theorem's statement that there exists an efficient 
algorithm for the stated learning problem. We show how such an algorithm can be used 
probabilistically to solve the minimum set cover problem (Garey & Johnson, 1979) in 
polynomial time, thus implying that RP = NE A similar proof is given in the context 
of PAC learning with malicious errors by Kearns and Li (1993), and can be used with 
Theorem 1 to obtain a similar but weaker result than the one we now derive. 

An instance of the minimum set cover problem is a set of objects O = { o l , . . . ,  ot} 

to be covered, and a collection of subsets of the objects S = { $ 1 , . . . ,  S~}. The goal is 
to find the smallest subset S '  C S that covers all objects (so that for all oi E O, there 
exists Sj E S '  such that oi E Sj). 



TOWARD E F F I C I E N T  AGNOSTIC LEARNING 123 

Without loss of  generality, we will assume that all objects oi are contained in more 
than one set. Without loss of  generality, we also assume that all objects are contained 
in a unique collection of sets: if two objects are contained in exactly the same sets, we 
remove one of the objects and any valid set cover will cover the removed object. 

The reduction chooses the target function to be the n-term DNF formula f = 771 V 
. .. V Tr~ over the variable set { x l , . . . ,  xn},  where T~ is the conjunction of all variables 
except xi. All instances given to the learning algorithm will be labeled according to f .  

For each object oi, 1 < i < t, let ai be the assignment (all,..., ain) of values to the 
n boolean variables (so that xj  is assigned asj) where we define 

0 if o~ C Sj 
aij  = 1 otherwise. 

By this construction f(a~)  = 0 for all i: since every object is in at least two sets, at least 
two positions of  ai are zero, and therefore ai does not satisfy any term in f .  Thus, the 
ai will be the negative examples. 

For each set Sj,  1 < j < n, let bj be the assignment (bjl, . . . , bjn) where 

J" 0 if j = k 
bjk / 1 otherwise. 

Finally let c = ( 1 , . . . ,  1). Note that f (b j )  = f (c )  = 1 since bj satisfies exactly one term 
in f and c satisfies all terms. 

Notice that for each variable xj ,  if we choose to include x j  in a monotone conjunction 
then this conjunction is guaranteed to "cover" (that is, have as negative examples) all as 
such that object oi appears in set Sj. Further, including z j  in a conjunction incurs the 
single error bj on the positive examples. Thus, our goal is to force the agnostic learning 
algorithm to cover all the negative examples (corresponding to covering all of the objects) 
while incurring the least positive error (corresponding to a minimum cardinality cover). 

The distribution we will use is defined by 

1 1 
D ( a d  - - -  + - -  

2(t + 1) 4t(t  + 1) 

1 
D(bj)  - 

+ 1) 
1 

D(c)  = 

and D(x)  = 0 for all other x. Finally, we set e = 1 /8n ( t  + 1), and we run the assumed 
agnostic learning algorithm using examples drawn according to D and labeled according 
to f .  Clearly, this entire procedure takes time polynomial in the size of the set cover 
instance (since the target DNF f is only of  polynomial size). Moreover, with high 
probability, we obtain a conjunction h having error bounded by op t (T)  + e with respect 
to f and D. 

Le t / 3  = {Sjl x j  appears in h}. We first show that /3  is a cover. 
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Note that the conjunction of all variables, X l ' ' "  Xn, has error equal to 1 /4( t  + 1), 
since it is consistent with f on c and a~ for all i. Thus opt(T) <_ 1/4( t  + 1), which 
implies that 

1 1 1 
opt(T) + e <_ 4(t  + 1~ + 8n(t + 1) < 2(t + 1--~-~" 

The conjunction h must be monotone, since otherwise it would be inconsistent with 
the positive example c = ( 1 , . . . ,  1} giving an error of at least 1/2. Also, h must be 
consistent with all the negative instances ai, since otherwise its error would be at least 
1 /2( t  + 1 ) +  1/4t(t  + 1). Thus B covers all objects, since for every ai there is a variable 
xj in h that forces ai to be negative, and this happens only if Sj includes oi. 

It remains to show that B is a minimum cover. Suppose there exists a smaller set 
cover B ~. Then we can construct a monomial h ~ from B / where z j  is in h ~ if and only if 
Sj E B ~. By construction h ~ is monotone so it is consistent with instance c. Because B t 
is a set cover, h'  is consistent with a~ for all i. For each Sj E 13', h'(bj) = 0; thus h' is 
not consistent with IB'l elements bj. Therefore, opt(T) < P r [ f  • h'] = IB'l/4n(t + 1). 
On the other hand, P r [ f  ¢ h] = IN/4n( t  + 1) which implies that 

IBI- IB'I 
P r [ f  • hi _> opt(T) + 4n(t + 1) > opt(T) + ~, 

by our choice of  e, contradicting the assumption that h has error bounded by opt(T) + e. 
Therefore/3 is indeed a minimum set cover. [] 

Thus, even if we assume that the target distribution can be functionally decomposed 
into a distribution on X and a target function that is guaranteed to be a small DNF 
formula, it is a hard problem to find a conjunction whose predictive power is within a 
small additive factor of  the best conjunction. Even more surprising, Theorem 2 holds 
even if the learning algorithm is told the target DNF formula! This demonstrates an 
important principle: having a perfect and succinct description of the process generating 
the observations may not help in finding an even more succinct "rule of  thumb" that 
tolerably explains the observations. Thus the difficulty may arise not so much from the 
problem of learning but from that of optimization. 

Similar results are given by Valiant (1985) and Pitt and Valiant (1988). 

3.3. Agnostic learning and weak learning 

We next describe a connection between agnostic PAC learning and weak PAC learning 
(in which the standard PAC criterion is relaxed to demand hypotheses whose error with 
respect to the target is bounded only by 1/2 - 1/p(n) for some polynomial p(n) of the 
complexity parameter (Kearns & Valiant, 1994; Schapire, 1990).) 

If  2r and T are two classes of  boolean functions over a domain X parameterized 
by n, we say that T weakly approximates T if there is a polynomial p(n)  such that 
for any distribution D on X,~ and any t E T~ there is a function t E T~ such that 
Pr~ED[t(x)  ¢ t(x)] < 1/2 -- 1/p(n). 
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THEOREM 3 Let T be a class of boolean functions that weakly approximates a class 

T. Then 7- is efficiently learnable in the standard PAC model if T is efficiently learnable 
in the agnostic PAC model. 

Proof: The idea is that since 2? weakly approximates 7-, whenever the target function 
is from 7-, opt(T) will be significantly smaller than 1/2, and the agnostic learning 
algorithm effectively functions as a weak learning algorithm for 7-. The result then 
follows from the "boosting" techniques of Schapire (1990) or Freund (1990; 1992) for 
converting a weak learning algorithm into a strong learning algorithm. [] 

Since the class of boolean conjunctions weakly approximates the class of polynomial- 
size DNF formulas (see, for instance, Schapire (1990, Section 5.3)), it immediately 
follows from Theorem 3 that learning conjunctions in the agnostic PAC model is at least 
as hard as learning DNF formulas in the standard PAC model; this can be interpreted as 
further evidence for the difficulty of the problem, based on the assumption that learning 
DNF is hard in the standard PAC model. Note that unlike Theorem 2 (where we must 
set ~ = T), this result makes no restrictions on ~ .  

In summary, we see that agnostic PAC learning is intimately related to a number of 
apparently difficult problems in the standard PAC model. This leads us to two preliminary 
conclusions: that we should look for efficient agnostic learning in other models and with 
respect to other loss functions, and that we may want to consider some restrictions on 
the assumption class without reverting to the standard PAC model. 

4. Tractable agnostic learning problems 

Although the results of Section 3 indicate that our prospects of finding efficient agnostic 
PAC learning algorithms may be bleak, we demonstrate in this section that at least 
in some non-trivial situations, efficient agnostic learning is in fact tractable. We give 
a learning method based on dynamic programming applicable to our general learning 
-framework. 

4.1. Empirical loss minimization and agnostic learning 

One natural technique for designing an agnostic learning algorithm is to first draw a large 
random sample, and to then find the hypothesis that best fits the observed data. In fact, 
this canonical approach successfully yields an efficient agnostic learning algorithm in a 
wide variety of settings, assuming that there exists an efficient algorithm for finding the 
best hypothesis (with respect to the observed sample). 

In this section, we will not make any assumptions on the distributions in ..4, and will 
use the expression 7" is agnostically learnable using ~ to indicate that a hypothesis in 

near the best in 7- can be found (dropping the reference to 7-/ to indicate that T is 
agnostically learnable using some class 7-/). 

Let Y be our observed range, let T and 7¢ be the touchstone and hypothesis classes of 
functions mapping X into y i ,  and let L be the loss function. We say that 7- is (efficiently) 
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empirically minimizable by 7-/ (with respect to L) if there exists a (polynomial-time) 
algorithm that, given a finite sample 5' E (X x Y)*, computes a hypothesis h E 7-[ 
whose empirical loss on 5' is optimal compared to 7-; that is, Es[Lh] _< ot)tB(7" ). (Here, 
polynomial time means polynomial in the size of the sample 5".) 

For instance, if Y C IR, and T is the class of constant real-valued functions on X, then 
7- is efficiently empirically minimizable with respect to the quadratic loss function since 
the average of the Y-values observed in 5' minimizes the empirical loss. More generally, 
if f l , . . .  ,fd is a set of d real-valued basis functions on X,  then standard regression 
techniques can be used to efficiently minimize the empirical quadratic loss over the set 
of all linear combinations of the basis functions (Duda & Hart, 1973; Kearns & Schapire, 
1990). 

When is empirical minimization sufficient for agnostic learning? This question has 
been answered in large part by Dudley (1978), Haussler (1992),, Pollard (1984), Vapnik 
(1982) and others. They show that, in many situations, the hypothesis class 7-/is such 
that uniform convergence is achieved for reasonably small samples. In such situations, 
a bound re(e, 5) exists such that for any 2 distribution A on X x Y, and any random 
sample S E (X x Y)* of size m > re(e, 5) chosen according to A, the probability that 
the average empirical loss of any h E ~ differs from its true expected loss by more than 
e is at most 5; that is, 

P r [3h  E ~ :  F,s[Lh]- E[Lh] > e] < 5. (1) 

Thus, if 7- is (efficiently) empirically minimizable by 7-/, and if uniform convergence 
can be achieved for 7-t, then 7" is (efficiently) agnostically learnable using 7-t. 

Here is how this is done: Given ~ and 5, let t E 7" be such that E[Lt] < opt(T) +e/3 .  
(Since there may not exist a function that achieves the optimum loss, we instead choose 
any function that is approximately optimal.) Let 5" be a random sample of size sufficiently 
large that, with probability at least 1 - 5, 

F,s[Lh] - E[Lh] < c/3 

for every h E 7-/U {t}. (Note that uniform convergence is not required for the entire 
touchstone class 7-, but only for the hypothesis class 7-/ and a single element t E 7. 
that is close to optimal.) Let h E 7-I be the result of applying the assumed empirical 
minimization algorithm to 5". Then, with probability at least 1 - 5, 

E[Lh] < F,[Lh] + e/3 

_< E[Lt] + c/3 
_< E[Lt] + 2e/3 

<_ opt (7 . )  + e 

as desired. 
Although in 

noting that an 
some measure 

this paper we focus primarily on empirical loss minimization, it is worth 
alternative approach is to minimize the empirical loss on the data plus 
of the complexity of the hypothesis (see, for instance, Vapnik (1982)). 
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4.2. Learning piecewise functions 

Thus, in cases where uniform convergence is known to occur, the problem of agnostic 
learning is largely reduced to that of minimizing the empirical loss on any finite sample. 
We apply this fact to the problem of agnostically learning families of piecewise functions 
with domain X C_ JR. We give a general technique based on dynamic programming for 
learning such functions (given certain assumptions), and we show, for instance, that this 
technique can be applied to agnostically learn step functions and piecewise polynomials. 

A similar dynamic programming technique is used by Rissanen, Speed and Yu (1992) 
for finding the "minimum description length" histogram density function; see also Ya- 
manishi (1992b). 

We assume below that X C JR. Let 5 c be a class of functions on X. We say that a 
function f is an s-piecewise function over 5 if there exist disjoint intervals I 1 , . . . ,  Is 
(called bins) whose union is JR, and functions f l , . . . ,  f~ in 5 such that f ( x )  = f i (x )  

for all x C X N/i .  Let PWs (5)  denote the set of all s-piecewise functions over 5 .  

THEOREM 4 Let 7" be a hypothesis class on X C JR that is empirically minimizable 

by ~ with respect to L. Then PWs(7-) is empirically minimizable by PWs (7-/) in time 

polynomial in s, and the size m of the given sample. 

Proof: We give a general dynamic programming technique for empirically minimizing 
pws(T) .  Let S = ( ( 3 7 1 ,  Y l ) , . . . ,  (Xm, y,,~)) be the given sample, and assume without 
loss of generality that Xl _< .-- _< xm. 

For 1 < i < m and 1 < j _< s, we will be interested in computing a j-piecewise 
function Pij over 7-/that, informally, is a "good" j-piecewise hypothesis for Si, where 
Si  = ((Xl, Yl) , . - - ,  (Xi, Yi)). More precisely, the empirical loss of Pij on Si will not 
exceed that of any hypothesis in pwj (T). Then clearly Pros will meet the goal of 
empirical minimization of PWs (T) over the entire sample S. 

We use the following straightforward procedure to compute Pij. For 0 _< k _< i, we 
consider placing the last k observations in a bin by themselves (that is, we let these k 
observations belong to the same bin of the piecewise function under construction). We 
then use our empirical minimization algorithm for T to compute a hypothesis hik C 
whose empirical loss (on the last k observations of Si) does not exceed that of any 
hypothesis in T.  We next "recursively" compute Pi-k,j-1, a "good" (j - 1)-piece 
hypothesis for the remaining i - k observations. We can combine Pi-k,j-1 and hjk in 

k* for that k* the obvious manner to form a j-piece hypothesis Pi~, and we let Pij = Pij 
giving minimum loss on Si. 

To summarize more formally, the procedure computes Pij as follows: 

1. i f j  = 1 then compute p~j E 7-/such that Lp~j(Si) <_ Lh(S~) for all h c 7-. 

2. else f o r 0 < k < i d o :  

(A) let Tik = ((Xi-kq-X, Yi- t :+l) , . . . ,  (xi, Yi)) 

(B) compute hit: E H such that Lh~k(Tit:) < Lh(Tit:) for all h E 7- 

(C) "recursively" compute Pi- t:,j- 1 
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(D) let 

: { if • < 
hik(x) otherwise 

3. p~j ---- p{jk* where k* = argmink(Lp~j (Si)). 

(Here, we use the notation Lh(S) to denote the total loss of h on a sample S: Lh(S) = 
~(x,~)cs Lh(z, y).) 

Although we described the computation of Pij recursively, in fact, we can store these 
values in a table using standard dynamic programming techniques. That the procedure 
runs in polynomial time then follows from the fact that only O(ms) piecewise functions 
Pij are computed and stored in such a table. 

To prove the correctness of the procedure, we argue by induction on j that Lp~j (Si) <_ 
Lh(S~) for h E PWj(7-). In the base case that j = 1, this follows immediately from our 
assumption that T is empirically minimizable by 7-/. 

Otherwise, if j > 1, then let f be a function in PWj (T) defined by bins I 1 , . . . ,  Ij and 
functions f l ,  • - •, f j  C T. Assume without loss of generality that the bins are ordered in 
the sense that if u < v, r C I~ and s c Iv then r < s. 

Choose the largest value of k for which all the points of Tik fall in bin Ij, i.e., for 
which {z~-k+~, . . . ,  zi} C_ Ij. Then Lh~k (T~k) <_ Lf~ (Tie) by our assumption that 7- is 
empirically minimizable by 7-£ Let f '  be the (j - 1)-piecewise function defined by bins 
I1 , . . . ,  Ij-2, Ij-1 U Ij and functions f l , . . . ,  f j-1. Then, by the inductive hypothesis, 
Lp,_k,j_l(Si-k ) <_ Lf,(Si-k). Thus, 

Lp~ (Si) < Lp~ (Si) 

= Lp{_<j_~ (Si-k) + nh,k (T{k) 

<_ Ls, (S{_k) + (T{k) 

: Lf(Si), 

completing the induction and the proof. [] 
Thus, in the frequent case that empirical minimization of loss is sufficient for learning, 

Theorem 4 may be used to translate an algorithm for loss minimization over 7- into an 
agnostic learning algorithm for functions that are piecewise over 7-. As an application, 
suppose the observed range Y is bounded so that Y C_ I - M ,  M] for some finite M. In 
such a setting, Theorem 4 implies the efficient agnostic learnability (with respect to the 
quadratic loss function) of step functions with at most s steps (i.e., piecewise functions 
in which each piece f~ is a constant function). This follows from the fact that constant 
functions are empirically minimizable, and the fact that uniform convergence can be 
achieved for such functions. By a similar though more involved argument, Theorem 4 
can be invoked to show more generally that s-piecewise degree-d polynomials can be 
agnostically learned in polynomial time, as we show below. 

Before proving this theorem, however, we will first need to review some tools for 
proving uniform convergence. Specifically, we will be interested in the pseudo dimension 
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of a class of functions ~c, a combinatorial property of  5 ~ that largely characterizes the 
uniform convergence over f "  (Dudley, 1978; Haussler, 1992; Pollard, 1984). 

Let .7" be a class of functions f : X ---+ IR, and let S = {(Xl, Y l ) , . - . ,  (Xd, Yd)} be a 
finite subset of  X x IR. We say that 5 ~ shatters S if 

{0, 1} d = { ( p o s ( f ( x l )  - Y l ) , . . . , p o s ( f ( x d )  -- Yd)}: f E 5 c} 

where pos(x) is 1 if x is positive and 0 otherwise. Thus, 5 c shatters S if every "above- 
below" behavior on the points x ~ , . . .  ,Xd relative to Y l , . . .  ,Yd is realized by some 
function in ~ .  

The pseudo dimension of 5 c is the cardinality of the largest shattered finite subset of 
X × IR (or is oc if no such maximum exists). 

Haussler (1992, Corollary 2) argues that, if the class L ~  = {Lh : h C 7-t} is uniformly 
bounded and has pseudo dimension d < oo, then a sample of  size polynomial in l / e ,  
1/(5 and d is sufficient to guarantee uniform convergence in the sense of Equation (1). 
Thus, to prove uniform convergence for a hypothesis space 7-{, it suffices to upper bound 
the pseudo dimension of L n  (and to show that L ~  is uniformly bounded). 

Since we are here concerned with piecewise functions, the following theorem will be 
useful for this purpose: 

THEOREM 5 Let X ~ IR, and let 5 

dimension d < oe. Then the pseudo 

Proof:  Let S be a subset of X x ]R 
not shattered by PWs (-7"). 

be a class o f  real-valued functions on X with pseudo 

dimension of  pws(5  c) is at most s(d + 1) - 1. 

of cardinality s(d + 1). We wish to show that S is 

Let the elements of  S be indexed by pairs i, j where 1 < i < s and 1 _< j _< d + 1. 
Further, assume without loss of  generality that these elements have been sorted so that 
S = { ( x i j ,  Yij)}l<i<_s,l<_j<_d+l and xi j  < x~,j, if i < i' or if i = i' and j < j ' .  (If  the 
x i j ' s  are not all distinct, then S cannot possibly be shattered.) Thus, we break the x~j's 

into s blocks, each consisting of d + 1 consecutive points. 
Let S~ = {(x~j, Y~j)}l<_j<_d+l be the ith such block. Since .7-has pseudo dimension 

d, S~ cannot be shattered, which means that there must exist a string cr i c {0, 1} d+l that 
is not included in the set 

Ai = { (pos ( f (x i l )  - Y i l ) , . . .  ,pos( f (x i ,d+l)  -- Yi,d+l)) ! f e 2:}. 

Let ~ = a l a 2  - • - as be the concatenation of these strings ai.  We claim that a is not a 
member  of  

A = { ( p o s ( f ( x n )  - Y11), . - . ,  pos( f (x l ,d+l)  -- Yl,d-+-l), 

p o s ( f ( x z l )  - Y21) , . . . ,  pos(f(x2,d+l)  -- Y2,ct+l), 

p o s ( f ( z s , 1 ) -  Y~,0, ' ""  , pos ( / (x s ,d+ , )  - -Ys ,d+l ) ) :  f C PW,(5")}. 

Suppose to the contrary that f witnesses ~r's membership in A. Then f is defined by 
disjoint intervals I 1 , . . .  , I s  whose union is JR, and functions f l , . . . ,  fs  E .T. Assume 
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without loss of generality that the intervals have been sorted so that if i < j then every 
point in I i  is smaller than every point in Ij .  Inductively, we show the following invariant 
holds for f :  For i = 1 ,2 , . . .  ,s, the set I t  U --.  U Ii  does not contain all the elements 
xl,1,...,Xi,d+l. The fact that I1 does not contain all the elements x1,1, . . .  ,xl ,d+l 
follows from the definition of c~1 (otherwise, f l  E S witnesses (71 E A1). Suppose 
that I1 tO . . .  U Ii contains the elements x l , 1 , . . . ,  Xi,d+l. By the inductive assumption, 
I1 t2 . - - U  I i -1  contains at most the points Xl,1, . . .  ,Xi-l,d; therefore, the interval Ii  
contains at least the elements xi- t ,d+l , . . . ,  Xi,d+l. But then f~ is a witness for (7i C ),i, 
which contradicts the definition of (7i. 

Thus, in part icular , /1U.- .  UIs does not contain all the points x l , l , . . . ,  z~,d+l, a clear 
contradiction since I t  tO -. .  tO I~ = JR. 

Therefore, as claimed, o- ~ A, and so S is not shattered, proving the theorem. 
[] 

We are now ready to prove the agnostic learnability of piecewise polynomial functions: 

THEOREM 6 Let X C_ 1R and Y c_ [-M, M]. Then there exists an algorithm for 

agnostically learning the class of s-piecewise degree-d polynomials (with respect to the 

quadratic loss function Q) in time polynomial in s, d, M, 1/e and 1/£ The sample com- 
plexity of this algorithm is (9216M4 /e2)( 4s(1 + d)2(2 + d)ln(192eM2/e)  + ln(16/~5)). 

Proof: Let 79 be the class of real-valued degree-d polynomials on X,  and let 79~ = 
PWs(79)-- Let 79 be the set of polynomials in 79 with range in I - M ,  M], and similarly 
define 79~. Our goal is to show that 79~ is agnostically learnable. 

For any function f : X --~ IR, let CLAMP(f) be that function obtained by "clamping" 
f in the range [ - M ,  M]. That is, CLAMP(f) = 9 o f where 

9(v)= 
- M  if y _< - M  
y i f - M < y < M  

M i f M < y .  

For a class of real-valued functions S ,  we also define CLAMP(S) to be {CLAMP(f) : 

fcm}. 
As noted above, the collection of all linear combinations of a set of basis functions 

is empirically minimizable. Thus, choosing basis functions 1, x , . . . ,  x a, we see that 79 
is empirically minimizable by 79, and therefore, applying Theorem 4, 798 is empirically 
minimizable by 79s. 

To show that 79s is agnostically learnable, it would suffice then to prove a uniform- 
convergence result for 79~. Unfortunately, most of the known techniques (Haussler, 
1992; Pollard, 1984) for proving such a result would require that the loss function Q 
be bounded. In our setting, this would be the case if and only if the functions in the 
hypothesis space 7-I were uniformly bounded, which they are not if 7-/= 79~. 

Therefore, rather than output the piecewise polynomial p in 79~ with minimum empirical 
loss, we instead output p '  = CLAMP(p). Note that the empirical loss of pt is no greater 
than that of p since our observed range is a subset of I - M ,  M]. Thus, 79s is empirically 
minimizable by CLAMP(79s). 
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We argue next that a polynomial-size sample suffices to achieve uniform convergence 
for CLAMP('Ps) with respect to the loss function Q. As noted above, by Haussler's 
(1992) Corollary 2, this will be the case if QCLAMP(7~s ) is uniformly bounded and 

has polynomial pseudo dimension. Clearly, every function in QCLAMP(Ps) is bounded 

between 0 and 4M 2 so QCLAMP('Ps) is uniformly bounded. 

To bound the pseudo dimension of QCLAMP (7)s)' we make the following observations: 

1. Because every degree-d polynomial p has at most d -  1 "humps," CLAMP(p) must be 

an element of ~)d+l. Thus, CLAMP(7~s) ~ ~-)s(d+l) ~ Ps(d-}-l), and so QCLAMP(T)s ) 
_c p w 4 d + l  ) (Qp). 

2. Every function Qh(X, y) in Q79 can be written as a linear combination of the basis 
functions 1, x2, . . . ,  x 2d, y, yx , . . . ,  yx d and y2. This follows from the definition of 
quadratic loss, and from the fact that h is a degree-d polynomial. 

3. Thus, QT) is a subset of a (2d + 3)-dimensional vector space of functions. Therefore, 
its pseudo dimension is at most 2d + 3 (Dudley, 1978) (reproved by Haussler (1992, 
Theorem 4)). 

4. By Theorem 5, this implies that the pseudo dimension of PWs(d+l)(QT-) ) is at most 
s(d + 1)(2d + 4). 

Therefore, the pseudo dimension of QCLAMP(7)8 ) is at most s(d + 1)(2d + 4). 

To complete the proof, we must overcome one final technical difficulty: We must show 
that there exists a polynomial q E 7")8 whose true expected loss is within e/3 of optimal, 
and whose empirical loss is within e/3 of its true loss. (See Section 4.1.) Again, this 
may be difficult or impossible to prove since q may be unbounded. 

However, this is not a problem if q has range t - M ,  M] (i.e., if q E Ps)  since in this 
case a good empirical estimate of q's true loss can be obtained using Hoeffding's (1963) 
inequality. 

Thus, because 7)8 C 7~8 is empirically minimizable by CLAMP(~O8), we have effec- 
tively shown that 7)8 is agnostically learnable using CLAMP('Ps). 

This is not quite what we set out to prove since our goal was to show that 7~8 is 
agnostically learnable. However, this can now be proved using the fact that every function 
in CLAMP('Ds) is in fact a piecewise polynomial with range in t - M ,  M]. 

More specifically, as noted above, CLAMP(Ps) C ~Os(d+l) , SO CLAMP(~Os) is agnos- 
tically learnable using CLAMP(T)8(d+I)). Since the loss of CLAMP(p) is no worse than 
that of p, for any function p, it follows that opt(CLAMP(7)8)) < opt(Ps). This implies 
that 7~8 is agnostically learnable using CLAMP(~r)s(d+I) ). 

The stated sample complexity bound follows from a combination of the above facts 
with Haussler's (1992) Corollary 2. [] 

Thus, we have shown that piecewise polynomials are agnostically learnable when the 
number of pieces s is fixed. It is natural to ask whether it is truly necessary that s be 
fixed. In other words, is there an efficient algorithm that "automatically" picks the "right" 
number of pieces s? Formally, this is asking whether the class Pw(T') = [-Js>~ Pws(50) 
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is agnostically learnable (with respect to the quadratic loss function). Here, we would 
allow the learning algorithm time polynomial in l /e ,  1/6, and the minimum number of 
pieces s necessary to have loss at most opt (pw(7) ) )  + e. 

Unfortunately, this is not feasible because we can construct situations in which there is 
not enough information to determine whether the "right" number of pieces is very large 
or very small. Specifically, let X = [0, 1] be the domain with a uniform distribution 
on instances in X,  let Y = {0, 1} be the observed range, and assume that the degree 
of the polynomials we are using is zero (in other words, we are trying to agnostically 
learn step functions). Consider the following two p-concepts: The first is the constant 
function f --- 1/2. In other words, each point z is labeled 0 or 1 with equal probability. 
In this case, the optimal number of pieces s is one - -  the quadratic loss is minimized 
by a single step that is 1/2 over the entire domain. The second kind of p-concept, 
denoted 9t, is a deterministic function (i.e., its range is {0, 1}) that has t equal size steps, 
where t is "large." The value of the function on each of these steps is chosen at random 
(although, as already mentioned, the function itself is deterministic). In this case, the 
optimal number of pieces is s = t. 

Intuitively, it seems clear that the learning algorithm cannot distinguish these two cases 
until it observes at least two points in the same bin, an event that is unlikely to occur until 
about x/t points are observed. Further, without the ability to distinguish these cases, the 
learning algorithm cannot find a hypothesis whose loss comes close to optimal. This is 
because if the learning algorithm stops before having seen x/7 examples, then it cannot 
distinguish data produced by f or 9t. Thus, its hypothesis will be far from at least 
one of these p-concepts, and therefore, the learner has a reasonably high probability of 
outputting a p-concept that is far from optimal if it chooses a sample significantly smaller 
than x/t. On the other hand, if the learner does choose a sample of size x/~ or larger, 
then it risks drawing far too many examples when t is large, but the true target p-concept 
is f (in which case t = 1). 

Although we omit the details, these arguments can be made rigorous using, for instance, 
the randomized lower bound techniques of Blumer et al. (1989). Since t is arbitrary, this 
shows that an arbitrarily large number of observations are needed to agnostically learn 
piecewise polynomials with any finite number of pieces. 

Finally, we mention that the results of this section can be generalized to find piece- 
wise functions that are continuous by only considering a finite set of endpoints for the 
hypothesis function over each interval and adding the choice o f  endpoint as a variable 
in the dynamic program. 

5. Relations between loss functions for agnostic learning 

Suppose that our assumption class A is the functional decomposition using some class 
Z of boolean functions. A common approach to learning under such conditions is to 
find a real-valued hypothesis h instead of a boolean function; the hope is that even given 
the knowledge that the target f C Z is boolean, it may be easier to find algorithms that 
operate in a space of functions characterized by a continuous parameterization, and that 
may thus make incremental changes or pursue hill-climbing methods that do not exist 
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for boolean classes. Indeed, general-purpose learning algorithms such as the well-known 
backpropogation algorithm for neural networks use exactly such an approach. 

However, algorithms searching for a real-valued hypothesis almost invariably attempt 
to minimize a loss function that incorporates the actual real-valued output h(x) (such 
as the quadratic loss Q), and as such do not explicitly address performance for the 
most natural loss function for boolean targets, the prediction loss Z. More precisely, if 
f :  X ~ {0, 1} is the boolean target function, does finding an h :  X --+ [0, 1] minimizing 
E[Qh] = E[( f  - h) 2] help us at all in predicting the boolean target value f (x ) ?  

One obvious approach is to define Oh(x) = 1 if h(x) >_ 1/2 and 0 otherwise, and to 
use Oh to make boolean choices from the real-valued h. This works to some degree: it 
is easy to show that in general, 

E[Zeh] = P r [ f  ¢ Oh] < 4E[Qh]. 

(The proof of the last inequality follows by noting that 4E[Qh] = E[(2f  - 2h)2], and by 
observing next that if f ( x )  ¢ (gh(X) (so that f ( x )  = 0 and h(x) > 1/2, or f ( x )  = 1 

and h(x) < 1/2) then (2f  - 2h) 2 > 1.) This bound is tight in the sense that there exist 
boolean f and real-valued h for which the equality holds. Thus, in the case that E[Qh] 
is small, the stated bound on the expected prediction loss is nontrivial. 

However, in our pursuit of agnostic learning we wish to allow the weakest assumptions 
on f ,  in which case we should not expect to be able to find a hypothesis h for which 
E[Qh] is small. Further, for E[Qh] larger than 1/8, the bound obtained on E[Zoh] is not 
better than that achieved by random guessing. We would like to find a way of using h 
to make predictions with a nontrivial probability of mistake even as E[Qh] approaches 
1/4 (which is the expected quadratic loss corresponding to "random guessing" achieved 
by the constant function 1/2). 

For any function h : X --+ [0, 1], we define Sh(x) to be a boolean random variable 
that is 1 with probability h(x) and 0 with probability 1 - h(x); thus it is simply the 
p-concept interpretation of h. We write E[Zsh ] to denote Pr [ f (x)  ~ $h(X)], where this 
probability is taken over the random draw of x and the coin flip associated with $h- 

THEOREM 7 Let f : X -~ {0, 1} be any boolean function, and let h : X -+ [0, 1] be a 

real-valued function. Then for any distribution D on X, 

E[Zsh] = E[Qh] + E[h(1 - h)] < E[Qh] + 1/4. 

Proof: We have that 

E[Zsh] = E [ f ( 1 - h ) + ( 1 - f ) h ]  

= E [ f - 2 f h + h ]  

and that 

E[Qh] = E[( f  - h) 2] 

= E[ f  2 -  2fh  + h2]. 

Combining these equations, and noting that f2 __ f (since f is boolean), we have 
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E[Zsh.] = E[Qh] + E[h(1 - h)] 

as claimed. The stated upper bound on this quantity follows simply from the fact that 
x(1 - x) < 1/4 for all real x. [] 

Thus, provided we have achieved a nontrivial expected quadratic loss with h, we can 
use $h to obtain a nontrivial expected prediction loss. More precisely, if E[Qh] _< 
a < 1/4, then E[Zsh.] _< 1/4 + c~ < 1/2, and may be considerably smaller if h is 
"almost boolean" in the sense that E[h(1 - h)] is small. Note that in the case of very 
small expected quadratic loss, we should still use Oh for predictions; Theorem 7 covers 
the agnostic setting where the expected quadratic loss may be large but non-trivial. In 
either case, since the expected quadratic loss of h is a quantity we can estimate, we 
can choose which predictor to use, giving us a worst-case expected prediction loss of 
min(4E[Qh] , E[Qh] + E[h(1 - h)]). 

We note that an improved technique was communicated to us by M. Warmuth. This 
technique replaces $h(x) with a rule that predicts 1 with probability h(x)Z/(h(x)  2 + 

(1 h(x))2), and 0 otherwise. Using an argument similar to that used in the proof of 
Theorem 7, it can be shown that this rule has predictive loss E[Qh/(h 2 + (1 - h)2)] _< 
2. E[Qh]. 

5.1. Application: weak agnostic learning of  AC  ° 

We can immediately apply Theorem 7 to some existing algorithms in the standard PAC 
model to obtain algorithms for "weak" agnostic learning. For instance, Linial, Mansour 
and Nisan (1993) describe an algorithm in the standard PAC model with the target 
domain distribution restricted to be uniform over {0, 1} ~. The hypothesis space 7-/of 
this algorithm is the class of functions with a Fourier expansion over the so-called parity 

basis whose high-order coefficients (that is, the coefficients of all basis functions whose 
size exceeds g) are 0. The algorithm runs in time polynomial in n e, 1/e and 1/3. It is 
shown that the algorithm finds a real-valued h such that E[Zoh] is less than e provided 
the boolean target function f is "close" to some hypothesis in the restricted hypothesis 
class 7-t (that is, the optimal expected prediction loss must be close to zero). 

However, E[Zeh] is not guaranteed to be near the optimal in the agnostic setting where 
f is unrestricted. Nevertheless, the algorithm of Linial, Mansour and Nisan can be used 
to find an h that (nearly) minimizes E[Qh] even in the agnostic setting; thus we can 
apply Theorem 7 to show that for any boolean target function f ,  min(4E[Qh], E[Qh] + 
E[h(1 - h)]) bounds our expected prediction loss. For instance, this means that if there 
exists an AC ° function 3 C that weakly approximates the target function f on the uniform 
distribution (so that f agrees with C with probability at least 1/2 - 1/p(n) for some 
polynomial p) then the results of Linial, Mansour and Nisan combined with Theorem 7 
imply the existence of a quasi-polynomial time algorithm for finding a hypothesis that 
weakly approximates f .  We summarize these ideas with a corollary: 

COROLLARY 1 There exists an algorithm with the following properties. The algorithm 

is given s, d, e, 5 and access to randomly generated examples of a function f : {0, 1} ~ 
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{0, 1}. Let 7 be such that there exists an AC ° circuit C of size s and depth d with the 

property that P r [ f  ¢ C] <_ 1/2 - 7. Then, with probability at least 1 - 5, the algorithm 

finds a hypothesis function h such that P r [ f  ¢ h] _< 1/2 - 3 ̀2 + e (where all probabilities 

are computed with respect to the uniform distribution on {0, 1}n). The algorithm runs 

in time polynomial in n e, 1/e, and log(I/5), where g = (201g(8s/e2)) d. 

P r o o f  sketch:  The proof uses properties of  the Fourier transform, as described in 
detail by Linial, Mansour and Nisan (1993). Any function f : {0,  1} ~ ~ IR can be 

written in the form: 

f ( x )  = Z }(S)xs(x) 
sc_b ...... } 

where Xs(x)  = H i e s ( - 1 )  x'. A useful fact is Parseval's identity: 

E[S = F,i(S) 
s 

Let C be as in the statement of the corollary, and let 9 be defined by: 

1 / 2 -  7 if C(x) = 0 
9(¢) = 1/2 + "7 if C(x) 1 

Then it can be shown that E [ ( f  - g) 2] < 1/4  - 72. 
Let r be the function defined by 

ISl_<~ ISl>~ 

Thus, r is a sort of mixture of f and g- 
By Parseval 's identity, E l ( / -  r)  2] <_ E [ ( f  - 9) 2] <_ 1/4  - 72. 
We can approximate the function r by running the algorithm given in Linial, Mansour 

and Nisan (1993), with the choices of g and 5 as given above, and with e set to e2/4. 
We can do this with access to examples of  the function f since the algorithm of Linial, 
Mansour and Nisan approximates the low order coefficients of  f (which are the same as 
for r),  and sets the high order coefficients to be zero. 

Let h be the resulting hypothesis. Then, by Parseval's identity, and by definition of r, 

E [ ( h  - = Z - }(S)) + (O(S))  

ISl_<~ ISl>~ 

The first sum is bounded by the accuracy of our approximation of each of the coefficients, 
and the second sum is bounded using the main lemma of Linial, Mansour and Nisan 
(1993, Lemma 7). The result is that E[(h - r)] 2 _< e2/4. 

Since 

v /E[ (h  _ f)2] < v /E[(h  _ r)2] + v /E[ ( r  _ f)2],  
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it follows that E[Qh] = E[(h - f)2] _< 1/4 - 3 '2 + e. Therefore, by Theorem 7, 
E[Z, , , ]  _< 1 / 2  - 3'2 + c. [ ]  

We conclude this section by mentioning that Theorem 7 can be generalized to a model 
where the target function f is a discrete function assuming d possible values, and the 
output of h is a normalized vector in •d; this is intended to model settings such as 
character recognition, where we attempt to find a real-valued hypothesis but wish to 
predict which character is represented in the input with the greatest possible accuracy. 

6. Hidden variable problems 

Thus far we have been striving for algorithms that find a good hypothesis under the 
assumption that the target function is arbitrarily complex. An insight that has been made 
frequently in both the empirical and theoretical machine learning communities, however, 
is that no function is arbitrarily complex over all variable sets: if we can somehow 
define new variables that compute significant subfunctions of the target function, then 
the representation of the target function may simplify dramatically. This approach to 
simplifying target functions is sometimes loosely referred to as feature discovery. 

One difficulty with this approach, of course, is that the right features may be as dif- 
ficult to discover as the target function itself; in fact, in scientific domains the frontier 
of research often focuses just on finding the quantities that are relevant to a given phe- 
nomenon, and these may be uncovered only after long periods of experimentation and 
theory. Thus, in this section, we focus not on the problem of discovering features, but 
rather on the problem of learning when only some of the relevant variables are known 
or are "visible," while others are "hidden." 

We are motivated by the simultaneous realizations that target functions may have simple 
representations over the appropriate variable set, but that only some of these variables 
may be known at any given time. This hidden-variable model allows an intermediate 
step between the strong assumptions of the standard PAC model and full agnosticism. 
This model was previously investigated by Kearns and Schapire (1990). 

Let U and V be disjoint sets of variables. We say that the variables in V are visible, and 
that the variables in U are hidden. In our setting, the learner observes random examples 
which are classified according to some deterministic boolean function f over the entire 
variable set U U V. However, the learner is allowed to observe only the values of the 
visible variables. Thus, for a given assignment x to the visible variables V, the label 
assigned to x appears to be probabilistic. Specifically, the probability that x is labeled 1 
is just the probability that an assignment is chosen for the hidden variables that causes f 
to evaluate to 1. To the learner, it appears that the examples are being labeled according 
to some p-concept pf  on the visible variables, where py(x) is the conditional probability 
that f = 1 given that the visible variables are assigned x; that is, pf (x )  = P r [ f  = 1 ] x]. 
We can therefore view such hidden-variable problems as p-concept problems where the 
domain is the set of assignments to the visible variables. 

In this section, our goal will be to find the best possible predictor for the induced 
p-concept pf  when f is chosen from some class of functions 5 r.  In other words, we will 
be interested in finding that rule (called the Bayes optimal predictor) which minimizes 
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the expected prediction loss Z. We assume that the touchstone class is large enough 
to include the Bayes optimal predictor for any pf. Finally, it is necessary to assume 
independence between the distributions of assignments to the hidden and visible variables; 
without this, it is possible to construct even trivial target functions f for which py is 
arbitrary. 

As an easy first example, suppose the function f is chosen from the set of  conjunctions 
of  literals over U tJ V. In particular, suppose that f is given by the conjunction M : R S  

where the variables in R and S are hidden and visible, respectively. Then it is not hard to 
see that p f (x )  is 0 if S(x)  = 0 and otherwise equals the probability r that R = 1. Note 
that if r < 1/2 then the Bayes optimal is the constant function 0; otherwise, it is just the 
conjunction S. It has been shown (Kearns & Schapire, 1990) that we can approximate 
the Bayes optimal predictor by applying Valiant's (1984) algorithm for conjunctions to 
approximate the conjunction S, and by then estimating r using this approximation for S. 
Our goal in this section is to obtain a similar result for the more general class of  k-term 
DNE 

6.1. An algorithm for  k-term DNF hidden variable problems 

In the case of conjunctions, the Bayes optimal predictor is either the zero function or the 
restriction of the conjunction. (The restriction of a DNF formula is the formula obtained 
by syntactically deleting all of the hidden variables.) However, this may not be so in 
general, as can be seen in the case of k-term DNF formulas. For example, suppose that 
f is the formula w l x l  V w2x2 where wl  and w2 are hidden, and x l  and x2 are visible. 
Suppose also that wl and w2 are each 1 independently with probability 0.4. Then in this 
case, the Bayes optimal predictor is x~x2, not the restriction formula x l  V z2. 

More generally, let f be the k-term DNF formula R1S1 V .. .  V RkSk,  where the 
R i ' s  and S~'s are terms over U and V, respectively. Note that the behavior of  the 
p-concept py is exactly determined by the values of S1 , . .  •, Sk (under our assumption 

that hidden and visible variables are independent). That is, if for z C {0, 1} k we define 
qf(zl, . . . ,  Zk) tO be the probability that f = 1 given that S1 = z l , . . . ,  Sk = zk, then 
pf (x) = qf ($1 ( x ) , . . . ,  Sk (x)). Furthermore, it can be seen that qy is monotone in the 
sense that qf(z)  >_ qf(z ' )  whenever z >_ z' .  (Here, z >_ z '  if zi >_ z~ for all i < i < k.) 
This is because if z > z / then 

qf(z)  = Pr[t_Ji:z{:~R{ : 1] _> Pr[U{:z:=tR{ : 1] : qf(z ') .  

We have already seen that the Bayes optimal predictor for py need not be the restriction 
of f .  In fact, it is not hard to come up with a k-term formula f and a distribution on 
the hidden variables such that pi  >_ 1/2 if and only if more than half of  the terms S{ 
are satisfied. In this case, the Bayes optimal predictor, if expressed as a DNF formula 
over the visible variables, will be exponentially large (in k). Thus, although the original 
formula may be quite simple, the Bayes optimal predictor for the induced p-concept may 
be quite complicated. 

Nevertheless, there does exist an efficient algorithm for finding the Bayes optimal 
predictor when f is a k-term DNF formula. We will show that pf  can be represented 
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as a k-probabilistic decision list with increasing probabilities, a class of p-concepts for 
which there is known to exist an efficient algorithm for approximating the Bayes optimal 
predictor (Kearns & Schapire, 1990). A similar technique is used by Blum and Chalasani 
(1992). 

A k-probabilistic decision list (k-PDL) g over variable set V is a sequence of pairs 
((dl ,  r t ) , . . . ,  (ds, rs))  where each di is a conjunction of at most k literals from V and 
each ri E [0, 1]. We also require that some di is the constant function 1 (this is a slightly 
more convenient requirement than the equivalent requirement that d~ = 1). Here, e(x) 
is defined to be r j  where j is the least index for which dj(x) = 1. Such a list is said 
to have increasing probabilities if r i  _< r i+ l  for i < s. See Kearns and Scbapire (1990) 
and Yamanishi (1992a) for further background on probabilistic decision lists. 

Kearns and Schapire (1990) show that k-PDL's with increasing probabilities can be 
learned with a model of probability: they describe an algorithm for finding an approx- 
imation h for a given list g such that the expected difference I h - gl is small. Thus, it 
suffices to show that pf is a k-PDL with increasing probabilities, since we can then use 
Kearns and Schapire's algorithm to find the Bayes optimal predictor (and furthermore, 
find a good model of  the function p f  itself). 

THEOREM 8 Let f be a k-term DNF formula. Then pf is equivalent to a k-PDL with 

increasing probabilities. 

Proof:  We show first that qf is a k-PDL with increasing probabilities. We regard qy as 
a function over the variables s l , . . . ,  sk. For each possible assignment z = ( z l , . . . ,  zk), 
let dz =/~i:z~=O s~, and let rz = qf (z). Let g be a list consisting of exactly the set of 
pairs (d~, r~) for all assignments z and ordered in such a fashion that g has increasing 
probabilities. 

We claim that g(z) = qy(z) for all z. To see that qf(z) > g(z), note that d~(z) = 1, 

and therefore, g(z) _< r~ = qf(z) since g has increasing probabilities. To see that  
qf(z) <_ g(z), observe first that g(z) = rz, for some z '  for which d~,(z) = 1. By 
definition of d~,, this means that for each i, if z~ = 0 then zi = 0; that is, z ~ > z. So, by 
monotonicity of  qf, this implies that qf(z) <_ qf(z') = r~, = g(z'). Thus, qf(z) = g(z) 

as claimed. 
By substitution then, py(x) = g (S l ( x ) , . . . ,  Sk(x)). This is a list consisting of pairs 

(d~;r~) where d~ = / ~ i : ~ = 0  S'i' It is easily seen by DeMorgan's  Law that dz is a k -DNF 
formula t l  V . . .  V t~ over the variables in V. We therefore replace the pair (d~, r~) in g 
with the sequence of pairs (tl, r~ ) , . . . ,  (tw, r~). Applying this operation for each z, it is 
easily verified that the resulting list is a k-PDL with increasing probabilities that equals 
py. [] 

As noted above, the algorithm described by Kearns and Schapire (1990) can be applied 
to prove the following corollary: 

COROLLARY 2 Let f be a k-term DNF formula over the variable set U U V. Then 

there exists an efficient algorithm forfinding the Bayes optimal predictor for the induced 

p-concept pf  over the assignments to V. 
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6.2. Why h-CNF may be harder than k-term DNF 

In this section we give evidence suggesting that learning may be difficult when the target 
function f is a k-CNF formula. Specifically, we show that for 2-CNF, there exist cases in 
which the Bayes optimal predictor is arbitrarily complicated, requiring an exponentially 
large representation. 

Let f = (sl  V r l ) . . - ( s n  Vrn)  where si C V and ri E U. Let f '  be any DNF formula 
over V, each of whose terms contain exactly n/2 of the visible variables. Note that f /  
may be exponentially large. We show that we can create a distribution D U on the hidden 
variables such that f~ is the Bayes optimal function for f .  

For each term ti in f l  we define an assignment zi whose j th  bit is 1 if and only if 
sj does not occur in ti. Let c~ = 1/(4g - 2) where g is the number of  terms of f q  
Let DU(1 ~) = 1/2 - c~, let DU(zj) = 2c~ for all j ,  and let DU(u) = 0 for all other 
assignments u. 

Let v be an assignment to the visible variables. If a term ti in f '  is satisfied by v then 
f is satisfied when the hidden variables are assigned either 1 n (the all l ' s  vector) or zi. 
Thus if f '  is satisfied then pf(v) >_ 1/2 + c~. Otherwise, if f '  is not satisfied by v then 
the only satisfying assignment to the hidden variables that has nonzero probability is 1 n , 
so pf(v) = 1/2 - c~ in this case. 

Thus, as claimed, the Bayes optimal predictor for pf is exactly f~. 
Since there exists a doubly exponential number of formulas f~ (specifically, there are 

2(-.'~ 2) = 2 2a(È~) such formulas), this implies that for any representation of the Bayes 
optimal functions, there is some D U for which the Bayes optimal predictor has an 
exponentially long representation. 

However, note that most of  the functions used in this construction can easily be ap- 
proximated by a constant-sized representation since when c~ is small pf(v) is close to 
1/2  for all assignments v. Thus, it remains open whether the result of  Section 6.1 can 
be extended to handle k-CNF formulas. 

7. Open  problems 

This paper presented the fruits of  an initial investigation into the properties of  agnostic 
learning models. There is much work to be done in this area, and it seems plausible that 
the "right" model for obtaining powerful positive results should choose a middle ground 
that balances assumptions on target functions with assumptions on domain distributions, 
while still remaining applicable to problems arising in practice. Here we have simply 
studied one extreme set of  assumptions in order to obtain some idea of what can and 
cannot be accomplished efficiently. 

The main open research direction is to explore the limits of  efficient learning algorithms 
in agnostic models. Are there other problems for which there exist efficient learning 
algorithms? For instance, in Section 6, we showed how to learn p-concepts induced 
by partially visible k-term DNF formulas. Can this result be extended to handle k- 
CNF formulas? This problem may be harder since the Bayes optimal predictor can be 
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extremely complicated. On the other hand, we have not yet come up with a case where 

there does not exist a very simple function that approx ima te s  the Bayes optimal predictor. 

Rather than trying to find efficient algorithms for specific learning problems, we might 

instead explore the theoretical power of known algorithms. That is, we might ask if any- 

thing can be proved about the capabilities of various "off-the-shelf" learning algorithms 

commonly used in practice, such as neural networks and decision-tree algorithms. 

We would also like to understand the theoretical properties of some of the models 

discussed in this paper. For instance, in the fully agnostic PAC model, is there any 

situation in which membership queries are useful? Intuitively, membership queries should 

not give us more power since the answers to queries are more or less arbitrary (since the 

target function is arbitrary). However, we have so far been unable to derive a rigorous 

proof based on this intuition. 
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Notes 

1. To the best of our knowledge and recollection, the term "agnostic learning" was coined during a discussion 
among Sally Goldman, Ron Rivest, and the first two authors of this paper. 

2. Certain "permissibility" assumptions are required - -  see Haussler (1992) for details. 

3. AC ° is the class of all boolean functions computed by a constant-depth boolean circuit composed of 
unbounded fan-in AND, OR and NOT gates. 
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