
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013 1

Toward Efficient Distributed Algorithms for
In-Network Binary Operator Tree Placement in

Wireless Sensor Networks
Zongqing Lu, Student Member, IEEE, Yonggang Wen, Member, IEEE, Rui Fan, Member, IEEE,

Su-Lim Tan, Member, IEEE, and Jit Biswas, Member, IEEE

Abstract—In-network processing is touted as a key technology
to eliminate data redundancy and minimize data transmission,
which are crucial to saving energy in wireless sensor networks
(WSNs). Specifically, operators participating in in-network pro-
cessing are mapped to nodes in a sensor network. They receive
data from downstream operators, process them and route the
output to either the upstream operator or the sink node. The
objective of operator tree placement is to minimize the total
energy consumed in performing in-network processing. Two types
of placement algorithms, centralized and distributed, have been
proposed. A problem with the centralized algorithm is that it does
not scale to large WSN’s, because each sensor node is required
to know the complete topology of the network. A problem with
the distributed algorithm is their high message complexity. In
this paper, we propose a heuristic algorithm to place a tree-
structured operator graph, and present a distributed implemen-
tation to optimize in-network processing cost and reduce the
communication overhead. We prove a tight upper bound on
the minimum in-network processing cost, and show that the
heuristic algorithm has better performance than a canonical
greedy algorithm. Simulation-based evaluations demonstrate the
superior performance of our heuristic algorithm. We also give
an improved distributed implementation of our algorithm that
has a message overhead of O(M) per node, which is much less
than the O(

√
NM log2 M) and O(

√
NM) complexities for two

previously proposed algorithms, Sync and MCFA, respectively.
Here, N is the number of network nodes and M is the size of
the operator tree.

Index Terms—Sensor networks, operator tree placement,
heuristic algorithm.

I. INTRODUCTION

W IRELESS sensor networks (WSNs), owing to recent
advances in wireless communication and microsystem

technologies, have enabled a school of novel applications
[1], [2], such as disaster management, factory automation,
environment monitoring, offshore exploration, to name a few.
In these applications, a large number of sensor nodes, each of
which is capable of sensing, computing and communicating,
are deployed to operate autonomously or collaboratively in
remote environments. However, each sensor node has only a

Manuscript received April 1, 2012; revised December 26, 2012
Z. Lu, Y.G. Wen and R. Fan are with the School of Computer Engineering,

Nanyang Technological University, 639798 Singapore (e-mail: {luzo0002,
ygwen, fanrui}@ntu.edu.sg).
S.L. Tan is with Singapore Institute of Technology, 179104 Singapore (e-

mail: forest.tan@singaporetech.edu.sg).
J. Biswas is with Institute for Infocomm Research, 138632 Singapore (e-

mail: biswas@i2r.a-star.edu.sg).
Digital Object Identifier 10.1109/JSAC.2013.1304xx.

limited amount of system resource at its disposal. In particular,
the limited energy resource for the sensor nodes is a major
factor that determines the lifetime of WSNs. Therefore, energy
optimization stands out as an imperative step in the design,
operation and application of WSNs [3], [4].

One of the most prominent technologies for conserving
energy in WSNs is in-network processing [5], [6]. Specifically,
in-network processing leverages the computational capacity of
sensor nodes to perform aggregation (or fusion) operations
en route, eliminating data redundancy and minimizing data
transmission to save energy for sensor nodes. Normally, the
operators participating in in-network processing are placed in
existing sensor nodes, which receive the data from downstream
operators, process them and route the output along a particular
path to either upstream operators or the sink node. The energy
consumption in this scheme depends on the data transmission
from one operator to its upstream counterpart, which in
turn depends on the placement of operators over the sensor
topology. It has been shown [7] that the placement of operators
can greatly affect the transmission energy cost of in-network
processing. In this research, we focus on developing algo-
rithms for in-network operator placement in wireless sensor
networks, with the objective of minimizing total in-networking
processing cost and data transmission energy.

Previously proposed algorithms for optimal placement of
in-network operator tree can be classified into two categories,
centralized and distributed. In centralized algorithms, each
node is required to know the topology of the entire network,
limiting its scalability in large WSNs. Existing distributed
algorithms can eliminate this constraint. However, they often
incur a substantial message overhead: (O(

√
NM log2 M) for

Sync [8] and O(
√
NM) for MCFA [9], where N is the num-

ber of network nodes and M is the size of the operator tree).
Other distributed algorithms, e.g. the greedy algorithm of [10],
has a high cost to search for an optimal operator placement.
These extra communication costs increase the energy cost of
network operations, possibly negating the energy savings of
in-network processing.

In this paper, we propose a distributed heuristic algorithm
to place a tree-structured binary operator graph over the sensor
topology, with an objective to reduce the message overhead
and save energy. Inspired by the three-factory problem [11],
we develop a heuristic that places each operator individually
to minimize the total cost of routing data from its downstream

0733-8716/13/$31.00 c© 2013 IEEE

2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

operators to the sink node. We then develop an area-restricted
flooding mechanism to solve the local minimization problem,
which has a low message overhead. Distributed message
passing protocols, based on the area-restricted flooding mech-
anism, are presented for numerical analysis. Our theoretical
and numerical analyses show the performance advantage of
our proposed algorithm in reducing communication and energy
cost. Our technical contributions include the following:

• We propose a geometric heuristic, based on the three-
factory problem, as a mathematical basis to place each
operator individually.

• We establish a tight upper bound on the minimum energy
cost for in-network operator tree placement and prove that
our performance ratio is significantly better than that of
the previously proposed greedy algorithms.

• We introduce a novel area-restricted flooding mechanism
to reduce the message overheard of placing individual
in-network operators.

• We develop a parameter-free distributed algorithm to
place a tree of operators without requiring knowledge
of the network topology. The message overhead of the
algorithm is O(M) per node.

• We provide both mathematical analyses and simulation-
based evaluations that show our approach has better
performance than the canonical greedy algorithm and
has much smaller message overhead than the Sync and
MCFA algorithms.

The rest of this paper is organized as follows. Section
II reviews the existing work. Section III formulates the op-
timization problem for operator tree placement in a sensor
network. We then characterize the optimal solution in Section
IV. Section V presents our proposed heuristic algorithm and
proves its approximation ratio. An improved distributed imple-
mentation of our heuristic algorithm is presented in Section
VI. In Section VII, we give a simulation-based evaluation of
our heuristic algorithm and compare it to other algorithms. We
conclude the paper in Section VIII.

II. RELATED WORK

The problem of optimal operator placement has been an
important research subject. One school of prior works opti-
mizes the throughput as in [12], [13], [14]. The other school
of prior works optimizes the energy cost, including centralized
algorithms [15], [16], [17], [18] that requires the global
topology information, and distributed algorithms [19], [20],
[21], [22], [8], [10].
Bonfils et. al. [19] proposed a decentralized algorithm for

operator placement, which progressively refines the placement
of operators by neighbor exploration and placement adapta-
tion. The approach that an operator is gradually moved towards
optimal placement is called in-network relaxation or operator
migration. Other works in the same category include [20],
[21]. As these algorithms of operator migration are based only
on local information (information from neighbors), they suffer
from oscillating change, which might force the placement of
an operator to a different direction before reaching the optimal
placement. They are also prone to local minima and they
cannot guarantee the optimality of operator placement based
on local information only.

In [22], 1-median point is considered as the optimal place-
ment in network and a distributed search algorithm was
proposed to find the optimal operator placement. However, this
algorithm is designed to handle only one operator placement.
Abrams et. al. [10] proposed a greedy algorithm, which

places each operator on the node with minimized input data
transmission cost. Obviously, the greedy placement is not
optimal and it can be much worse when the greedy placement
is backward to the sink. Further, the distributed implementa-
tion of this greedy algorithm considered only the placement
adaptation and the authors did not elaborate how to find the
initial placement for each operator in a distributed manner.
In [8], Sync was proposed to achieve the optimal placement

for a tree-structured operator graph with optimal in-network
processing cost. However, Sync requires that the network
should have full time synchronization, and all the nodes should
know when other nodes finish information updating and when
they finish broadcasting updated information. Furthermore,
it incurs a huge message overhead for searching the opti-
mal placement. To address this issue, Lu et. al. [9] pro-
posed a minimum-cost forwarding based distributed algorithm
(MCFA) to optimize the message overhead. Although MCFA
has less message overhead than Sync, the message overhead
is still very heavy.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present model assumptions for the
in-network processing in WSNs, and then formulate the oper-
ator tree placement as a joint placement-routing optimization
problem.

A. Model Assumptions

In this research, we assume that a WSN is deployed in
a two-dimensional region, where each node has capabilities
of sensing, communication and computing. For sensing, each
node can observe a local variable and encapsulate the result as
a data object. For communication, each node can communicate
with other nodes that fall in with a radius (rc) and the network
is fully connected (no isolated nodes). For computing, each
node can take all the data objects from downstream nodes and
compute a summary of these objects into another date object,
which will be forwarded to node in the upstream. Under
these assumptions, we model the WSN as an undirected graph
G = (V,E), where V denotes the set of vertices representing
sensor nodes and E denotes the set of edges representing
communication links between nodes. The cardinality of the
vertex set is N . For two nodes p, q ∈ V within the com-
munication radius, we denote the edge as (p, q) ∈ E. For
any edge (p, q) ∈ E, we denote C(p, q) as a chosen distance
metric between the two incident nodes of p and q. Examples
of the distance metric include hop counts, square of Euclidean
distance between two nodes, and transmission energy, etc.
Moreover, we assume the communication link is symmetric
C(p, q) = C(q, p).
Figure 1(a) illustrates a typical wireless sensor network,

where each node can play three roles, including sensing node,
relay node and sink node. The sensing node collects data
object, the replay forwards information along a chosen routing

LU et al.: EFFICIENT DISTRIBUTED ALGORITHMS FOR IN-NETWORK BINARY OPERATOR TREE PLACEMENT IN WIRELESS SENSOR NETWORKS 3

s1
s2

s3 s4

B

n1
n2

n3 n4

n8

n5
n6 n7

sink
sensor
relay

(a)

s1 s2 s3 s4

o1 o2

o3 root

operator
sensor
data object

(b)

s1
s2

s3 s4

B
o1

o3
o2

n1
n2

n3 n4

n8

n5

n6
n7

sink
sensor
operator

(c)

Fig. 1. Sensor network (a), operator tree (b) and placement (c). Noted
that operator can be placed on any network node and (c) is an example of
placement that might not be optimum.

path, and the sink node collects all the data objects. We assume
that a set X ∈ V of nodes are data sources of interests
(sensors) and the sensed data needs to be gathered at sink node
or base station B ∈ V as shown in Fig. 1(a). Moreover, in
order to reduce transmitted data size to save energy, in-network
data aggregations or computations (defined as operators) are
desired to process the sensed data along the routing paths. We
assume that these sensors and operators formulate a routing
tree, through which data objects are processed and routed
toward the sink node. We call it an operator tree, which
is a directed graph, denoted as T = (X,O,A), where X
denotes the set of sensors (data sources), O denotes the set
of operators, and A denotes the set of directed edges. The
cardinality of O is t and the size of operator tree (the number
of sensors and operators) is M . We assume the operator tree
is a complete binary tree as illustrated in Fig. 1(b). In the rest
of paper, the complete binary operator tree is simplified as
operator tree unless otherwise specified.
For each sensor x ∈ X , we denote dx the size of data object

generated by sensor x. For each operator o ∈ O, we denote
Δo as the set of children of operator o, do the size of data
object generated by operator o, ro the data reduction ratio of
operator o, which is defined as the ratio between the size of
output data object and the sum size of input data objects. We
assume ro ≤ 1/2, which is reasonable because output data of
operator is much less than input data like query processing,
stream processing, etc [23], [24]. Moreover, αo is defined as
the ratio of the larger input data object size to the smaller
input data object size of operator o. Note that the final data
object (the data object from root operator) will be transmitted
to sink node, as shown in Fig. 1(b).
In this research, we focus on overlaying the operator tree

atop of the WSN topology as shown in Fig. 1(c). Specifically,
we identify a subgraph (i.e., a complete tree) in the WSN
topology as the operator tree and route the data objects via
the subgraph to the sink node. In this case, we define the
in-network processing cost as the routing cost for the set of
data objects forwarded to the sink node. Specifically, for a
data object i of size di routed from node p to node q, its in-

network processing cost is di ∗ Cp
q , where Cp

q = C(p, i) +
C(i, · · ·)+C(· · · , j)+C(j, q), (p, i, · · · , j, p) is routing path
from node p to q. As a result, for a given operator tree T , the
total in-network processing cost can be derived as

f(G, T) =
∑
a∈A

da × Cah
at

, (1)

where da is the size of the data object routed on arc a ∈ A, ah
and at denote the head and the tail node of arc a, respectively.

B. Problem Statement

In this research, we consider the problem of the operator
tree placement. The operator tree placement problem consists
of two steps. First, a subset of nodes in the WSN are chosen
as the set of operators. Second, a set of paths are chosen to
route the set of data objects from their sources to the sink
node, via the set of chosen operators. Note that these two
steps are not separated. The design objective for the operator
tree placement is to minimize the total in-network processing
cost.
Mathematically, the optimal operator tree placement prob-

lem can be stated as follows. Let P denotes the operator
placement, such as P (o, p) = 1 if operator o is placed
at node p, otherwise P (o, p) = 0. R denotes the routing
scheme that routes data from the nodes generating the data
to the node requiring the data. The problem is to identify
an optimal scheme of (P ∗, R∗) that minimizes the total in-
network processing cost, denoted as the following:

(P ∗, R∗) = arg min
(P,R)

f(G, T ;P,R), (2)

where f(G, T ;P,R) denotes the total in-network processing
cost under a chosen placement scheme of (P,R).
In this paper, we focus on developing efficient distributed

algorithms to solve this joint placement-routing problem.
In addition, we also aim to reduce the message overhead,
defined as the number of messages exchanged in network for
distributed operator placement.

IV. DYNAMIC PROGRAMMING APPROACH FOR OPTIMAL
SOLUTION

The optimal placement of an operator tree, mathematically,
can be formed as a dynamic programming problem, which
can be solved in a polynomial time. Under the dynamic pro-
gramming framework, the iterative equation for the optimal in-
network operator tree placement problem is given as follows,

costop∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

minν∈V

∑
oc∈Δo

(docC
p∗
oc

ν

+costocp∗
oc
) if o �= R

minν∈V (doC
sink
ν +

∑
oc∈Δo

(docC
p∗
oc

ν + costocp∗
oc
)) if o = R

(3)

where R denotes the root operator, p∗ denotes the optimal
placement of o , costop∗ denotes the optimal cost of routing
all data objects in subtree of operator o to node p∗, and costocp∗

oc

denotes the minimum cost of routing all the data to the subtree
root node at operator oc.
This dynamic programming problem can be solved via a

bottom-up approach to calculate the minimum cost to route all

4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

s1
s2

oh

og

B

Fig. 2. Comparison between heuristic and greedy algorithm, oh chosen by
heuristic algorithm and og chosen by greedy algorithm, respectively.

the data to the root node from a subtree. Define costop operator
o ∈ O and p ∈ V to be the minimum possible communication
cost of routing all data objects in subtree of o to node p (for o
is root operator, costop is the minimum in-network processing
cost of operator tree). For x ∈ X anchored at node q, define
costxq = 0; and costxp = ∞ if p �= q. The cost of costop can
be calculated recursively, using the following equation,

costop =

⎧⎪⎨
⎪⎩
∑

oc∈Δo
minν∈V (docC

p
ν + costocν) if o �= R∑

oc∈Δo
minν∈V (docC

p
ν + costocν)

+doC
p
sink if o = R

After computing costop recursively, ∀o ∈ O, p ∈ V , map P ∗

with the set of pairs o ∈ O and p ∈ V is used in recursive
unfolding of costRpR , where R is anchored at node pR. Then
P ∗ is the optimal placement of operator tree.
This off-line iterative algorithm is centralized and its com-

putational complexity can be calculated as O(N2M). Al-
though the algorithm can find an optimal placement in a poly-
nomial time, it requires the precise knowledge of the shortest
path between all pairs of nodes, and any change in network
topology or communication link cost will incur re-execution
of the searching algorithm. Moreover, although polynomial,
the cost of running the algorithm may be prohibitively large
for wireless sensor network of sizable dimension.
In fact, the dynamic programming algorithm for the optimal

placement can be also solved in distributed way, such as
the Sync algorithm proposed in [8] and the MCFA algorithm
proposed in [9], respectively. Sync has a message overhead per
node ofO(

√
NM log2 M), and MCFA has messages overhead

per node of O(
√
NM). Although Sync and MCFA would find

the optimal placement in a distributed manner, their message
overhead at each node is very high. Therefore, the cost of
running these distributed algorithms would be also extremely
large in WSNs.

V. HEURISTIC PLACEMENT ALGORITHM

In this section, we will present our proposed heuristic
operator placement algorithm, investigate its approximate ratio
to the optimal solution and compare the performance of our
heuristic algorithm and a canonical greedy algorithm [10].

A. Heuristic Algorithm

Given an operator tree as shown in Fig.1(b), the operators
will be assigned to network nodes hierarchically from bottom
to top. In our research, we propose a heuristic algorithm that
assigns each operator o to the node according to (4):

p = argmin
q

{do × |(q, sink)|+
∑
i∈Δo

di × |(i, q)|}, (4)

o′1 o′2

o′3

o1
o2

o3

sink

Fig. 3. Operator Placement of Heuristic and Optimal Algorithm

where |(q, sink)| denotes the minimum cost between two
nodes. The crucial part of (4) is do × |(q, sink)|, which
enables the heuristic algorithm to be equipped with the sense
of direction. In this case, the heuristic algorithm will place
each operator toward the sink as shown in Fig. 2. The key ob-
servation is that the heuristic placement is nearer to the optimal
placement than the greedy placement, where the operator will
be hosted by the node with minimized

∑
i∈Δo

di×|(i, q)|. As
the final data object of the operator tree will be transmitted
to the sink, the difference between the optimum solution
and the greedy algorithm is the orientation of each operator
placement. Our heuristic solution gradually places the opera-
tors towards the sink, while the greedy algorithm constantly
chooses the node with minimized data input communication
cost. That is the reason why we add do × |(q, sink)| rather
than just

∑
i∈Δo

di × |(i, q)| in (4), which actually benefits
the latter operator placement and communication cost, and
makes a further step of approximation to the optimal solution.
do × |(q, sink)|+∑

i∈Δo
di× |(i, q)| is called placement cost

for operator o and node q, and denoted by cost
′q
o .

As discussed in Section IV, the placement of operators is
only determined after finding minimum in-network processing
cost. As such, the placement of each operator is correlated
and globally determined. Unlike the optimal solution, our
heuristic algorithm separates each operator placement and
makes it locally determined so as to reduce the computational
complexity and message overhead of finding an efficient
solution. The placement of operators in our heuristic algorithm
depends only on the placement of children of the operator and
the sink position. It follows that it is relatively easier to find
the placement for each operator and to implement the heuristic
algorithm in a distributed manner. When the operator tree
has only one operator, the heuristic algorithm finds the same
placement for operator as the optimal solution. When there
are more than one operator, our heuristic algorithm may incur
slightly more in-network processing cost than the optimum
solution. The penalty will be investigated in next subsection.

B. Optimality Performance

An immediate task would be to characterize the perfor-
mance of our proposed heuristic algorithm. In this section,
we adopt an Euclidean cost metric to show that our heuristic
algorithm is bounded and its approximate ratio is lower than
that of the greedy algorithm.

LU et al.: EFFICIENT DISTRIBUTED ALGORITHMS FOR IN-NETWORK BINARY OPERATOR TREE PLACEMENT IN WIRELESS SENSOR NETWORKS 5

As shown in Fig. 3, o1, o2 and o3 are the operator
placements of optimal solution, meanwhile o′1, o

′
2 and o′3 are

the operator placements of heuristic algorithm. The difference
between the optimal placement and the heuristic placement
varies according to different data object size and data reduction
ratio at each operator. In order to evaluate our heuristic algo-
rithm, we give its approximate ratio to the optimal solution.
It is known that (4) will be the three factory problem1

[25] when the operator has two children as shown in Fig.
2. Noted that the three-factory problem is applicable for any
distance metric. Before proving the approximate ratio, first we
introduce two lemmas about three factory problem, which help
us conclude the further theorems.

Lemma 1. When r ≤ 1
2 , the solution point of the three-factory

problem is located in area BOC enclosed by arc ̂BOC and
line BC as shown in Fig. 4, where O is the Fermat point2 of
triangle ABC.

Proof. To locate the Fermat point: construct two equilateral
triangles on any of the three sides of the given triangle;
construct the circumscribed circle for each equilateral triangle;
the two circles intersect at the Fermat point. As shown in
Fig. 4, arc ̂BOC and arc ̂AOB are part of circumscribed
circle of constructed equilateral triangle for BC and AB,
respectively. For point O and O′′ ∈ arĉBOC , ∠BOC = 120o

and ∠BO′′C = 120o.
We use da, db and dc to denote the weight at point A, B and

C as shown in Fig. 4, and r = da

db+dc
(noted that in our real

scenario, da is the size of data object generated by operator
and r is the data reduction ratio of operator). For the three
factory problem, we have the following [26]:

cos(∠B′BC) =
d2a − d2b − d2c

2dbdc
.

To solve the three-factory problem, we can construct a circle
by using point B, C and BB′ as a tangent line. Similarly,
we can construct another circle for A, B and A′A. Then the
intersection of two circles inside the triangle ABC is the
solution [26], as O′ in Fig. 4. Noted that when the weight
of one point is no less than the sum of other two, the solution
is located at the point with the largest weight [26]. When
da = db = dc, ∠B′BC = 120o, the solution is point O as
shown in Fig. 4, which is also known as the Fermat point. We
call the area inclosed by arc ̂BOC and line BC Fermat area.
When r ≤ 1/2, we have

cos(∠B′BC) ≤ (db+dc

2)2 − d2b − d2c
2dbdc

≤ −1

2
.

As ∠B′BC ≥ 120o thus ∠BO′C ≥ 120o (∠B′BC =
∠BO′C), arc B̂C, which is a part of circle constructed using
B, C and BB′ as a tangent line, will be in the Fermat area.
So the three factory solution point O′ ∈ B̂C is also in the

1Three factory problem can be stated as follows: Given three points, a, b, c.
Each one is connected with a fourth point, u. Suppose the length of ua = r1,
ub = r2, and uc = r3. Choose the point u so that k1r1 + k2r2 + k3r3 is
minimized. k1, k2, k3, are arbitrary positive weighing factors.
2Fermat point is a point such that the total distance from the three vertices

of the triangle to the point is the minimum possible.

Fig. 4. The Three Factory Problem

Fermat area. For example O′ in Fig. 4 is the solution point
for da = 1, db = 1.2 and dc = 0.8.

One implication of Lemma 1 is that the optimal operator
placement always locates inside the Fermat area when r ≤
1/2.

Lemma 2. As shown in Fig. 4, the point O′′ inside the Fermat
area, which maximizes db ·BO′′ +dc ·CO′′, is located on arc
̂BOC and deterministic, where α = db/dc (assume db ≥ dc).

Proof. As db · BO′′ + dc · CO′′ includes distances BO′′ and
CO′′, we can quickly infer O′′ must be on arc ̂BOC .
As O′′ ∈ arc ̂BOC and θ denotes ∠O′′BC, we have

sin120o

BC
=

sinθ

O′′C
=

sin(60o − θ)

O′′B
. (5)

From (5), we get

db ·BO′′ + dc · CO′′ = BC · [db(cos θ − 1√
3
sin θ)

+ 2√
3
dc sin θ].

To maximizes db ·BO′′ + dc · CO′′, we need to maximize:

max
θ

{db(cos θ − 1√
3
sin θ) +

2√
3
dc sin θ}, (6)

max
θ

{α cos θ − α√
3
sin θ +

2√
3
sin θ}, (7)

and

max
θ

{sin(θ + φ)}, tanφ =

√
3α

2− α
. (8)

As 0 ≤ θ < 60o, when 1 ≤ α ≤ 2, from (8) we have θ = π
2 −

φ. So point O′′ can be determined by α. For example, when
α = 1, θ = 30o, and when α = 2, θ = 0, in other words point
O′′ locates at point C. When α > 2, tanφ =

√
3α

2−α >
√
3, so

φ < −60o. As 0 ≤ θ < 60o, db · BO′′ + dc · CO′′ will be a
negative value. So (8) is not applicable for α > 2. However,
since o′′ is located at C when α = 2, we can conclude that
O′′ is always located at C when α > 2.

The term of db · BO′′ + dc · CO′′ can be seen as the
communication cost in the operator placement context. It
follows that the point in the Fermat area that maximizes the
communication cost can be derived as:

6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

• It locates at the midpoint of the arc of the Fermat area
when α = 1;

• It locates on the arc between the midpoint and the point
with the smaller data output when 1 < α < 2;

• It locates at the point with the smaller data output when
α ≥ 2.

We denote C∗(T), C(T) and Ĉ(T) as the in-network
processing cost of the optimal solution, the heuristic algorithm
and the greedy algorithm, respectively, for the operator tree
T , where each operator is compatible with the constraint that
r ≤ 1/2. The following theorem summarize the approximate
ratio for our heuristic algorithm.

Theorem 1. For an operator tree T and an data reduction
ratio at each operator is no more than 1/2, the performance
of our proposed heuristic algorithm is bounded above:⎧⎪⎨

⎪⎩
C(T) ≤ 2√

3

√
α2 − α+ 1C∗(T) if 1 ≤ α ≤ 2

C(T) ≤ αC∗(T) if 2 < α < 3

C(T) = C∗(T) if α ≥ 3

Proof.
Case 1: if 1 ≤ α ≤ 2
From Lemma 1, it is known that for an operator with

r ≤ 1/2, the optimal operator placement (the solution of
the three-factory problem) is located inside the Fermat area.
The operator placement with the minimum communication
cost for the input data is B, where the communication cost
C′

β = dc × BC. At the same time, when 1 ≤ α ≤ 2,
from Lemma 2, we have the worst case with the maximum
communication cost of input data C′

γ = db×BO′′+dc×CO′′,
where

∠O′′BC =
π

2
− arctan

√
3α

2− α
. (9)

It follows that

C′
γ

C′
β

=
db ×BO′′ + dc × CO′′

dc ×BC
=

α×BO′′ + CO′′

BC
.

From (5) and (9), we can obtain

C′
γ

C′
β

=
2α√
3
sin(60◦ − θ) +

2√
3
sin θ

=
(
√
3 cos θ − sin θ)α+ 2 sin θ√

3

=
2√
3

√
α2 − α+ 1.

Assume that optimal solution always has the best case of
communication cost of input data for each operator and the
heuristic solution always has the worst case. From (3), we can
obtain

C(T)

C∗(T)
≤ 2√

3

√
α2 − α+ 1.

Case 2: if 2 < α < 3
When α > 2, from Lemma 2 we have O′′, which maximizes

db×BO′′ + dc×CO′′, is always located at point C. And the
best case for the communication cost of input data is still B.
So we have

C′
γ

C′
β

=
db ×BC

dc ×BC
= α.

0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14

r

In
−

ne
tw

or
k

pr
oc

es
si

ng
 c

os
t,

(C
*(

T
))

Greedy
Heuristic

Fig. 5. Comparison of in-network processing cost between heuristic
algorithm and greedy algorithm for T , where all the operators have r ≤ 1/2,
when α = 1.

Similarly, C(T)
C∗(T) ≤ α.

Case 3: if α ≥ 3
As r = da

db+dc
≤ 1

2 and α ≥ 3, by summing up we can
obtain

db ≥ da + dc.

In the three-factory problem, when db ≥ da+dc, the solution is
always located at point B, no matter where point A is located
[25] as shown in Fig. 4. Although our heuristic algorithm
uses the sink node as the parent for each operator placement
decision, in this case, the resulted operator placement is always
the child that has larger data output, which is the optimal
placement for the operator.
If the placement of an operator tree is globally optimal, the

placement of each operator is also locally optimal with respect
to its children and the parent operator [16]. In this case, the
optimal solution and the heuristic algorithm have the same
placement for each operator, C(T) = C∗(T).

From Theorem 1, we can see the in-network processing
cost of the heuristic algorithm is at worst three times of that
of the optimum solution (C(T) < 3C∗(T)). For the greedy
algorithm, Ĉ(T) ≤ 1

1−2rC
∗(T), when r < 1/2 and α = 1 (in

[10], only the results about α = 1 are provided). As shown in
Fig. 5, the heuristic algorithm performs much better than the
greedy algorithm for α = 1. The processing cost resulted from
the greedy algorithm increases dramatically with the increase
of r.
It follows, from the mathematical analysis above, that our

heuristic algorithm has much better approximate ratio to the
optimal solution than the placement resulted from the greedy
algorithm.

VI. LOW-OVERHEAD DISTRIBUTED IMPLEMENTATION

As shown in Section V, when the data reduction ratio of
an operator is no more than 1/2, the solution of the three-
factory problem is located in the Fermat area, no matter where
the parent of the operator is. It follows that we only need
to find the heuristic operator placement within the Fermat
area. In this section, we describes an efficient way to find
the placement for each operator in the network, using our

LU et al.: EFFICIENT DISTRIBUTED ALGORITHMS FOR IN-NETWORK BINARY OPERATOR TREE PLACEMENT IN WIRELESS SENSOR NETWORKS 7

s d

Cs
sender + Cd

sender ≤ 2/
√

3Cd
s

Cs
sender + Cd

sender ≤ 2/
√

3Cd
s

Cs
receiver = Cs

d

Cd
receiver = Cd

s

Fig. 6. An illustration of the search region involved in the area-restricted
Flooding

heuristic algorithm in a distributed manner. This is achieved
by proposing an area-restricted flooding mechanism to locate
the operator placement within a desired area, minimizing
the number of nodes involved in flooding and reducing the
message overhead.

A. Area-restricted Flooding

In order to minimize the messages overhead of the dis-
tributed implementation of our heuristic algorithm, we propose
an area-restricted flooding approach to locate each operator
placement. As shown in Fig. 6, s and d denote the two children
of an operator that needs to be placed, the area enclosed by
the dashed line is called the search region, two times of the
Fermat area. We use the search region instead of the Fermat
area, because the nodes do not have the location information
of the sink and the desired placement can be at either side of
line sd. Thus, using the search region can guarantee to find the
desired heuristic operator placement. Notice that the flooding
area is set up based on the cost between nodes, instead of
geographic information. For example, Fig. 1 can be seen as
a coordinate, where the location of a node is based on its
minimum costs to node s and to node d. In this case, our
proposed area-restricted flooding mechanism does not require
any location information.
Assume that every node knows the minimum communica-

tion costs to both the sink and node d (we will show how
to obtain these information in next subsection), node s will
initialize an area-restricted flooding algorithm to find a node
as the operator placement within the search region, which
minimizes (4). We call the node that starts the flooding an
initiator, like node s in Fig. 6, and call the node that finishes
the flooding a terminator, like node d in Fig. 6.
To find the heuristic operator placement and minimize

the message overheads, we need to address several issues,
including

1) How to control the flooding within the search region?
2) In order to find the operator placement accurately, the
minimum cost field of an initiator must be set up for the
nodes in the search region. In other word, every node in
the search region needs to know the minimum cost to
the initiator. Then the nodes can properly calculate the
placement cost according to (4).

3) In order to get the minimum placement cost of nodes in
the search region, a straightforward way is to collect all
the placement costs at one node. However, the process
for each node to sends its to one particular node will

incur huge amount of message overhead, one needs
to develop an intelligent strategy to efficiently collect
all the costs and find out the node with the minimum
placement cost in the search region?

4) How to combine the procedures of setting up the min-
imum cost field of the initiator and finding operator
placement into one flooding round?

Area-restricted flood for searching each heuristic operator
placement is initiated by broadcasting an advertisement (ADV)
packet at the initiator. It floods from the initiator to the
terminator. ADV is transmitted during area-restricted flooding,
which carries the following information:

• Cs
d : the minimum cost between the initiator and the
terminator.

• Cs
sender : the cost between the initiator and the current
sender that broadcasts the packet.

• cost
′
o: the current minimum placement cost obtained at

the sender.
In order to restrict the flooding area, when the node receives

an ADV packet, it will re-broadcast the packet only if the
following two conditions are satisfied:

• Cs
sender+Cd

sender ≤ 2/
√
3Cd

s : From Lemma 2, we know
that all the points in the search region satisfy this condi-
tion as shown in Fig. 1. Although some points outside the
search region may also satisfy this condition, we intend
to use it to simplify the computation of guaranteeing the
flooding covering the search region.

• Cs
sender < Cs

receiver ≤ Cs
d and Cd

receiver < Cd
sender ≤

Cd
s : To make the flooding forwarded from the initiator
to the terminator and avoid devious path and loop that
the packets may travel, these constraints will straighten
the traveling paths from the initiator to the terminator. In
other word, the receivers are supposed to have a smaller
minimum cost to the terminator than the sender, and a
higher minimum cost to the initiator than the sender.

The aforementioned procedure addresses the first issue,
which restricts the flooding in the area enclosed by the solid
line as shown in Fig. 6 in a simple and efficient way.
To tackle the second issue, although a straightforward

flooding will eventually find the minimum cost path to the
initiator for each node, it will incur significant amount of
message overhead. Here we adapt the cost field establishment
algorithm [27] to set up the cost field for the initiator. A
backoff timer is enabled after the node receives ab ADV
packet, the expire time of which is set to be proportional to
the cost between the sender and the receiver (time coefficient
denoted by λ) as follows:

Tdelay = λC(p, q).

During Tdelay , the node might receive more than one ADV
packet. However, the node will only broadcast the ADV with
the least cost to the initiator and discard all other ADV packets
received after the timer expires. We use Fig. 7 as an example
to illustrate how the cost field establishment algorithm works
to reduce the ADV broadcast, explained as follows:

• At time t, node a broadcasts an ADV packet that includes
Ca

s . After node b, c and d receive the ADV packet from
node a, they set C(s, b) = Ca

s +4, C(s, c) = Ca
s +2, and

8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

4

2

5

2

2.5

5

a

b

c

d

Ca
s

C(s, d) = Ca
s + 4, 4λ

C(s, c) = Ca
s + 2, 2λ

C(s, d) = Ca
s + 5, 5λ

Time t after node a broadcasted ADV

(a)

4

2

5

2

2.5

5

a

b

c

d

Ca
s

C(s, b) = Ca + 4, 2λ

Cc
s = Ca

s + 2

C(s, d) = Ca
s + 4.5, 2.5λ

Time t+ 2λ after node c broadcasted ADV

(b)

4

2

5

2

2.5

5

a

b

c

d

Ca
s

Cb
s = Ca

s + 4

Cc
s = Ca

s + 2

C(s, d) = Ca
s + 4.5, 0.5λ

Time t+ 4λ after node b broadcasted ADV

(c)

4

2

5

2

2.5

5

a

b

c

d

Ca
s

Cb
s = Ca + 4

Cc
s = Ca + 2

Cd
s = Ca + 4.5

Time t+ 4.5λ after node d broadcasted ADV

(d)

Fig. 7. Example of cost field establishment algorithm.

C(s, d) = Ca
s + 5, respectively (assuming the initial Cb

s ,
Cb

s and Cb
s are ∞ as they do not have cost information

to the initiator). Then each of them sets a timer for re-
broadcasting ADV. The expiring period is proportional to
the transmission cost between the sender and the receiver.
For node b, c and d, the expiring periods are 4λ, 2λ and
5λ, respectively.

• At time t + 2λ, the timer of node c expires. Node c
finalizes Cc

s = C(s, c) and broadcasts an ADV message
including Cc

s . When node d receives this ADV packet, as
C(s, d) > Cc

s+2.5 = Ca
s +4.5, node d updates C(s, d) to

Ca
s +4.5 and resets its timer to 2.5λ (noted that previous
timer does not expire by the time t+2λ). For node a and
b, as Ca

s < Cc
s + 2 and C(s, b) < Cc

s + 3, they simply
discard this ADV message.

• At time t + 4λ, the timer of node b expires. Node b
finalizes Cb

s = C(s, b) and broadcasts an ADV message
containing Cb

s . All other nodes will discard this ADV
message because they have already had a lower cost.

• At time t + 4.5λ, the timer of node d expires. Node d
finalizes Cd

s = C(s, d) and broadcasts an ADV message
with Cd

s .

For this cost field establishment algorithm, we can observe
from Fig. 7 that each node only broadcasts an ADV message
once with the optimal cost and eliminates the broadcast of
non-optimal ADV messages. The algorithm has the following
two properties [27]:

• Each node only broadcasts the optimal cost to the ini-

tiator, and discards all redundant or non-optimal ADV
messages.

• Node can get the minimum cost to the initiator by only
one ADV message broadcast at each node.

For the third issue, we use the terminator to collect the
minimum placement cost in the restricted area. Instead of
forwarding the placement cost at each node individually, we
propose to aggregate the placement cost information en route
and only forward aggregated information to the terminator.
Once a node gets the minimum cost to the initiator, it can

calculate its placement cost. So it is efficient to include the
placement cost in the ADV packet rather than send individual
message to the terminator. However, as discussed above in the
cost field establishment algorithm, since the node will abandon
all the messages received after the backoff timer expires, ADV
packets are eliminated during flooding. In order to merge the
establishment of the cost field for the initiator and the process
of locating the operator placement together so as to reduce the
message overhead collaboratively, we introduce the following
process into the area-restricted flooding:

• The node broadcasts an ADV with the minimum Cs
sender

and mthe inimum placement cost received during the
backoff period.

• After the backoff timer expired, the node only re-
broadcasts its ADV packet, if the placement cost of which
is less than the current obtained one.

• During the flooding, the node will cache the least place-
ment cost and its sender. Or if the least placement cost is

LU et al.: EFFICIENT DISTRIBUTED ALGORITHMS FOR IN-NETWORK BINARY OPERATOR TREE PLACEMENT IN WIRELESS SENSOR NETWORKS 9

generated by itself, it would cache itself as the generator
of the least cost. This will be used to trace back the
operator placement later.

For completeness, the pseudo code of the area-restricted
flooding is shown in Algorithm 1.
Since the flood area is set up based on the cost, at least

two nodes (initiator and terminator) are included in the flood
area. Although the minimum cost to the initiator and the
placement cost are both included in the ADV message that
can be eliminated after the timer expires, we give the priority
to the ADV message with less placement cost and make it
forwarded to the terminator. After receiving the minimum
placement cost, the terminator performs a trace-back process
to find the operator placement.

Proposition 1. For a pair of initiator and terminator, area-
restricted flooding can locate the heuristic operator placement
within time λ 2√

3
Cd

s .

Proof. The proof can be divided into three sequential steps.
First, we will show that the node that is operator placement
is included in the flood area. Second, the placement cost of
a node can be received at the terminator. Finally, the delay is
no more than λ 2√

3
Cd

s .

For the first part, any node p ∈ V with Cs
p + Cp

d ≤ 2√
3
Cd

s

(the point in the Fermat area) will be included in the flood
area as shown in Fig. 6. Therefore, the node that is operator
placement is certainly included in the flooding area as proved
in Lemma 1.
As discussed above, the node can get its minimum cost

to the initiator with broadcasting once and only once. Since
before broadcasting the ADV message the node has received
the minimum cost to the initiator, the placement cost of
the node is accurately computed. Assuming node q is the
placement of operator o, cost

′q
o is minimum. cost

′q
o is included

in ADV message and broadcasted. When the neighbor node
p in the flood area, which is complied with Cd

q > Cd
p (recall

that is used to avoid devious path and loop), receives this ADV
message, it will replace the cost′o with cost

′q
o and forward it

toward the terminator no matter whether the time expires or
not. Therefore, the minimum placement cost will be eventually
received at the terminator.
As Cs

q + Cd
q ≤ 2√

3
Cd

s , the delay of the message including

cost
′q
o will arrive at the terminator no later than λ 2√

3
Cd

s

after the area-restricted flooding is initialized, according to
the scheme of the cost field establishment algorithm.

B. Distributed Operator Tree Placement

As discussed in Section VI-A, before the initiator initializes
the area-restricted flooding to find the operator placement, the
prerequisite is that all the nodes within the search region know
the minimum costs to the sink and the terminator. Unlike in
[10], where the authors assumes the nodes are knowledgable
about the distance between nodes, we do not assume the nodes
have any location information so as to make our distributed
algorithm applicable. We also use the cost field establishment
algorithm to obtain these minimum cost information.

Algorithm 1: Area-restricted Flooding Algorithm
Event: node p receives ADV from node q

1 begin
2 if Cd

q > Cd
p && Cs

q + Cd
p + C(p, q) ≤ 2√

3
Cd

s then
3 if Cs

q ≤ Cs
d && Cs

q + C(p, q) < Cs
p then

4 reset timer to expire after λ · C(p, q)
5 Cs

p = Cs
q + C(p, q)

6 calculate cost
′p
o

7 if cost
′
o > cost

′p
o then

8 cache p
9 else
10 cost

′p
o = cost

′
o

11 cache q
12 end
13 else if Cs

q ≤ Cs
d then

14 if cost
′
o < cost

′p
o then

15 cost
′p
o = cost

′
o

16 cache q
17 end
18 end
19 end
20 end

Event: node p’s timer expires
21 begin
22 replace Cs

sender with Cs
p

23 replace cost
′
o with cost

′p
o

24 broadcast ADV
25 end

Event: node p receives ADV from q after p’s timer
expired

26 begin
27 if Cs

q ≤ Cs
d && Cd

q > Cd
p && Cs

p + Cd
p ≤ 2√

3
Cd

s

then
28 if cost

′
o < cost

′p
o then

29 replace cost
′p
o with cost

′
o

30 cache q
31 broadcast ADV
32 end
33 end
34 end

Another issue about the area-restricted flooding is when
the initiator should initiate the flood and when the terminator
should finalize it. As the delay at each node is proportional to
the communication cost between the sender and the receiver
in the cost field establishment algorithm, the longest delay
of the cost field establishment is λCmax, where Cmax is
the largest minimum cost path in the network. In order to
avoid redundant message and to keep it from the effect
of transmission, propagation and processing delay, λ is a
constant value for certain network as shown in [27]; in turn
λCmax is also determined. Therefore, for initializing area-
restricted flooding, the initiator waits for a λCmax delay after
obtaining the minimum cost to the terminator. For finalizing
area-restricted flooding, the terminator will receive the first

10 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

ADV message λCd
s time later after the initiator starts the

flooding and it will wait for a delay (2√
3
− 1)λCd

source before
finalization.
To prevent the description from becoming cumbersome we

have omitted the details that can either be inferred or imple-
mented using standard techniques. These details include the
precise content of the messages, the manner of calculating the
hosting cost, the delay before performing the initialization and
finalization of area-restricted flooding and node’s behaviors
during cost field establishment flooding and area-restricted
flooding.
The distributed implementation of our heuristic algorithm

is shown as follows according to different node types. It will
find the placement of an operator tree in a bottom-up manner.
Note that node type is not exclusive, that is, the node can be
more than one type at the same time. For example, when a
node is both the initiator and the terminator, it will select itself
as the operator placement.

SINK NODE:
Event: When there is a in-network processing with operator
tree (T) needs to be performed.
Action:

• For each operator of T , assign its two children as initiator
and terminator of area-restricted flooding, respectively.

• Broadcast T into network using cost field establishment
flooding. Thus, every node will receive T and be aware
of the minimum cost to sink.

SENSOR NODES and OPERATOR PLACEMENT:
Event: When sensor node receives T or the node is selected
as operator placement.
Action: If the placed operator is root operator, inform
sink that the placement of operator tree T is complete, else
perform the cost field establishment flooding if it is terminator.

INITIATOR:
Event: After being aware about the minimum cost to
terminator.
Action: Perform area-restricted flooding.

TERMINATOR:
Event: After obtaining the minimum placement cost for
current operator.
Action: Perform trace-back process to inform the node with
minimum placement cost and assign it as operator placement.

As the cost field establishment flooding is used to obtain
the minimum cost information in the distributed implemen-
tation, which establishes the minimum cost filed with only
one message broadcast at each node in one flooding round,
the message overhead at each node for the minimum cost
information is the number of floods. The message overhead
of one area-restricted flooding round is much smaller than
one round of the cost field establishment flooding, because
the search region is much smaller than the entire network
field and the message overhead of the area-restricted flooding

is no more than 3/2 that of the cost field flooding for the
same area as shown in [9]. As the number of the cost
field establishment flooding round and the number of the
area-restricted flood rounds are (M + 1)/2 and (M − 1)/2,
respectively. It follows that the message overhead per node is
O(M). As a comparison, for Sync and MCFA, the message
overhead is of O(

√
NM log2 M) andO(

√
NM), respectively.

VII. NUMERICAL EVALUATION

In this section, we evaluate the performance of our heuristic
algorithm through simulations, and compare their performance
among the heuristic algorithm, the greedy algorithm, Sync and
MCFA.
Two basic network topologies are used in simulation, which

are the Manhattan Graph (MG) and Controlled Random Graph
(CRG). These graphs represent both abstract and realistic
sensor network topologies. In order to make the network
topologies more realistic, we choose to degrade the connec-
tivity. This can be done for MG by randomly removing a
percentage of the nodes and for CRG by increasing the area
in which the network is deployed so as to reduce the number
of reachable neighbors. The CRG is generated by randomly
distributing network nodes in a square area. When placing
a node, we adopt the approach in [19] and we require the
placement of the node is at least half of radio range to any
other node so as to avoid unrealistically close nodes. The
length of a side of the square area can be calculated by√
Nrcf , where N is the number of network nodes, rc is

radio range (50m in simulation) and f is a factor to control
the connectivity. In the simulation, three particular network
topologies each with 200 nodes are used in simulation as
shown in Fig. 8.
In simulation, we use d2pq as the communication cost

between two adjoining nodes p and q, where dpq is the
distance between node p and q and dpq ≤ 50m, i.e., signals
attenuate inversely proportional to the square of distance. For
real applications, the sender includes its broadcasting power
in its ADV message. When a receiver hears the message, it
can calculate the minimum energy needed and the minimum
transmission power needed for the sender to just reach the
receiver by measuring the signal strength and employ one
chosen signal attenuation model, then acknowledge the sender
with these information. As mentioned before, we do not have
any constraint for the communication cost, which can take any
common form, such as hop count or consumed energy.
We firstly evaluate the impact of parameters including α and

network topology on the operator placement for both heuristic
and greedy algorithms, then we compare message overheads of
distributed implementation among heuristic, Sync and MCFA.

A. In-network Processing Cost

As analyzed mathematically in V-B, α impacts the approxi-
mate ratio of the heuristic algorithm. To verify our mathematic
analysis, we simulated all three algorithms in three network
topologies and varied α from 1 to 3.5. Notice that we use Sync
as the optimal solution to obtain the minimum in-network
processing cost.

LU et al.: EFFICIENT DISTRIBUTED ALGORITHMS FOR IN-NETWORK BINARY OPERATOR TREE PLACEMENT IN WIRELESS SENSOR NETWORKS 11

(a) Controlled random graph (f=0.6) (b) Controlled random graph (f=0.8) (c) Manhattan graph with 25% holes

Fig. 8. Network Topologies

As shown in Fig. 9, we can observe that, the ratio between
the processing cost resulted from both heuristic and greedy
algorithms and the resulted from the optimal algorithm, de-
creases overall as α increases from 1 to 3. It is expected
from our mathematical analysis in Section V-A. Moreover,
the heuristic algorithm performs better than the greedy algo-
rithm(at least no worse than the greedy algorithm) in all these
three topologies. In CRG (f=0.6) and CRG (f=0.8) shown in
Fig. 9(a) and 9(b), the heuristic algorithm and the greedy
algorithm achieve the same optimal cost when α reaches a
threshold, α = 2.4 and α = 2.6, respectively. In Fig. 9(c), the
heuristic algorithm obtains the optimum cost much earlier (at
α = 2.2) than the greedy algorithm (at α = 3.0).
As analyzed in Section V, when a ≥ 3 and the data

reduction ratio of operator is no more than 1/2, the optimal
operator placement is the node with the largest data output,
as verified by our simulation results. The intersection point
of these three algorithms is that when a ≥ 3, all of them
choose the node with the largest data output as the operator
placement, so both heuristic and greedy algorithms can obtain
the optimal cost at most when α is 3.
From Fig. 9, we can also notice that the worst-case in-

network process cost for the greedy algorithm varies according
to different network topologies, while the worst case of the
heuristic algorithm in each topology is when α = 1, which
is not compliant with the mathematical analysis in Section
V. That is because we always choose the worst case of the
operator placement as the placement of our heuristic algorithm
in mathematical analysis, which would never occur in real
network scenarios.

B. Message Overhead

The message overhead is the metric to measure the cost
of performing distributed implementation of operator place-
ment algorithms. In this subsection, we compare the message
overheads for our heuristic algorithm, Sync and MCFA.
Fig. 10(a) illustrates the message overheads per node for

these three algorithms, as a function of operator tree size for
a given network size (i.e., N = 200). From Fig. 10(a), we can
see the message overhead increase as the operator tree size
increases. We can also see that the heuristic algorithm has
much less message overhead than that of Sync and at least
50% less than that of MCFA. Finally, the gap increases as the
operator tree increases.

In Fig. 10(b), we compared the message overhead per node
for the heuristic algorithm, MCFA and Sync, as a function
of the network size with a fixed-size operator tree (i.e.,
M = 7). As analyzed mathematically, the message overhead
of Sync and MCFA increases with the network size, while for
the heuristic algorithm, the message overhead stays flat for
increasing network size.
Notice that, although the heuristic algorithm causes slightly

more in-network processing cost for the operator tree than
that of the optimal solution, the distributed implementation of
our heuristic algorithm has much less message overhead than
that of distributed optimal solutions (i.e., Sync and MCFA).
The complexity reduction in managing the message overhead
would be translated into energy saving in WSNs, which in
turn, would justify the rationale of deploying our heuristic
algorithm.

VIII. CONCLUSION

The problem of operator tree placement is crucial for in-
network processing in wireless sensor networks. In the paper,
we designed a heuristic algorithm to place the operator tree on
network nodes. First we presented the mathematical analysis
of our proposed heuristic algorithm compared with the opti-
mal solution. We then followed with a low-cost distributed
implementation of our distributed heuristic algorithm and
analyzed its message overhead, which is of O(M) and is
much less than that of other distributed algorithms. Finally,
the simulation results verified that our heuristic algorithm
has better performance than the greedy algorithm and incurs
slightly more cost than the optimum solution. The results
also indicated that the heuristic algorithm has much less
message overhead than that of other distributed placement
algorithms (i.e., Sync and MCFA). Our research, with its
practical algorithm and fundamental analysis, shed new lights
onto the in-network processing paradigm, which are pervasive
in modern communication and network infrastructure.
As future works, three alternative venues are under consid-

erations. First, we would like to extend our binary tree struc-
ture into a M -ary tree structure, which provides an elevated
capability for data fusion at operators. Second, we plan to
explore the possibility of joint optimization of energy effi-
ciency and load balancing in large wireless sensor networks.
Finally, we are also exploiting this fundamental research into

12 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

1 1.5 2 2.5 3 3.5
95

100

105

110

115

120

125

130

135

α

%

Heuristic
Greedy

(a)

1 1.5 2 2.5 3 3.5
95

100

105

110

115

120

125

130

135

140

α

%

Heuristic
Greedy

(b)

1 1.5 2 2.5 3 3.5
95

100

105

110

115

120

125

130

135

α

%

Heuristic
Greedy

(c)

Fig. 9. In-network processing cost of heuristic and greedy algorithms
compared with that of optimum solution according to α in network topology
CRG (f=0.6) (a), CRG (f=0.8) (b), and Manhattan with 25% holes (c),
respectively.

real applications, such as, smartgrid communications, data-
center management, to name a few.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer networks, vol. 38, no. 4, pp. 393–
422, 2002.

[2] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Computer Networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[3] S. Liu, K. Fan, and P. Sinha, “Cmac: an energy-efficient mac layer pro-
tocol using convergent packet forwarding for wireless sensor networks,”
ACM Trans. Sensor Netw. (TOSN), vol. 5, no. 4, p. 29, 2009.

[4] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad Hoc Networks,
vol. 7, no. 3, pp. 537–568, 2009.

5 10 15 20 25 30
0

20

40

60

80

100

120

Operator Tree Size (M)

M
es

sa
ge

 O
ve

rh
ea

d
(p

er
 n

od
e)

Heuristic
MCFA
Sync

(a)

100 200 300 400 500 600 700 800
0

10

20

30

40

50

Network Size (N)
M

es
sa

ge
 O

ve
rh

ea
d

(p
er

 n
od

e)

Heuristic
MCFA
Sync

(b)

Fig. 10. Message overheads per node of heuristic algorithm, Sync and MCFA
vs operator tree size in (a) and network size in (b).

[5] J. Al-Karaki, R. Ul-Mustafa, and A. Kamal, “Data aggregation and
routing in wireless sensor networks: Optimal and heuristic algorithms,”
Computer networks, vol. 53, no. 7, pp. 945–960, 2009.

[6] C. Hua and T. Yum, “Optimal routing and data aggregation for maxi-
mizing lifetime of wireless sensor networks,” IEEE/ACM Trans. Netw.,
vol. 16, no. 4, pp. 892–903, 2008.

[7] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network aggregation
techniques for wireless sensor networks: a survey,” IEEE Wireless
Commun., vol. 14, no. 2, pp. 70–87, 2007.

[8] L. Ying, Z. Liu, D. Towsley, and C. Xia, “Distributed operator placement
and data caching in large-scale sensor networks,” in INFOCOM 2008.
The 27th Conference on Computer Communications. IEEE, april 2008,
pp. 977 –985.

[9] Z. Lu and Y. Wen, “Distributed and asynchronous solution to operator
placement in large wireless sensor networks,” in Mobile Ad-hoc and
Sensor Networks, IEEE International Conference on. IEEE, 2012.

[10] Z. Abrams and J. Liu, “Greedy is good: On service tree placement for
in-network stream processing,” in Distributed Computing Systems, 2006.
ICDCS 2006. 26th IEEE International Conference on, 2006, p. 72.

[11] I. Greenberg and R. Robertello, “The three factory problem,” Mathe-
matics Mag., vol. 38, no. 2, pp. 67–72, 1965.

[12] V. Shah, B. Dey, and D. Manjunath, “Network flows for functions,”
in Information Theory Proceedings (ISIT), 2011 IEEE International
Symposium on. IEEE, 2011, pp. 234–238.

[13] , “Efficient flow allocation algorithms for in-network function
computation,” in Global Telecommunications Conference (GLOBECOM
2011), 2011 IEEE. IEEE, 2011, pp. 1–6.

[14] R. Sappidi, A. Girard, and C. Rosenberg, “Maximum achievable
throughout in a wireless sensor networks using in-network computation,”
IEEE/ACM Trans. Netw., 2012.

[15] U. Srivastava, K. Munagala, and J. Widom, “Operator placement for
in-network stream query processing,” in Proc. twenty-fourth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems. ACM, 2005, pp. 250–258.

[16] N. Jain, R. Biswas, N. Nandiraju, and D. Agrawal, “Energy aware
routing for spatio-temporal queries in sensor networks,” in Wireless
Communications and Networking Conference, 2005 IEEE, vol. 3. IEEE,
2005, pp. 1860–1866.

LU et al.: EFFICIENT DISTRIBUTED ALGORITHMS FOR IN-NETWORK BINARY OPERATOR TREE PLACEMENT IN WIRELESS SENSOR NETWORKS 13

[17] G. Chatzimilioudis, H. Hakkoymaz, N. Mamoulis, and D. Gunopulos,
“Operator placement for snapshot multi-predicate queries in wireless
sensor networks,” in Mobile Data Management: Systems, Services and
Middleware, 2009. MDM’09. Tenth International Conference on. IEEE,
2009, pp. 21–30.

[18] A. Pathak and V. Prasanna, “Energy-efficient task mapping for data-
driven sensor network macroprogramming,” IEEE Trans. Computers,
vol. 59, no. 7, pp. 955–968, 2010.

[19] B. Bonfils and P. Bonnet, “Adaptive and decentralized operator place-
ment for in-network query processing,” in Proc. 2nd international
conference on Information processing in sensor networks. Springer-
Verlag, 2003, pp. 47–62.

[20] K. Oikonomou, I. Stavrakakis, and A. Xydias, “Scalable service migra-
tion in general topologies,” in World of Wireless, Mobile and Multimedia
Networks, 2008. WoWMoM 2008. 2008 International Symposium on a.
IEEE, 2008, pp. 1–6.

[21] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-aware operator placement for stream-processing
systems,” in Data Engineering, 2006. ICDE’06. Proc. 22nd Interna-
tional Conference on. IEEE, 2006, p. 49.

[22] G. Chatzimilioudis, N. Mamoulis, and D. Gunopulos, “A Distributed
Technique for Dynamic Operator Placement in Wireless Sensor Net-
works,” in Eleventh International Conference on Mobile Data Manage-
ment. IEEE, 2010, pp. 167–176.

[23] M. Ye, X. Liu, W. Lee, and D. Lee, “Probabilistic top-k query processing
in distributed sensor networks,” in Data Engineering (ICDE), 2010 IEEE
26th International Conference on. IEEE, 2010, pp. 585–588.

[24] S. Misra, M. Reisslein, and G. Xue, “A survey of multimedia streaming
in wireless sensor networks,” IEEE Commun. Surveys & Tutorials,
vol. 10, no. 4, pp. 18–39, 2008.

[25] I. Greenberg and R. Robertello, “The three factory problem,” Mathe-
matics Mag., vol. 38, no. 2, pp. 67–72, 1965.

[26] W. Van De Lindt, “A geometrical solution of the three factory problem,”
Mathematics Mag., vol. 39, no. 3, pp. 162–165, 1966.

[27] F. Ye, A. Chen, S. Lu, and L. Zhang, “A scalable solution to minimum
cost forwarding in large sensor networks,” in Computer Communications
and Networks, 2001. Proceedings. Tenth International Conference on.
IEEE, 2001, pp. 304–309.

Zongqing Lu is currently a Ph.D. candidate with
the School of Computer Engineering in Nanyang
Technological University, Singapore. He received
bachelor and master degree both from Southeast
University, China. His research interests include
wireless sensor networks, mobile ad hoc networks,
social networks, delay tolerant networks, mobile
computing, network privacy and security. He is a
student member of IEEE.

Yonggang Wen (S99-M08) was born in Nanchang,
Jiangxi, China in 1977. He received his PhD de-
gree in Electrical Engineering and Computer Sci-
ence (with minor in Western Literature) from Mas-
sachusetts Institute of Technology (MIT), Cam-
bridge, MA, USA, in 2008; his MPhil degree (with
honor) in Information Engineering from Chinese
University of Hong Kong (CUHK), Hong Kong,
China, in 2001; and his BEng degree (with honor)
in Electronic Engineering and Information Science
from University of Science and Technology of China

(USTC), Hefei, Anhui, China, in 1999. His major field of study focuses on
information and communication technologies (ICT).
He is currently an Assistant Professor with School of Computer Engineering

at Nanyang Technological University, Singapore. Previously, he has worked in
Cisco as a Senior Software Engineer for content networking products. He has
also worked as a Research Intern at Bell Laboratories, Sycamore Networks
and Mitsubishi Electric Research Laboratory (MERL). He has published
more than 50 papers in top journals and prestigious conferences. His system
research on Cloud Social TV has been featured by international media (e.g.,
The Straits Times, The Business Times, Lianhe Zaobao, Channel News Asia,
ZDNet, CNet, United Press International, ACM Tech News, Times of India,
Yahoo News, etc). His research interests include cloud computing, mobile
computing, multimedia network, cyber security and green ICT.
Dr. Wen is a member of Sigma Xi (the Scientific Research Society), IEEE

and SIAM.

Rui Fan is currently an assistant professor with
School of Computer Engineering at Nanyang Tech-
nological University. He received BSc from Cali-
fornia Institute of Technology, MSc and Ph.D. both
from Massachusetts Institute of Technology.

Su-Lim Tan is currently an assitant professor
with Singapore Institute of Technology. He re-
ceived bachelor degree from computer engineering
in Nanyang Technological University and Ph.D.
degree from University of Warwick, UK.

Jit Biswas is a Senior Scientist in the Neural and
Biomedical Technology (NBT) department at the
Institute of Infocomm Research, A*STAR (Agency
for Science, Technology and Research), Singapore.
He is currently working on vital signs monitoring us-
ing ambient sensing approaches and wireless sensor
networks. Dr. Biswas has an undergraduate degree
in Electrical and Electronics Engineering from Birla
Institute of Technology and Science, Pilani (India)
and a Ph.D. degree in Computer Science from the
University of Texas at Austin (USA).

