
Citation: Khalid, M.; Yousaf, M.M.;

Sadiq, M.U. Toward Efficient

Similarity Search under Edit Distance

on Hybrid Architectures. Information

2022, 13, 452. https://doi.org/

10.3390/info13100452

Academic Editor: Chuan-Ming Liu

Received: 18 August 2022

Accepted: 20 September 2022

Published: 26 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Toward Efficient Similarity Search under Edit Distance
on Hybrid Architectures
Madiha Khalid 1,2,* , Muhammad Murtaza Yousaf 2 and Muhammad Umair Sadiq 1,3

1 Department of Computer Science, University of the Punjab, Lahore 54000, Pakistan
2 Department of Software Engineering, University of the Punjab, Lahore 54000, Pakistan
3 Department of Computer Science, Government College University, Lahore 54000, Pakistan
* Correspondence: madiha.khalid@pucit.edu.pk

Abstract: Edit distance is the most widely used method to quantify similarity between two strings.
We investigate the problem of similarity search under edit distance. Given a collection of sequences,
the goal of similarity search under edit distance is to find sequences in the collection that are
similar to a given query sequence where the similarity score is computed using edit distance. The
canonical method of computing edit distance between two strings uses a dynamic programming-
based approach that runs in quadratic time and space, which may not provide results in a reasonable
amount of time for large sequences. It advocates for parallel algorithms to reduce the time taken by
edit distance computation. To this end, we present scalable parallel algorithms to support efficient
similarity search under edit distance. The efficiency and scalability of the proposed algorithms is
demonstrated through an extensive set of experiments on real datasets. Moreover, to address the
problem of uneven workload across different processing units, which is mainly caused due to the
significant variance in the size of the sequences, different data distribution schemes are discussed
and empirically analyzed. Experimental results have shown that the speedup achieved by the hybrid
approach over inter-task and intra-task parallelism is 18 and 13, respectively.

Keywords: similarity search; sequence comparison; parallel edit distance; CUDA; inter-task paral-
lelism; intra-task parallelism; hybrid parallelism

1. Introduction

In the modern high-performance computing landscape, a variety of approaches to
parallel computing enables maximum performance gains for high-performance computing
applications. High-performance computing applications can be found in nearly every field,
ranging from core computer science to urban planning and health care. Particularly, as the
technologies such as next-generation sequencing, artificial intelligence, and Internet of
Things evolve, the size and amount of datasets are growing exponentially. One of the most
fundamental activities common to many applications is the discovery of similar objects
in the available data, which is commonly called a similarity search. A similarity search,
as a primitive operation, has a broad spectrum of applications in many domains such as
search engines, spam filters, data cleaning, plagiarism detection, data integration, biological
sequence analysis, error checking, and pattern recognition. Particularly, it has gained the
increasing attention of researchers after the emergence of the current information explosion
in many fields of life sciences. The problem of string similarity search involves quantifying
the similarity between strings and subsequently using this quantification to find all strings
similar to a given query string. For example, in some applications, especially for mobiles,
when users make typos, a string similarity search helps find suggestions of similar words
from the dictionary.

To quantify the similarity between two strings, three types of similarity functions are
used: token-based similarity functions, character-based similarity functions, and hybrid

Information 2022, 13, 452. https://doi.org/10.3390/info13100452 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13100452
https://doi.org/10.3390/info13100452
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-5794-4884
https://doi.org/10.3390/info13100452
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13100452?type=check_update&version=1

Information 2022, 13, 452 2 of 20

functions. Among these functions, accessing similarity at the character level is the most
widely used function [1]. Character-based similarity (commonly known as sequence-based
measurement or edit distance) takes two character strings and quantifies the similarity
between them by counting the single character elementary edit operations required to
transform one string to the other. The most common method that uses this approach is
Edit Distance or Levenshtein distance [2]. Another kindred approach is based on finding
the lengths of the longest common subsequences of the two sequences [3]. Other common
algorithms that are based on a similar approach are Damerau–Levenshtein [4], Jaro [5],
JaroWinkler [6], Smith–Waterman [7], Needleman–Wunsch [8], Hirschberg’s [9], and N-
gram [10].

All these methods are built upon formal recursive definitions; therefore, the straight-
forward recursive method of measuring similarity between two strings using any of the
mentioned algorithms takes exponential time. This exponential slowdown is impractical
for strings larger than tens of characters. To improve the performance of recursive solutions,
generally, a dynamic programming-based memoization technique is used that prevents
the redundant computations of subproblems. It solves each subproblem exactly once and
memorizes the solutions in a table, which can then be used to create an optimal solution
for the larger problem. The general form of a dynamic programming-based solution to
character-based similarity approaches can be represented in a general form, as shown in
Figure 1. In this form, the algorithm processes a dynamic programming table T of size
n × m according to a recurrence function f, where n and m are lengths of input strings A and
B, respectively. The cell T[i, j] is computed based on the output of the recurrence function f()
that operates over inputs T, n, m, i, and j. The typical implementation of dynamic program-
ming algorithms uses a loop-based implementation that iteratively populates the Dynamic
Programming (DP) table. This approach also benefits from prefetching optimizations and
has good spatial locality. However, these solutions require quadratic running time that
scales poorly as the data size grows.

Figure 1. The general form of dynamic programming-based string similarity measures. source [11].

Levenshtein/Edit distance is one of the most popular and widely adopted algorithms
used to compute optimal similarity scores [12]. The computation of edit distance between
two strings is a quadratic time operation. Quite enough emphasis has been given to devel-
oping fast, scalable, and memory efficient techniques for addressing an edit distance-based
similarity search [13–25]. This is a challenging problem because computing edit distance
itself is a compute-intensive problem and for large collections of data, and calculating
the edit distance of the query sequence with each sequence in the set makes it a more
computationally intensive problem. Furthermore, the rate of growth of data in terms of
the number of sequences and size of each sequence in the dataset slows down the process,
which makes it inapt to apply on very large datasets. Most modern strategies either use
some preprocessing schemes to index the data in the dataset [20–25], which allows for
faster query evaluation, or use parallel computing to enhance the overall performance of
the edit distance algorithm [13–19,26–28].

In recent years, the use of high-performance computing (HPC) to enhance the efficiency
of computationally intensive problems is becoming popular. It has been demonstrated
that the use of HPC technologies can significantly reduce the running time while ensuring
accuracy [29]. In this paper, we investigate the problem of edit similarity search under

Information 2022, 13, 452 3 of 20

different parallel computing models. We introduce three scalable parallel computing ap-
proaches along with their analysis to support an efficient similarity search based on edit
distance. These approaches include inter-task parallelism, intra-task parallelism, and a com-
bination of both approaches. These approaches are proposed for a cluster of homogenous
computing nodes. The proposed computing approaches are based on master–worker archi-
tecture where the master node acts as a dispatcher that distributes the workload among
the worker nodes in a load-balanced manner and later aggregates the results. The worker
nodes compute the similarity scores on the allocated data. The experimental evaluation
proves that the hybrid approach which is based on a Message Passing Interface (MPI)
and Compute Unified Device Architecture (CUDA—a parallel computing platform for
general-purpose computing on GPUs) outperforms the other two approaches. Our hybrid
approach achieves better runtime due to its intra-task parallelism and ability to efficiently
utilize on-chip shared memory that significantly reduces the communication time. The hy-
brid approach achieves a speedup of 18 and 13 over inter-task and intra-task parallelism
approaches, respectively. The experiments reveal that the hybrid approach is scalable and
shows increased performance as the computational resources are increased. Moreover, it
has been observed during the evaluation phase that the typical data distribution, i.e., a
random but equal number of sequences assigned to each machine, results in an uneven
amount of work across the cluster nodes due to the significant variance in the sizes of the
sequences. To balance the workload across all the machines in the cluster, we used a simple
yet effective technique that performs cyclic distribution after sorting the input sequences.
Experimental results have shown that the speedup achieved by the hybrid approach using
sorted sequences and cyclic distribution over random distribution is 1.59.

The rest of the paper is organized as follows: we review the related work to similarity
search and previous parallel algorithms for edit distance computation in Section 2. In
Section 3, we provide relevant background and essential concepts necessary to understand
the proposed approaches. Section 4 introduces proposed parallel approaches and discusses
their time and space requirements. Section 5 presents the experimental evaluation and
performance comparisons. Finally, we conclude this work in Section 6.

2. Related Work

The problem of similarity search under edit distance has been extensively investigated
in the literature for more than two decades. In the literature, many of the studies either use
some preprocessing schemes to index the data in the dataset [20–23,30–38], which allows
for faster query evaluation, or use parallel computing to enhance the overall performance
of the edit distance algorithm. A similarity search generally corresponds to threshold-based
similarity or top-k query [39]. Several existing studies for similarity search use either
n-gram based indexes [10,27], trie-based indexes [20–23] or B+-trees [24,25].

The main idea behind the n-gram based inverted index is that if two strings are similar,
they must share a specific number of tokens or n-grams, where n-grams are substrings of a
string. To determine whether a string has a certain number of n-grams in common with
the query, an inverted index is created in which the entries are n-grams and each entry
keeps an inverted list that stores the strings containing the n-grams. This inverted index is
used to find all strings that share a specific number of n-grams with the query string. This
approach is efficient for threshold-based similarity with small threshold values; however,
it suffers with larger threshold values. Additionally, due to the decomposition of strings
into overlapping n-grams, it imposes a high space overhead. In most cases, the space
overhead is more than five times the size of the original dataset. In order to reduce the size
of inverted lists, Li et al. [30,35] proposed a method that uses variable-length n-grams. They
worked on the concept that the fixed-length grams may not be efficient because some grams
are frequent while others are infrequent. To address this issue, they selected high-quality
grams to avoid generating very frequent grams. Kim et al. [31] and Behm et al. [32] propose
several algorithms for compressing inverted lists while maintaining query performance.
A couple of studies [33,34] proposed a prefix-based approach that is optimized for a specific

Information 2022, 13, 452 4 of 20

threshold. The authors in [36] focused on designing disk-based indexes for string similarity
search by extending n-gram-based inverted indexes. Zhang et al. [38] proposed an efficient
algorithm for a similarity search under an edit distance that uses a q-gram based index that
partitions the string into a hierarchy of substrings.

The authors in [20–22] presented specialized algorithms based on tries. Strings are
organized in a trie during an offline indexing phase. In the searching phase of query
processing, they keep a record of the prefixes of input strings that are within the edit
distance of the query string. The trie’s active nodes or valid nodes are the ends of these
prefixes. Deng et al. [23] extended the trie structure to support K-Nearest Neighbor (KNN)
queries based on similarity search. However, these trie-based methods are limited to main
memory. Although the performance of trie-based approaches is better than q-gram-based
approaches [21], the main disadvantage of trie-based approaches is that the efficiency of
these methods is dependant on the count of active nodes, which is generally very large:
for example in [20,21], they are in the order of 105 and they grow exponentially with the
alphabet size. This results in a slow query response even if the entire query only matches a
few prefixes. To alleviate this problem, Qin et al. [37] proposed a method that maintains a
small set of active nodes.

Another approach to similarity search employs B+-trees to index strings in order to
respond to threshold-based similarity and KNN queries. Lu et al. [24] proposed a method
that uses B+-tree to address edit distance-based similarity search. The algorithm first makes
partitions of strings as per a set of reference strings, then in all partitions, strings are indexed
using a B+-tree according to the distance of these strings with their respective string and
finally, this B+-tree is used to answer string similarity-based queries. Another approach [25]
proposed Bed-tree: a B+-tree-based index structure for addressing similarity search queries
using edit distance and normalized edit distance. The authors identify the properties of a
mapping from string space to integer space and propose three distinct transformations to
capture various aspects of string information that allow efficient pruning during searching
on the tree. However, the performance of this algorithm is limited to long strings. Several
other studies in the literature are focused on using hashing, trees, signature-based and
partition-based algorithms [17,40–45] to support edit distance-based similarity search.

As similarity search is a computationally intensive problem and the demands of
applications include the processing of very large datasets that makes it even more time-
consuming, therefore, many research studies are focused on achieving maximum perfor-
mance gains using parallel computing. Jiang et al. [16] proposed a parallel partition-based
framework for string similarity search under edit distance. The authors evaluate the algo-
rithm with varying numbers of threads (2− 4) on a multicore machine with 16 processors of
2 GHz each. In [18], a parallel algorithm for approximate string matching with k-differences
is proposed on GPUs. In the proposed algorithm, all threads within the same warp share
data using a warp shuffle operation. The performance of the algorithm is further optimized
by using GPU memory structures. Researchers in [13,14] also adopted warp shuffle opera-
tions to minimize the communication overhead among threads. Zhou et al. [17] presented
GENIE, a framework of generic inverted index that attempts to reduce parallel program-
ming complexity on GPUs. GENIE supports data types and similarity measures including
edit distance and similarity measures that can be modeled in the match-count model.

In order to improve the performance of similarity search, some techniques employ the
combined use of CPU and GPUs. Groth et al. [19] presented a parallel edit-distance based
method for approximate similarity search using adaptive radix trees. The authors proposed
several variants of the algorithm for CPUs and a GPU-based implementation to improve
query throughput and accelerate the performance of the application. A research [26]
modifies the traditional dynamic programming algorithm of edit distance to eradicate
control flow divergence and reduce memory requirement. The algorithm divides the
problem into independent quadrants and uses shared memory and GPU registers available
to efficiently store data between different algorithm phases. Matsumoto and Yiu [46]
proposed a CPU–GPU-based algorithm with compressed partial heap sort for similarity

Information 2022, 13, 452 5 of 20

search. A recent study [28] uses vector and line quantization methods for large-scale
similarity search. A hierarchical index structure is proposed that is generated by vector and
line quantization methods to improve accuracy and efficiency with the roughly equivalent
amount of memory usage. Based on this index structure, a novel system is introduced
called VLQ-ADC. The authors have evaluated VLQ-ADC on two billion-scale benchmark
datasets SIFT1B and DEEP1B. A heterogeneous CPU-GPU computing system for measuring
the similarity of RNA/DNA sequences was presented in [15]. The proposed system used a
co-run computation model for maximum resource utilization where the workloads were
assigned to and computed on both CPU and GPU devices at the same time. Workloads are
distributed to CPU and GPU devices based on their computing capacity by employing a pre-
computation mechanism. In computational biology and bioinformatics, the fundamental
problem of database search can be recast as a similarity search problem where the similarity
of a query sequence (a new DNA nucleotide or protein amino acid) is determined with a
sequence database (known set of DNA or protein sequences). Several research efforts [47]
are geared toward using multi-core CPUs, GPUs, or a combination of both to speed up the
efficiency of the database search in biological databases.

Many attempts have been made to accelerate the performance of traditional edit dis-
tance computation. Edit distance-based similarity search uses the dynamic programming-
based algorithm to compute the edit distance table. Each element of the edit distance table
is dependent on the preceding elements in the same row or column. Therefore, designing
a parallel algorithm for edit distance is not straightforward. In this regard, a common
parallel approach is diagonal parallelization [13,14,47–50]. The idea behind diagonal par-
allelization is to process the edit distance table in diagonal stripes, which means all the
entries within the same diagonal can be computed simultaneously. The edit distance table
contains m + n + 1 diagonals where m and n are the lengths of strings to be compared and
the count of cells in diagonals rises from 1 to min(m, n) and then falls back to 1. Therefore,
the resource utilization in this approach is limited by O(min(m, n)). In addition, the whole
table is to be kept during the entire execution time, which makes its space complexity
quadratic. Moreover, the varying number of cells in each diagonal would result in an un-
balanced workload distribution. Lastly, because memory accesses for this approach do not
coalesce, thus, it does not take advantage of spatial locality. Some research studies [51–55]
use the bit parallelism approach, which is based on the number of bits that can be processed
simultaneously. The number of bits that can be processed at a time typically depends on
the word size of the underlying machine.

In contrast to the diagonal parallelization approach, the authors in [56–58] proposed
an algorithm with a parallel scheme in which all elements in the same row of the edit
distance table can be calculated in parallel by resolving dependencies. With this approach,
we can process the maximum number of threads possible in parallel, which is up to the
length of the input string. It is worth mentioning that the length of the input string is
significantly greater than the query string. Thus, this approach makes maximum resource
utilization, particularly, best suited for GPUs where there are many processors available.
In this paper, we introduced several approaches to parallel edit distance-based similarity
search using the row parallelization method introduced in [57,58].

3. Preliminaries

In this section, we provide relevant background and essential concepts necessary to
understand the proposed parallel algorithms and their analysis presented in this paper.

3.1. Similarity Search under Edit Distance

Given a sequence A = 〈a1, a2, ..., a`〉 of length `, and a collection of sequences S =
{s1, s2, ..., sn} having n sequences, where characters ai, sk,j ∈ Σ, a finite set of characters
for 1 ≤ i ≤ `, 1 ≤ j ≤ `, 1 ≤ k ≤ n. The similarity search is used to find the similarity of
query sequence A with all the sequences in S such that every individual sequence sk in S is
compared with A to find the edit distance EDT between them.

Information 2022, 13, 452 6 of 20

Typically, a similarity search is defined using a user-specified threshold T, which
determines whether the sequences are similar or not. The sequences are considered similar
if the similarity score between them is less than the threshold value T.

3.2. Levenshtein Distance

The Levenshtein distance, also known as edit distance, is a string similarity measure
that is defined as the minimum number of single-character edit operations required to
transform one string into another. Here, an edit operation can be defined by either deleting,
inserting, or replacing a single character. Formally, Lavenshtein distance is defined as: given
two arbitrary strings, A = 〈a1, a2, a3, ..., an〉 and B = 〈b1, b2, b3, ..., bm〉, where characters
ai, bj ∈ Σ, a finite set of characters, for 1 ≤ i ≤ n, 1 ≤ j ≤ m. The Levenshtein distance
between A and B denoted as EDTA,B is the minimum number of edit operations to make
A and B identical, where 0 ≤ EDTA,B ≤ max(|a|, |b|). The EDTA,B should satisfy the
following three properties:

1. EDTA,B = 0 i f f A = B

2. EDTA,B > 0 i f f A 6= B

3. EDTA,B = EDTB,A

The smaller value of Levenshtein distance indicates more similarity between the two
strings. If the Levenshtein distance between two string sequences is 0, then both the
sequences will be considered identical, because no edit operations are needed to convert
one sequence into another. Similarly, if A = “march” and B = “cart”, then the edit distance is
3 because two substitutions (replacement of ‘m’ with ‘c’ and ‘c’ with ‘t’) and one deletion
(deletion of ‘h’) are required to transform A into B. The higher the value of the edit distance,
the more different the sequences are.

The most common way to compute the Levenshtein/edit distance between two se-
quences is a dynamic programming-based solution that uses the recurrence given in
Equation (1). For two sequences A and B of lengths n and m, respectively, a dynamic
programming table EDT of size (n + 1)× (m + 1) is computed that keeps track of the edit
distance and edit operations between them. The last cell of the EDT table, i.e., cell(n, m)
represents the quantified dissimilarity between the two sequences. Each cell in the EDT
table is computed using the recurrence presented in Equation (1).

EDTi,j =

max(i, j) i f min(i, j) = 0
EDTi−1,j−1 i f Ai = Bj

min

EDTi−1,j−1 + 1
EDTi,j−1 + 1
EDTi−1,j + 1

otherwise

(1)

Here, 0 ≤ i ≤ n, 0 ≤ j ≤ m, Ai is the ith character of sequence A, Bj is the jth character
of sequence B, and EDTi,j is the edit distance between the initial i characters of A and initial
j characters of B. The final value of the edit distance is at EDTn,m. Figure 2 shows the edit
distance table EDT between “SPEED” and “SPACER”. The edit distance is 3, which is
stored at EDT(6, 5) and the edit operations that yield this edit distance can be found by
tracing back the path from EDT(6, 5) to EDT(0, 0).

Information 2022, 13, 452 7 of 20

Figure 2. An example of Levenshtein/edit distance table for input sequences “SPACER” and “SPEED”.
The path that yields the edit distance is highlighted to trace back the required operations. Here,
← denotes “insertion” operation, ↑ denotes “deletion” operation, and ↖ denotes “substitution”
operation if Ai 6= Bj.

The time complexity of the sequential algorithm is O(n, m), where n and m are the
lengths of input sequences. The space complexity is also O(n, m) if the entire edit distance
table is to be stored for a trace-back to find the required operations. However, if only the
edit distance score is required, then only two rows (the current row and its preceding row)
need to be allocated, which can be recycled for the entire computation. Therefore, the space
complexity in this case is O(min(n, m)).

3.3. Computational Dependencies

Now that we have defined the fundamental recurrence relations in the problem, we
can extend our discussion to analyze the dependencies in the solution. In the EDT table,
the base case values (i.e., the values in the first row and first column) are trivial to compute;
they are the lengths of substrings. The rest of the table is computed as per two observations:

1. If it is a match case (Ai = Bj): The edit distance is the distance between two substrings
that are one character shorter than the current substring, i.e., EDTi,j = EDTi−1,j−1.

2. If it is a non-match case (Ai 6= Bj): The edit distance is one greater than the smallest
edit distance of any of the three possible substring situations, i.e., EDTi,j = 1 +
min(EDTi,j−1, EDTi−1,j, EDTi−1,j−1).

This clearly means that the computation of the value in each cell is dependent upon the
three values in the same table that are in the preceding row and column. This dependency
is illustrated in Figure 3.

Figure 3. Computational dependency of a cell in edit distance table.

3.4. Redefining Computational Dependencies

According to Figure 3, in order to compute any cell in the edit distance table, three
values must be needed: i.e., the value of the preceding cell, the value of the upper cell in
the same column, and the value of the diagonal cell. Due to these dependencies, the cal-
culation of each cell in a row depends on the cell in the same row but in the preceding

Information 2022, 13, 452 8 of 20

column, and two cells from the previous row. The same is true in the case of column-wise
computation. Therefore, neither a row nor a column can be computed in parallel.

Yousaf et al. [58] established that the computational dependencies in the edit distance
table can be redefined such that the computation of each cell can only be dependent on its
preceding row. This means EDT[i, j] is not dependent on EDT[i, j− 1]. The authors proved
that given the information about the last match case, all three values that are required to be
known for the computation of a cell can come from its preceding row. Thereby, this made it
possible to simultaneously compute a complete row of the edit distance table. According to
Yousaf et al. [58], the new dependencies are shown in Figure 4.

Figure 4. Redefining dependencies according to [58].

3.5. Communication Cost

The cost of communication becomes significant while designing a parallel algorithm.
In a distributed computing environment, inter-processor communication happens when
the communicating/coordinating tasks are located on different processors. The commu-
nication cost of an algorithm is the time taken by its tasks to send and receive messages.
The communication time Tcomm required to transmit a message from one node to another
can be defined by two parameters: the message startup time ts, which is the time required to
prepare the message for transmission, and the per word transfer time tω , which is typically
determined by the bandwidth of the communication channel that connects the two nodes.
Thus, the cost of communication required to transfer η words is Tcomm = ts + tωη.

3.6. Speedup

Speedup is defined as the measure of relative performance of two algorithms that
process the same problem. The notion of speedup is more specifically established for
parallel algorithms. In its classical form, it compares the performance of a sequential
algorithm with its parallel algorithm.

4. Parallel Approaches for Similarity Search under Edit Distance

In this section, we present three approaches for parallel computation of similarity
search using the edit distance algorithm, named inter-task parallelism, intra-task paral-
lelism, and a hybrid approach that combines both approaches. In this paper, a task is
defined as the computation of similarity score between two sequences. We define inter-task
parallelism a parallel computing approach where n tasks are simultaneously running on
available computing nodes. Intra-task parallel is defined as the parallel computing ap-
proach where each task, i.e., sequence comparison with the query string, is distributed
over cluster nodes to be performed in parallel. In contrast, the hybrid approach is the
combination of both models that distribute n sequences over the cluster nodes, and each
task assigned to one computing node will run in parallel by several threads on the same
machine. In the following subsections, these three approaches will be discussed in detail
along with their complexity analysis.

4.1. Inter-Task Parallelism

In this approach, the n number of sequences in set S needs to be distributed over a
cluster of p processing nodes. This approach is based on master–worker architecture where
the master node acts as a dispatcher that distributes the input sequences among the worker

Information 2022, 13, 452 9 of 20

nodes and later aggregates the results. The worker nodes compute the similarity scores on
the allocated sequences.

To compare the query sequence A with every sequence in the set S, S will be distributed
among available processors. Since every sequence comparison is an independent set of
operations, therefore, each sequence comparison can be performed in parallel. Assume that
there are p processing nodes with identities ranging from 0 to p− 1. To perform sequence
comparisons in parallel, the master node will distribute set S among p worker nodes such
that every node will receive an n/p distinct set of sequences from S. Every worker node
will start computing similarity between the query string and one of the sequences allocated
to it. Figure 5 illustrates this process in the form of a flowchart.

Figure 5. Flowchart of inter-task parallelism approach. The dotted lines show the communication
between master and worker nodes.

Complexity Analysis: The computation of edit distance between two sequences,
say A and B, using a traditional dynamic programming-based solution would require the
computation of a dynamic programming table of size (`+ 1)× (m + 1), where ` and m
are the lengths of A and B, respectively. The time and space complexity of computing
the edit distance between two sequences is O(`m). Since one sequential comparison takes
O(`m) time and every processor performs n/p simultaneous comparisons, that makes the
computation cost O(`m)× n/p .

4.2. Intra-Task Parallelism Approach

In this approach, each task, i.e., each sequence comparison with the query string, is
distributed over cluster nodes to be performed in parallel. While performing a one-to-one
comparison of two sequences A and s1, both the sequences will be distributed among
worker nodes. To perform a one-to-one comparison in parallel, the dependencies can be
resolved as suggested by Sadiq et al. [56]. The authors proposed an algorithm that redefines
the dependencies of the edit distance table such that all the cells in a row can be computed
simultaneously. As discussed in Section 3.4, the computation of any cell in the EDT table
can only be dependent on the values in its preceding row, thereby resolving intra-row
dependencies. This enables the simultaneous computation of all the cells within a row.
Since the size of each row in the edit distance table is the same, therefore, this approach
makes a fair and balanced distribution of work among the available processing nodes.
However, to make this method work, the algorithm precomputes a Last Match index Table

Information 2022, 13, 452 10 of 20

(LMT) that records the position of the last match of the unique characters in character set Σ
when compared with the query sequence. This table can also be computed in parallel.

To compare two sequences using the method inspired by [56], both the sequences must
be distributed over p processing nodes. Assume that there are p processing nodes with
identities ranging from 0 to p− 1. Since the computation of every row is dependent on its
preceding row and the columns within a row can be computed in parallel, therefore, each
row can be distributed among multiple processors such that every processor will obtain
`/p part of the row (as illustrated in Figure 6). To perform computation on its respective
part of the row, every processor will receive the chunk of one sequence, i.e., sequence
s1, starting from `/p and ending at (r + 1)(`/p), where r is the identity of the processor.
As soon as one sequence comparison is completed by all the processors, the next sequence
from set S will be distributed among all the processors. This process will continue until all
the comparisons will be completed.

Figure 6. Mapping of a sequence having length ` to p processing nodes.

For a parallel comparison, each worker node will receive query sequence A and a part
of sequence s1. First, each processor will compute the match index table for the part of the
sequence that is assigned to that particular processor, and then, the EDT table is computed.
At any time, all processors will be computing a part of one row. After the computation of
every row, all the processors will become synchronized. Similarly, all the processors will
compute the EDT table for their part (see Figure 7).

Figure 7. Flowchart of intra-task parallelism approach. The dotted lines show the communication
between master and worker nodes.

Information 2022, 13, 452 11 of 20

Complexity Analysis: One parallel sequence comparison requires the computation of
a match index table as well as an EDT table. For the computation of the match index table,
every processor will be computing (`|Σ|)/p values, whereas EDT table computation would
require (`m)/p simultaneous computations by each processor. Therefore, the total time to
perform a parallel one-to-one comparison is (`|Σ|)/p + (`m)/p. Since these computations
will be performed for every sequence in the set S and we have n number of sequences in S,
the total time complexity will be {(`|Σ|)/p + `m/p} × n.

As regards the space complexity, each row of the EDT table is dependent on its
preceding row; therefore, each processor will be needing the space to store two rows at a
time: the current row and the preceding row. Hence, each processor will allocate 2× `/p
space for two rows. The match index table requires `|Σ|/p space. The query sequence
can be obtained by processors in arbitrary sized multiple chunks, but if the chunk size
taken is less than `/p, then the space complexity would be optimal. Hence, the total
space complexity would be (`/p) + (`|Σ|/p). Here, |Σ| is constant. So, the overall space
complexity is O(`/p).

Since the computation of each row is distributed among several processors, it requires
inter-process communication. The computation is of the form that the calculation of each
cell in the EDT table would require a value from its preceding row, and that value can come
from the part of the sequences which is assigned to another processor. This can happen in
two cases:

1. To compute the first value (leftmost value), i.e., EDT[i] of the edit distance table, each
processor Pr needs the diagonal value of the previous row, say LevP[i− 1], which is
not available locally and can be found from the preceding processor Pr−1.

2. There is a possibility that for some initial cells of a processor Pr, the value of the
last match case resides in the part of data that is assigned to one of the preceding
processors.

Figure 8 depicts both cases where the computation requires values from preceding
processors. Both cases can be handled by communicating two values from the preceding
processor. For the first case, where the diagonal value of the first cell of EDT is not
available locally, every processor Pr communicates its rightmost value of the previous row
to its following processor Pr+1. For the second case, where the last match case resides in
the preceding processor, an exclusive scan operation (with the maximum as the binary
associative operator) is performed with the value at the last match case of the processor
(since there can be multiple match cases in each processor). Now, every processor has all the
values to calculate its share in the ith row of the EDT table. Since for the computation of the
EDT table, one exclusive scan operation per row is required, and for each row, one value
(rightmost) should be communicated to the next processor, therefore, its communication
time is (`/p)× (log `+ 1)× n. In contrast, communication involved in the computation
of the LMT table is n× (log `)|Σ| because to compute one row of the LMT, one exclusive
scan operation is required. The total communication time for this approach is (ts + tωη)×
{(log `)|Σ|+ (`/p)× (log `+ 1)} × n.

4.3. Hybrid Approach

In this approach, we use a combination of the above two approaches using CPUs and
GPUs to speed up the overall performance. The data distribution model is similar to inter-
task parallelism. Every processor will receive n/p sequences from the set S. However, each
sequence comparison will be performed in parallel using multiple GPUs. The comparison
will be performed using the algorithm discussed in intra-task parallelism with the exception
that several threads will be launched to perform a one-to-one comparison in parallel.
Figure 9 illustrates the flow of the hybrid approach. This approach also takes advantage
of shared memory to improve the overall performance of the algorithm, and the inter-
processor communication overhead can be greatly reduced by using a combination of
constant and shared memory.

Information 2022, 13, 452 12 of 20

(a)

(b)

Figure 8. Two cases where the computation of a cell requires values from preceding processors.
The computation of EDT[i] is dependent upon the values LevP[i], LevP[i− 1] and LevP[j− 1]. (a)
Case 1: where the leftmost value EDT[i] of processor Pr requires diagonal value LevP[i− 1] that comes
from processor Pr−1. (b) Case 2: where last match value of processor Pr is found in its preceding
processor. The last match case lies in that part of data that is assigned to the processor Pr−1.

Figure 9. Flowchart of the hybrid approach. The shaded area shows the part of computation
performed in parallel by GPU threads. The dotted lines show the communication between master
and worker nodes.

Information 2022, 13, 452 13 of 20

Complexity Analysis: This approach can perform n/p sequence comparisons simul-
taneously where each computation can be further parallelized by distributing it among t
threads. Because each row of EDT can be computed in `/p time and there are m of them,
the time complexity of computing EDT becomes O(`m)/t. Furthermore, by taking the
transpose of EDT, it is always possible to take min(`, m) as rows. For the computation of
the LMT, every processor will be computing (`|Σ|)/t values. Since these computations will
be performed for every sequence in the set S and we have n number of sequences in S that
are divided to p processors, the total time complexity will be {(`|Σ|)/t + `m/t} × n/p.

LMT requires `|Σ| space. The edit distance table requires O(`m) when all edit op-
erations are required and O(`) when only the score of edit distance is required, because
only two adjacent rows must be stored when only the score of edit distance is required.
Furthermore, if the size of the column is significantly greater than the size of the row, EDT
can be computed column-wise using similar steps. It is worth noting that the computation
of EDT is significantly larger when compared to the computation of LMT. The compu-
tation of LMT involves the unique characters in the query sequence. This computation
can be improved by using a parallel prefix operation with max as the binary associative
operator. Using parallel prefix operation can significantly improve the running time if the
input sequence is very large. The computation itself does not require any communication
because each comparison is parallelized by using GPUs threads and shared memory.

5. Experiments and Evaluation

In this section, we evaluate the proposed parallel approaches for similarity search.
Setup: For experimental evaluation, we implemented the algorithms using CUDA

and MPI. For evaluation purposes, we used a cluster of five processing nodes where the
minimum specification of a node is Intel Core-i5-3570K 3.40 GHz CPU having four physical
cores, four logical processors, and 8 GB of main memory. Each node is equipped with an
NVIDIA GeForce GTX 660 GPU with 960 compute cores, five streaming processors, and 2
GB of main memory. All nodes in the cluster are interconnected to a centralized hub by
using Ethernet cables.

Dataset: We use two publicly available real datasets to perform the experiments:
a dataset of genome sequences for which we extracted a hundred DNA sequences from
NCBI [59] website in the range of 16 KB to 9 MB, and a dataset of GPS trajectories named
GeoLife [60] by Microsoft. The genomics dataset has the sequence sizes in the range of
16 KB to 9 MB. To perform a similarity search, we used sequences gbpln103 having 16,871
base pairs (bp) and gbgss201 having 156,931 base pairs (bp) as query sequences. We
extracted first twenty trajectories of the users from the GeoLife GPS dataset with sizes in
the range of 510 KB to 18 MB. The trajectories are encoded as character sequences by taking
GeoHash of the coordinates information of users. For that purpose, python-geohash [61]
library is used. We used sequence 001 (1,728,404 characters long) and sequence 006 (505,199
characters long).

5.1. Evaluating Execution Time

A set of experiments was performed to evaluate the performance of all three approaches.
Since the cluster in our testbed contains twenty processors, therefore, we launched an equiva-
lent number of processes on five systems. For data distribution, we use the straightforward
workload distribution, i.e., distribution of an equal amount of random n/p sequences to each
processor. For hybrid parallelism, we used GPUs on each machine to perform the job. We
launched one process per machine, where each process uses multi-threading on the GPUs to
perform its job. The results are presented in Figures 10 and 11.

We plot the running time for varying lengths of query sequences for both datasets.
Figure 10a–c show the running time on the GeoLife dataset with a long query sequence
001 (i.e., 1,728,404 characters), and Figure 10d–f show the running time with a short query
sequence (i.e., 505,199 characters). Similarly, Figure 11a–c show the running time on the
genome dataset with a short query sequence (i.e., 16,871 bp) and Figure 11d–f illustrate

Information 2022, 13, 452 14 of 20

the running time with a long query sequence (i.e., 156,931 bp) on the same dataset. It is
worth noting that the comparison of longer query sequences took more time. The results
clearly showed that the hybrid approach that combines inter-task and intra-task parallelism
requires significantly less execution time than the other two approaches that are solely
based on inter-task or intra-task parallelism.

(a) (b) (c)

(d) (e) (f)

Figure 10. Execution time of proposed parallel approaches with GeoLife dataset and varying lengths
of query strings. (a) Inter-Task parallelism with query sequence 001. (b) Intra-Task parallelism with
query sequence 001. (c) Hybrid parallelism with query sequence 001. (d) Inter-Task parallelism with
query sequence 006. (e) Intra-Task parallelism with query sequence 006. (f) Hybrid parallelism with
query sequence 006.

(a) (b) (c)

(d) (e) (f)

Figure 11. Execution time of proposed parallel approaches with Genome dataset and varying lengths
of query strings. (a) Inter-Task parallelism with query sequence gbpln103. (b) Intra-Task parallelism
with query sequence gbpln103. (c) Hybrid parallelism with query sequence gbpln103. (d) Inter-Task
parallelism with query sequence gbgss201. (e) Intra-Task parallelism with query sequence gbgss201.
(f) Hybrid parallelism with query sequence gbgss201.

For the intra-task parallelism, explicit communication is required among the processes.
To analyze the effect of communication cost over total execution time, we computed the
communication and computation time separately for that version (see Table 1). In other
versions (the inter-task parallelism approach and hybrid approach), explicit communication
is not needed. Table 1 clearly shows that more than 50% of the execution time is spent

Information 2022, 13, 452 15 of 20

in communication. Yet, this approach gives better results in comparison with inter-task
parallelism despite spending more than half of the time in communication.

Table 1. Communication and computation time for intra-task parallelism approach.

Dataset Query Sequence Communication Time Computation Time

Genome gbgss201 17,539 13,082
gbpln103 1771 1723

GeoLife 001 34,689 29,341
006 10,729 8809

Figure 12 compares the performance of all three approaches (inter-task parallelism,
intra-task parallelism, and hybrid approach) in a random data distribution setting. It is
evident from the experimental results that the hybrid approach outperforms the other two
approaches. The hybrid approach achieves better run time due to its intra-task parallelism
and ability to efficiently utilize on-chip shared memory that significantly reduces the
communication time. The hybrid approach achieves a speedup of 18 and 13 over inter-task
and intra-task parallelism, respectively.

(a) (b)

(c) (d)

Figure 12. Comparison of execution time of proposed parallel approaches. (a) Comparison of execu-
tion time of all three parallel approaches on GeoLife dataset with query sequence 001. (b) Execution
time of all three parallel approaches on GeoLife dataset with query sequence 006. (c) Execution time
of all three parallel approaches on Genome dataset with query sequence gbpln103. (d) Execution
time of all three parallel approaches on Genome dataset with query sequence gbgss201.

5.2. Evaluating Load Balancing

The results presented in Figure 10 are produced by using a random but equal amount
of sequence distribution to each machine. If we observe the execution time on individual
machines (Table 2), it can be seen that each machine obtains an uneven amount of work
and their execution time varies significantly. Thus, the processors that received the larger-
sized sequences finished later than those that received smaller-sized sequences. The total
execution time is equivalent to the process that takes the largest amount of time because
every process executes in parallel. The analysis of standard deviation (Table 2) reflects
the dispersion in the workload: that is, 3637 and 673 in the case of inter-task parallelism
and hybrid parallelism, respectively. The main cause of this uneven workload at different
processing units is the significant variance in the size of the sequences.

Information 2022, 13, 452 16 of 20

Table 2. Execution time of individual machines for one-to-many comparison using inter-task paral-
lelism and hybrid parallelism.

Machine Name
Execution Time (s)

Inter-Task Parallelism Hybrid Parallelism

WS111 46,455.8 1704.76
WS112 35,823.9 2519
WS113 39,810.7 619.281
WS114 42,213.1 2081.14
WS115 43,971.6 2329.82

Total Execution time 46,456 2519
Standard Deviation 3637 673

To balance the workload across all the machines in the cluster, we used a simple yet
effective technique that performs distribution after sorting the input sequences. To dis-
tribute the n/p input sequences among p processors, the following two-step procedure
will be followed:

1. Sort all the sequences in ascending order according to their sizes.
2. From the sorted list of sequences, distribute n/p sequences to processors in a circular

manner except that in every alternate step, the processor ordering will be reversed.

To understand the distribution mechanism, let us take a small example where there
are 16 sequences in the set S and 4 processors P0, P1, P2, and P3. First, the sequences in S
will be sorted according to their sizes. For simplicity, let us assume that the sequences are
numbered from 1 to 16 according to their sizes, i.e., 1 is the smallest sized sequence and
16 is the longest sequence. Every processor will receive n/p sequences for the processing,
which means in this case, every processor will receive 4 sequences. The sequences will
be distributed to processors in a circular manner that means P0 will receive sequence 1,
P1 will receive sequence 2, P2 will receive sequence 3, P3 will receive sequence 4, for the
next 4 sequences the distribution order will be reversed i.e., P3 will receive sequence 5, P2
will receive sequence 6, and so on. This process is illustrated in Figure 13. Through this
distribution method, every processor will receive a roughly equal share of the workload.

Figure 13. An example of data distribution strategy for 4 processors and 16 input sequences.

Since the experiments have shown that the hybrid approach outperforms the other
two approaches in a random data distribution setting, we performed a set of experiments
using the hybrid approach with two different data distribution schemes: (1) Random
distribution of sequences with block division and (2) Sequence distribution after sorting
them by their sizes and cyclic division among the processes.

Information 2022, 13, 452 17 of 20

Figure 14 plots the results of the hybrid approach using both the data distribution
schemes. It can be seen that the results obtained by sorted and cyclic division among the pro-
cesses give the peak performance. Moreover, the standard deviation of the execution time
is also reduced to the lowest as the workload is balanced among the processes. The sorted
and cyclic division achieved a speedup of 1.28 over random sequence distribution with
block division on the Genome dataset and 1.59 over the GeoLife dataset.

(a) (b)

Figure 14. Comparison of load balancing techniques using (a) GeoLife dataset (b) Genome dataset.

5.3. Evaluating Scalability

We validated the scalability by varying the number of computing resources. We per-
formed the similarity search using the hybrid approach and sorted and cyclic data distribution
on a single machine. We then gradually increased the number of machines for the same query
and dataset. When we increased the number of machines to two, the execution time becomes
decreased by 57%. Similarly, when the number of machines jumps from two to three, the
execution time was decreased by 61%. We increased the number of machines to five; Figure 15
shows the results of scalability. The general trend is that the algorithm significantly increases
its performance as the computational resources become increased.

(a) GeoLife (b) Genome

Figure 15. Evaluating scalability using (a) GeoLife dataset (b) Genome dataset.

6. Conclusions

In this paper, we investigate the problem of similarity search under edit distance.
The edit distance computation is a quadratic time operation, which in its canonical imple-
mentation renders a chain of computational dependencies that makes the parallelization
of the algorithm difficult. We argue that the parallel similarity search under edit distance
is well suited to be executed effectively in both shared-memory and distributed-memory
environments. It performs even better in hybrid environments with a setting of multicore
CPUs and GPUs. We introduce three parallel algorithms: namely, inter-task parallelism,
intra-task parallelism, and a combination of both approaches. We conducted an extensive

Information 2022, 13, 452 18 of 20

set of experiments on real datasets to prove the performance of our algorithms. The ex-
perimental results have revealed that the hybrid parallelism approach which is based on
distributed as well as shared memory architecture outperforms the other two approaches.
Our hybrid approach consistently performs better due to its intra-task parallelism and
ability to efficiently utilize on-chip shared memory that significantly reduces the commu-
nication time. The hybrid approach achieves a speedup of 18 and 13 over inter-task and
intra-task parallelism approaches, respectively. The hybrid approach is scalable and can be
further speeded up on parallel hardware such as multi-core CPUs and GPGPUs. Moreover,
a simple yet effective data distribution scheme has been introduced to balance the workload
across all the machines in the cluster. The experimental results have demonstrated that the
new data distribution scheme achieved superior performance over its counterpart.

Author Contributions: Conceptualization, M.K. and M.M.Y.; methodology, M.K.; software, M.K.;
validation, M.K. and M.U.S.; writing; M.K.; supervision, M.M.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The link to Genome data set is https://www.ncbi.nlm.nih.gov/ and
GeoLife GPS Trajectories is https://www.microsoft.com/en-us/download/details.aspx?id=52367&
amp;from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fdownloads%2Fb16d359d-d164-4
69e-9fd4-daa38f2b2e13%2F.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Prasetya, D.D.; Wibawa, A.P.; Hirashima, T. The performance of text similarity algorithms. Int. J. Adv. Intell. Inform. 2018, 4, 63–69.

[CrossRef]
2. Levenshtein, V. Binary codes capable of correcting spurious insertions and deletion of ones. Probl. Inf. Transm. 1965, 1, 8–17.
3. Wagner, R.A.; Fischer, M.J. The string-to-string correction problem. J. ACM (JACM) 1974, 21, 168–173. [CrossRef]
4. Damerau, F.J. A technique for computer detection and correction of spelling errors. Commun. ACM 1964, 7, 171–176. [CrossRef]
5. Jaro, M.A. Advances in record-linkage methodology as applied to matching the 1985 census of Tampa, Florida. J. Am. Stat. Assoc.

1989, 84, 414–420. [CrossRef]
6. Winkler, W.E. String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage; Bureau of the

Censu: Washington, DC, USA, 1990.
7. Smith, T.F.; Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol. 1981, 147, 195–197. [CrossRef]
8. Needleman, S.B.; Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two

proteins. J. Mol. Biol. 1970, 48, 443–453. [CrossRef]
9. Hirschberg, D.S. A linear space algorithm for computing maximal common subsequences. Commun. ACM 1975, 18, 341–343.

[CrossRef]
10. Kondrak, G. N-gram similarity and distance. In Proceedings of the International Symposium on String Processing and

Information Retrieval, Buenos Aires, Argentina, 2–4 November 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 115–126.
[CrossRef]

11. Khalid, M. Bulk Data Processing of Parallel String Similarity Measures. Ph.D. Dissertation, University of the Punjab, Lahore,
Punjab, Pakistan, 2021.

12. Minghe, Y.; Guoliang, L.D.D.; Feng, J. String similarity search and join: A survey. Front. Comput. Sci. 2016, 10, 399–417. [CrossRef]
13. Nunes, L.S.; Bordim, J.L.; Nakano, K.; Ito, Y. A fast approximate string matching algorithm on GPU. In Proceedings of the 2015

Third international symposium on computing and networking (CANDAR), Sapporo, Japan, 8–11 December 2015; pp. 188–192.
14. Nunes, L.S.; Bordim, J.L.; Nakano, K.; Ito, Y. A memory-access-efficient implementation of the approximate string matching

algorithm on GPU. In Proceedings of the 2016 Fourth International Symposium on Computing and Networking (CANDAR),
Hiroshima, Japan, 22–25 November 2016; pp. 483–489.

15. Chen, X.; Wang, C.; Tang, S.; Yu, C.; Zou, Q. CMSA: A heterogeneous CPU/GPU computing system for multiple similar
RNA/DNA sequence alignment. BMC Bioinform. 2017, 18, 315. [CrossRef]

16. Jiang, Y.; Deng, D.; Wang, J.; Li, G.; Feng, J. Efficient parallel partition-based algorithms for similarity search and join with edit
distance constraints. In Proceedings of the Joint EDBT/ICDT 2013 Workshops, Genoa, Italy, 18–22 March 2013; pp. 341–348.
[CrossRef]

17. Zhou, J.; Guo, Q.; Jagadish, H.; Krcal, L.; Liu, S.; Luan, W.; Tung, A.K.; Yang, Y.; Zheng, Y. A generic inverted index framework for
similarity search on the gpu. In Proceedings of the 2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris,
France, 16–19 April 2018; pp. 893–904. [CrossRef]

https://www.ncbi.nlm.nih.gov/
https://www.microsoft.com/en-us/download/details.aspx?id=52367&from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fdownloads%2Fb16d359d-d164-469e-9fd4-daa38f2b2e13%2F
https://www.microsoft.com/en-us/download/details.aspx?id=52367&from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fdownloads%2Fb16d359d-d164-469e-9fd4-daa38f2b2e13%2F
https://www.microsoft.com/en-us/download/details.aspx?id=52367&from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fdownloads%2Fb16d359d-d164-469e-9fd4-daa38f2b2e13%2F
http://doi.org/10.26555/ijain.v4i1.152
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1145/363958.363994
http://dx.doi.org/10.1080/01621459.1989.10478785
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1145/360825.360861
http://dx.doi.org/10.1007/11575832_13
http://dx.doi.org/10.1007/s11704-015-5900-5
http://dx.doi.org/10.1186/s12859-017-1725-6
http://dx.doi.org/10.1145/2457317.2457382
http://dx.doi.org/10.1109/ICDE.2018.00085

Information 2022, 13, 452 19 of 20

18. Ho, T.; Oh, S.R.; Kim, H. A parallel approximate string matching under Levenshtein distance on graphics processing units using
warp-shuffle operations. PLoS ONE 2017, 12, e0186251. [CrossRef]

19. Groth, T.; Groppe, S.; Koppehel, M.; Pionteck, T. Parallelizing Approximate Search on Adaptive Radix Trees. In Proceedings of
the SEBD, Villasimius, Sardinia, Italy, 21–24 June 2020.

20. Ji, S.; Li, G.; Li, C.; Feng, J. Efficient interactive fuzzy keyword search. In Proceedings of the 18th International Conference on
World Wide Web, Madrid, Spain, 20–24 April 2009; pp. 371–380.

21. Chaudhuri, S.; Kaushik, R. Extending autocompletion to tolerate errors. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, Providence , RI, USA, 29 June–2 July 2009; pp. 707–718.

22. Li, G.; Ji, S.; Li, C.; Feng, J. Efficient fuzzy full-text type-ahead search. VLDB J. 2011, 20, 617–640. [CrossRef]
23. Deng, D.; Li, G.; Feng, J.; Li, W.S. Top-k string similarity search with edit-distance constraints. In Proceedings of the 2013 IEEE

29th International Conference on Data Engineering (ICDE), Brisbane, QLD, Australia, 8–12 April 2013; pp. 925–936.
24. Lu, W.; Du, X.; Hadjieleftheriou, M.; Ooi, B.C. Efficiently Supporting Edit Distance Based String Similarity Search Using B+-Trees.

IEEE Trans. Knowl. Data Eng. 2014, 26, 2983–2996. [CrossRef]
25. Zhang, Z.; Hadjieleftheriou, M.; Ooi, B.C.; Srivastava, D. Bed-tree: An all-purpose index structure for string similarity search

based on edit distance. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, Indianapolis,
IN, USA, 6–10 June 2010; pp. 915–926.

26. Farivar, R.; Kharbanda, H.; Venkataraman, S.; Campbell, R.H. An algorithm for fast edit distance computation on GPUs. In
Proceedings of the 2012 Innovative Parallel Computing (InPar), San Jose, CA, USA, 13–14 May 2012; pp. 1–9. [CrossRef]

27. Wang, X.; Ding, X.; Tung, A.K.; Zhang, Z. Efficient and effective knn sequence search with approximate n-grams. Proc. VLDB
Endow. 2013, 7, 1–12. [CrossRef]

28. Chen, W.; Chen, J.; Zou, F.; Li, Y.F.; Lu, P.; Wang, Q.; Zhao, W. Vector and line quantization for billion-scale similarity search on
GPUs. Future Gener. Comput. Syst. 2019, 99, 295–307. [CrossRef]

29. Johnson, J.; Douze, M.; Jégou, H. Billion-scale similarity search with gpus. IEEE Trans. Big Data 2019, 7, 535–547. [CrossRef]
30. Li, C.; Wang, B.; Yang, X. VGRAM: Improving Performance of Approximate Queries on String Collections Using Variable-Length

Grams. In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB), Vienna, Austria, 23–27 September
2007; Volume 7, pp. 303–314.

31. Kim, M.S.; Whang, K.Y.; Lee, J.G.; Lee, M.J. n-gram/2L: A space and time efficient two-level n-gram inverted index structure. In
Proceedings of the 31st International Conference on Very Large Data Bases (VLDB), Trondheim, Norway, 30 August–2 September
2005; pp. 325–336.

32. Behm, A.; Ji, S.; Li, C.; Lu, J. Space-constrained gram-based indexing for efficient approximate string search. In Proceedings of
the 2009 IEEE 25th International Conference on Data Engineering, Shanghai, China, 29 March–2 April 2009; pp. 604–615.

33. Qin, J.; Wang, W.; Lu, Y.; Xiao, C.; Lin, X. Efficient exact edit similarity query processing with the asymmetric signature scheme.
In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, Athens, Greece, 12–16 June 2011;
pp. 1033–1044.

34. Wang, J.; Li, G.; Feng, J. Can we beat the prefix filtering? An adaptive framework for similarity join and search. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data, Scottsdale, AZ, USA, 20–24 May 2012; pp. 85–96.

35. Yang, X.; Wang, B.; Li, C. Cost-based variable-length-gram selection for string collections to support approximate queries
efficiently. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada,
9–12 June 2008; pp. 353–364.

36. Behm, A.; Li, C.; Carey, M.J. Answering approximate string queries on large data sets using external memory. In Proceedings of
the 2011 IEEE 27th International Conference on Data Engineering, Hannover, Germany, 11–16 April 2011; pp. 888–899.

37. Qin, J.; Xiao, C.; Hu, S.; Zhang, J.; Wang, W.; Ishikawa, Y.; Tsuda, K.; Sadakane, K. Efficient query autocompletion with edit
distance-based error tolerance. VLDB J. 2020, 29, 919–943. [CrossRef]

38. Zhang, H.; Zhang, Q. Minsearch: An efficient algorithm for similarity search under edit distance. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 6–10 July 2020; pp. 566–576.
[CrossRef]

39. Yang, Z.; Yu, J.; Kitsuregawa, M. Fast algorithms for top-k approximate string matching. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010.

40. Mishra, S.; Gandhi, T.; Arora, A.; Bhattacharya, A. Efficient edit distance based string similarity search using deletion neighbor-
hoods. In Proceedings of the Joint EDBT/ICDT 2013 Workshops, Genoa, Italy, 18–22 March 2013; pp. 375–383. [CrossRef]

41. Wang, J.; Li, G.; Deng, D.; Zhang, Y.; Feng, J. Two birds with one stone: An efficient hierarchical framework for top-k and
threshold-based string similarity search. In Proceedings of the 2015 IEEE 31st International Conference on Data Engineering,
Seoul, Korea, 13–17 April 2015; pp. 519–530.

42. McCauley, S. Approximate similarity search under edit distance using locality-sensitive hashing. arXiv 2019, arXiv:1907.01600.
43. Yu, M.; Wang, J.; Li, G.; Zhang, Y.; Deng, D.; Feng, J. A unified framework for string similarity search with edit-distance constraint.

VLDB J. 2017, 26, 249–274. [CrossRef]
44. Pranathi, P.; Karthikeyan, C.; Charishma, D. String similarity search using edit distance and soundex algorithm. Int. J. Eng. Adv.

Technol. (IJEAT) 2019, 8, 2249–8958.

http://dx.doi.org/10.1371/journal.pone.0186251
http://dx.doi.org/10.1007/s00778-011-0218-x
http://dx.doi.org/10.1109/TKDE.2014.2309131
http://dx.doi.org/10.1109/InPar.2012.6339593
http://dx.doi.org/10.14778/2732219.2732220
http://dx.doi.org/10.1016/j.future.2019.04.033
http://dx.doi.org/10.1109/TBDATA.2019.2921572
http://dx.doi.org/10.1007/s00778-019-00595-4
http://dx.doi.org/10.1145/3394486.3403099
http://dx.doi.org/10.1145/2457317.2457387
http://dx.doi.org/10.1007/s00778-016-0449-y

Information 2022, 13, 452 20 of 20

45. Deng, D.; Li, G.; Feng, J. A pivotal prefix based filtering algorithm for string similarity search. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, Snowbird, UT, USA, 22–27 June 2014; pp. 673–684.

46. Matsumoto, T.; Yiu, M.L. Accelerating exact similarity search on cpu-gpu systems. In Proceedings of the 2015 IEEE International
Conference on Data Mining, Atlantic City, NJ, USA, 14–17 November 2015; pp. 320–329. [CrossRef]

47. Shehab, M.A.; Ghadawi, A.A.; Alawneh, L.; Al-Ayyoub, M.; Jararweh, Y. A hybrid CPU-GPU implementation to accelerate
multiple pairwise protein sequence alignment. In Proceedings of the 2017 8th International Conference on Information and
Communication Systems (ICICS), Irbid, Jordan, 4–6 April 2017; pp. 12–17.

48. Edmiston, E.W.; Core, N.G.; Saltz, J.H.; Smith, R.M. Parallel processing of biological sequence comparison algorithms. Int. J.
Parallel Program. 1988, 17, 259–275. [CrossRef]

49. Zhong, C.; Chen, G.L. Parallel algorithms for approximate string matching on PRAM and LARPBS. J. Softw. 2004, 15, 159–169.
50. Man, D.; Nakano, K.; Ito, Y. The approximate string matching on the hierarchical memory machine, with performance evaluation.

In Proceedings of the 2013 IEEE 7th International Symposium on Embedded Multicore Socs, Tokyo, Japan, 26–28 September 2013;
pp. 79–84.

51. Zhang, J.; Lan, H.; Chan, Y.; Shang, Y.; Schmidt, B.; Liu, W. BGSA: A bit-parallel global sequence alignment toolkit for multi-core
and many-core architectures. Bioinformatics 2019, 35, 2306–2308. [CrossRef] [PubMed]

52. Myers, G. A fast bit-vector algorithm for approximate string matching based on dynamic programming. J. ACM (JACM) 1999,
46, 395–415. [CrossRef]

53. Hyyrö, H. A bit-vector algorithm for computing Levenshtein and Damerau edit distances. Nord. J. Comput. 2003, 10, 29–39.
54. Xu, K.; Cui, W.; Hu, Y.; Guo, L. Bit-parallel multiple approximate string matching based on GPU. Procedia Comput. Sci. 2013,

17, 523–529. [CrossRef]
55. Lin, C.H.; Wang, G.H.; Huang, C.C. Hierarchical parallelism of bit-parallel algorithm for approximate string matching on GPUs.

In Proceedings of the 2014 IEEE Symposium on Computer Applications and Communications, Weihai, China, 26–27 July 2014;
pp. 76–81.

56. Sadiq, M.U.; Yousaf, M.M. Distributed Algorithm for Parallel Edit Distance Computation. Comput. Inform. 2020, 39, 757–779.
[CrossRef]

57. Sadiq, M.U.; Yousaf, M.M.; Aslam, L.; Aleem, M.; Sarwar, S.; Jaffry, S.W. NvPD: Novel parallel edit distance algorithm, correctness,
and performance evaluation. Clust. Comput. 2020, 23, 879–894. [CrossRef]

58. Yousaf, M.M.; Sadiq, M.A.; Aslam, L.; Ul Qounain, W.; Sarwar, S. A novel parallel algorithm for edit distance computation.
Mehran Univ. Res. J. Eng. Technol. 2018, 37, 223–232. [CrossRef]

59. The National Center for Biotechnology Information. 1988. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 20
March 2022).

60. Zheng, Y.; Zhang, L.; Xie, X.; Ma, W.Y. Mining Interesting Locations and Travel Sequences from GPS Trajectories. In Proceedings
of the Proceedings of the 18th International Conference on World Wide Web, New York, NY, USA, 20–24 April 2009; pp. 791–800.
[CrossRef]

61. Python Geo-hash Library. 2011. Available online: https://pypi.org/project/python-geohash/ (accessed on 22 March 2022).

http://dx.doi.org/10.1109/ICDM.2015.125
http://dx.doi.org/10.1007/BF02427852
http://dx.doi.org/10.1093/bioinformatics/bty930
http://www.ncbi.nlm.nih.gov/pubmed/30445566
http://dx.doi.org/10.1145/316542.316550
http://dx.doi.org/10.1016/j.procs.2013.05.067
http://dx.doi.org/10.31577/cai_2020_4_757
http://dx.doi.org/10.1007/s10586-019-02962-w
http://dx.doi.org/10.22581/muet1982.1801.20
https://www.ncbi.nlm.nih.gov/
http://dx.doi.org/10.1145/1526709.1526816
https://pypi.org/project/python-geohash/

	Introduction
	Related Work
	Preliminaries
	Similarity Search under Edit Distance
	Levenshtein Distance
	Computational Dependencies
	Redefining Computational Dependencies
	Communication Cost
	Speedup

	Parallel Approaches for Similarity Search under Edit Distance
	Inter-Task Parallelism
	Intra-Task Parallelism Approach
	Hybrid Approach

	Experiments and Evaluation
	Evaluating Execution Time
	Evaluating Load Balancing
	Evaluating Scalability

	Conclusions
	References

