
Why Worry About Energy?
nergy efficiency has become a major concern in
large data centers. In the United States, data cen-
ters consumed about 1.5 percent of the total gener-
ated electricity in 2006, an amount that is equivalent
to the annual energy consumption of 5.8 million

households [1]. In U.S. dollars, this translates into power costs
of 4.5 billion per year. Data center owners, as a result, are
eager now more than ever to save energy in any way they can
in order to reduce their operating costs.

There are also increasing environmental concerns that also
call for the reduction of the amounts of energy consumed by
these large data centers, especially after reporting that infor-
mation and communication technology (ICT) itself con-
tributes about 2 percent to global carbon emissions [2]. These
energy costs and carbon footprints are expected to increase
rapidly in the future as data centers are anticipated to grow
significantly both in size and in numbers due to the increasing
popularity of their offered services. All of these factors have
alerted industry, academia, and government agencies to the
importance of developing and implementing effective solu-
tions and techniques that can reduce energy consumption in
data centers.

Cloud data centers are examples of such large data centers
whose offered services are gaining in popularity, especially
with the recently witnessed increasing reliance of mobile

devices on cloud services [3, 4]. Thus, our focus in this article
is on energy consumption efficiency in cloud data centers. We
start the article by introducing the cloud paradigm. We then
explain the new challenges and opportunities that arise when
trying to save energy in cloud centers. We then describe the
most popular techniques and solutions that can be adopted by
cloud data centers to save energy. Finally, we provide some
conclusions and directions for future work.

The Cloud Paradigm
In the cloud paradigm, a cloud provider company owns a
cloud center that consists of a large number of servers, also
called physical machines (PMs). These PMs are grouped into
multiple management units called clusters, where each cluster
manages and controls a large number of PMs, typically in the
order of thousands. A cluster can be homogeneous, meaning
that all of its managed PMs are identical, or it can be hetero-
geneous, meaning that it manages PMs with different resource
capacities and capabilities.

Cloud providers offer these computing resources as a ser-
vice for their clients and charge them based on their usage in
a pay-as-you-go fashion. Cloud clients submit requests to the
cloud provider, specifying the amount of resources they need
to perform certain tasks. Upon receiving a client request, the
cloud provider scheduler creates a virtual machine (VM), allo-
cates the requested resources to it, chooses one of the clusters
to host the VM, and assigns the VM to one of the PMs within
that cluster. Client requests are thus also referred to as VM
requests. After this allocation process takes place, the client
can then use its allocated resources to perform its tasks.
Throughout the VM lifetime, the cloud provider is expected,
as well as committed, to guarantee and ensure a certain level
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of quality of service to the client. The allocated resources are
released only after the client’s task completes.

New Challenges, New Opportunities
Energy efficiency has been a hot topic even before the exis-
tence of the cloud paradigm where the focus was on saving
energy in laptops and mobile devices in order to extend their
battery lifetimes [5–7]. Many energy saving techniques that
were initially designed for this purpose were also adopted by
the cloud servers in order to save energy. Dynamic voltage
and frequency scaling and power gating are examples of such
techniques. What is different in cloud centers is that we now
have a huge number of servers that need to be managed effi-
ciently. What makes this further challenging is the fact that
cloud centers need to support on-demand, dynamic resource
provisioning, where clients can, at any time, submit VM
requests with various amounts of resources. It is this dynamic
provisioning nature of computing resources that makes the
cloud computing concept a great one. However, such flexibili-
ty in resource provisioning gives rise to several new challenges
in resource management, task scheduling, and energy con-
sumption, just to name a few. Furthermore, the fact that
cloud providers are committed to provide and ensure a cer-
tain quality of service to their clients requires extreme pru-
dence when applying energy saving techniques, as they may
degrade the quality of the offered service, thereby possibly
violating service level agreements (SLAs) between the clients
and the cloud provider.

The good news after mentioning these challenges is that
the adoption of virtualization technology by the cloud
paradigm brings many new opportunities for saving energy
that are not present in non-virtualized environments, as we
will see in this article. Furthermore, the fact that cloud clus-
ters are distributed across different geographic locations cre-
ates other resource management capabilities that can result in
further energy savings if exploited properly and effectively.

Energy Conservation Techniques
In this section we present the most popular power manage-
ment techniques for cloud centers by explaining the basic
ideas behind these techniques, the challenges that these tech-
niques face, and how these challenges can be addressed. We
limit our focus to the techniques that manage entire cloud
centers and that rely on virtualization capabilities to do so
rather than on those designed for saving energy in a single
server, as the latter techniques are very general and are not
specific to cloud centers. Readers who are interested in power
management techniques at the single server level may refer to [8]
for more details.

Experiments conducted on real traces obtained from a
Google cluster are also included in this section to further
illustrate the discussed techniques. Some of these experiments
are based on our prior work [9, 10], and others were conduct-
ed by us for the sake of supporting the explained techniques.
As for the Google traces, they were publicly released in
November 2011 and consist of traces collected from a cluster
that contains more than 12,000 PMs. The cluster is heteroge-
neous, as the PMs have different resource capacities. The
traces include all VM requests received by the cluster over a
29-day period. For each request, the traces include the
amount of CPU and memory resources requested by the
client, as well as a timestamp indicating the request’s submis-
sion and release times. Since the size of the traces is huge, we
limit our analysis to chunks of these traces. Further details on
these traces can be found in [11].

The energy-efficient techniques for managing cloud centers
that we discuss in this article are divided into the following
categories: workload prediction, VM placement and workload
consolidation, and resource overcommitment.

Workload Prediction
One main reason why cloud center energy consumption is
very high is because servers that are ON but idle do consume
significant amounts of energy, even when they are doing noth-
ing. In fact, according to a Google study [12], the power con-
sumed by an idle server can be as high as 50 percent of the
server’s peak power. To save power, it is therefore important
to switch servers to lower power states (such as sleep state)
when they are not in use. However, a simple power manage-
ment scheme that turns a PM to sleep once it becomes idle
and switches a new PM ON whenever it is needed cannot be
effective because switching a PM from one power state to
another incurs high energy and delay overheads. As a result,
the amount of energy consumed due to switching an idle PM
back ON when needed can be much greater than the amount
of energy saved by having the PM stay in an idle state (as
opposed to keeping it ON) while not needed. Of course this
depends on the duration during which the PM is kept idle
before it is switched back ON again. That is, if the PM will
not be needed for a long time, then the energy to be saved by
switching it off can be higher than that to be consumed to
switch the PM back ON when needed. In addition, clients will
experience some undesired delay waiting for idle PMs to be
turned ON before their requested resources can be allocated.

The above facts call for prediction techniques that can be
used to estimate future cloud workloads so as to appropriately
decide whether and when PMs need to be put to sleep and
when they need to be awakened to accommodate new VM
requests. However, predicting cloud workloads can be very
challenging due to the diversity as well as the sporadic arrivals
of client requests, each coming at a different time and request-
ing different amounts of various resources (CPU, memory,
bandwidth, etc.). The fact that there are infinite possibilities
for the combinations of the requested amounts of resources
associated with these requests requires classifying requests
into multiple categories, based on their resource demands.
For each category, a separate predictor is then needed to esti-
mate the number of requests of that category, which allows to
estimate the number of PMs that are to be needed. Using
these predictions, efficient power management decisions can
be made, where an idle PM is switched to sleep only if it is
predicted that it will not be needed for a period long enough
to compensate the overhead to be incurred due to switching it
back ON later when needed.

Classifying requests into multiple categories can be done
via clustering techniques. Figure 1 shows the categories
obtained from applying clustering techniques on a chunk of
observed traces from the Google data. These four categories
capture the resource demands of all requests submitted to the
Google cluster. Each point in Fig. 1 represents an observed
request, and the two dimensional coordinates correspond to
the requested amounts of CPU and memory resources. Each
request is mapped into one and only one category and a dif-
ferent color/shape are used to differentiate the different cate-
gories. Category 1 represents VM requests with small amounts
of CPU and small amounts of memory; category 2 represents
VM requests with medium amounts of CPU and small
amounts of memory; category 3 represents VM requests with
large amounts of memory (and any amounts of requested
CPU). Category 4 represents VM requests with large amounts
of CPU (and any amounts of requested memory). The centers
for these categories are marked by “x.”
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After clustering is done, the number of requests to be
received in each category is predicted, and each predicted
request is assumed to have demanded resource amounts equal
to those corresponding to the category center it belongs to.
Recall that these predictions can be a little off target, leading
to an under-estimation or over-estimation of the number of
requests. Under-estimating the number of future requests
results in extra delays when allocating cloud resources to
clients due to the need for waking up machines upon arrival
of any unpredicted request(s). In order to reduce the occur-
rences of such cases, a safety margin can be added to the
number of predicted requests to accommodate such varia-
tions. The cost of this safety margin is that some PMs will
need to be kept idle even though they may or may not be
needed. We propose to use a dynamic approach for selecting
the appropriate safety margin value, where the value depends
on the accuracy of predictors: it increases when the predic-
tions deviate much from the actual number of requests and
decreases otherwise. Figure 2 shows both the actual and the
predicted (with and without safety margin) requests of the
third category that were received at the Google cluster.
Observe that the predictions with safety margin form an enve-
lope above the actual number of requests, and the more accu-
rate the predictions, the tighter the envelop is.

The question that arises now is how much energy can one
save by applying such prediction-based power management?
To answer this question, we measure and plot in Fig. 3 the
amount of energy saved when using the prediction-based tech-
nique when compared to the case when no power manage-
ment is employed. No power management means that the
cluster leaves all PMs ON as it does not know how many PMs
will be needed in the future. For the sake of comparison, we
also plot in the same figure the amount of energy saved when
optimal power management is employed, which corresponds
to the case when predictors know the exact number of future
VM requests, as well as the exact amounts of CPU and mem-
ory associated with each request (i.e. perfect prediction). This
represents the best-case scenario and serves here as an upper
bound. The figure shows that prediction-based power manage-
ment achieves great energy savings, and that the amount of
saved energy is very close to the optimal amount. The gap
between the prediction-based power management and the
optimal one is due to prediction errors and to the redundant
PMs that are left ON as a safety margin.

It is worth mentioning that the energy savings of predic-
tion-based power management plotted in Fig. 3 vary depend-
ing on the workload demands. These savings are high under
light workloads as many redundant PMs will be switched to
sleep, thereby increasing the energy savings. They decrease as
the workload increases, since the higher the workload, the
greater the number of PMs that are predicted to be kept ON,
and hence, the lesser the energy savings the prediction-based

approach makes over the no-power management approach,
that is, when compared to when all PMs are kept ON.

VM Placement and Workload Consolidation
Cloud centers are typically made up of multiple clusters dis-
tributed in different geographic locations. When a cloud
provider receives a VM request, its scheduler has to first
decide which cluster should host the submitted request. The
geo-diversity of the clusters’ locations can be exploited to
reduce the center’s electricity bills by assigning submitted
requests to clusters with the cheapest power prices. Since
electricity prices exhibit temporal variations, developing good
power price prediction techniques is needed and can be very
beneficial to make efficient cluster selections. Clusters’
sources of energy can also be considered during this selection
process where a request can be assigned to the cluster with
the highest reliance on green sources of power in order to
reduce carbon emissions.

After a cluster is selected, the next question that arises is
which PM within the cluster should be chosen to host the sub-
mitted request? One of the great advantages that virtualiza-
tion technology has is that it enables placing multiple requests,
possibly coming from different clients, on the same PM, mak-
ing it possible to consolidate workloads on fewer servers,
resulting in saving energy by turning to sleep as many servers
as possible. The problem of deciding which PMs the submit-
ted VM requests should be assigned to such that the number
of ON PMs is minimized is referred to as the VM consolida-
tion problem.

The VM consolidation problem is treated as the classical
online bin packing (BP) optimization problem, which views
VMs as objects and PMs as bins, and where the objective is to
pack these objects in as few bins as possible. The objects
(VMs) have different sizes (resource demands) and the bins
(PMs) have different capacities (resource capacities). The
problem here is an “online” problem because VM requests
arrive in real time, and must be assigned to PMs as they
arrive. The online BP problem is known to be NP-hard [13],
and thus approximation heuristics, such as First Fit, Next Fit,
and Best Fit, have been proposed instead to make VM-PM
placement decisions. These heuristics tend to turn a new PM
ON to host a submitted VM request only when the request
cannot fit into any already ON PMs. However, they differ in
how they select the PM (to host the submitted request)
among the multiple ON PMs that fit the submitted request.
The Best Fit heuristic, for example, chooses the ON PM with
the least free space (least slack) that can fit the submitted
request. The intuition here is that placing requests on the PM
with the least slack results in leaving other ON PMs with large
slack for supporting future requests with larger sizes.

Another technique, also pertaining to virtualization, that
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Figure 1. The resulting four categories for Google traces.
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turns out to be very useful for VM consolidation is VM
migration, where already assigned VMs can be migrated
(moved) from one PM to another. VM migration enables new
VM-PM mappings, which can be used to concentrate the
sparse workload (caused by the release of some VMs) on a
smaller subset of PMs, thereby allowing the rest to be turned
to sleep to save energy. One key problem with this technique
is that VM migration incurs energy overhead [14], and thus
should be performed only when the performance gains due to
migration outweigh the overhead to be incurred when per-
forming such a migration.

Rather than resorting to new VM-PM mappings to address
workload sparsity, another potential solution would be to con-
sider VMs’ release times when making PM placement deci-
sions. The idea here is to place VMs with similar release
times together on the same PM, allowing PMs hosting VMs
with short lifetimes to be turned to sleep quickly. Of course
here it is assumed that the completion/release times of VM
requests are known when VMs are submitted. This could be
specified directly by the client or could be predicted based on
the type of task the VM will be performing and/or based on
the previous behavior of the client.

Figure 4 shows the number of PMs needed to be ON to
support all VM requests that were submitted to the Google
cluster when different heuristics are used to make VM-PM
placement decisions. The Random heuristic places each sub-
mitted request in any ON PM that can fit the request, where-
as the Best Fit heuristic places the submitted request on the
ON PM with the least slack. The Release-Time Aware heuris-
tic, on the other hand, accounts for the release time of VMs
when deciding where to place VMs. The results in Fig. 4
clearly show that the PM selection strategy has a significant
impact on the number of PMs in the cluster that need to be
kept active/ON. The Random heuristic uses the largest num-
ber of PMs, as it encounters many cases where the submitted
requests were too large to fit any already ON PMs, and thus
forcing a new PM to be switched ON, whereas by selecting
the PM with the least slack, the BF heuristic is able to pack
the workload more tightly, thus reducing the number of PMs
that are needed to be active. Knowing the time at which the
requests are to be released gives the Release-Time Aware
heuristic an advantage by allowing it to place short-lived VMs
on the same PMs so that they can be turned to sleep early to
save energy. The corresponding energy costs associated with
running the Google cluster throughout the 30-hour period are
also reported in Fig. 5, where the costs are normalized with
respect to the Random heuristic costs. The BF and the
Release-Time Aware heuristics save, respectively, approxi-
mately 20 percent and 30 percent of the total costs when com-
pared to the Random heuristic.

It is worth mentioning that the Release-Time Aware heuris-
tic is an enhanced version of the Best Fit heuristic in which
the time dimension is considered and the release time of VMs

is taken into account in order to make more efficient place-
ment decisions. When the release times of VMs are not
known ahead of time, the Release-Time Aware heuristic
drops the time dimension and thus behaves similarly to the
Best Fit heuristic; that is, it makes placement decisions similar
to those made by the Best Fit heuristic.

Resource Overcommitment
We have discussed so far the case where the cluster scheduler
allocates, for each created VM, the exact amount of resources
that is requested by the client, and locks these allocated
resources for the VM during its entire lifetime (i.e. reserved
resources are released only when the VM completes). A key
question that arises now, which is the main motivation behind
using the technique to be discussed in this section as a way of
saving energy, is: what is the amount/percentage of these
reserved resources that is actually being utilized? In order to
answer this question, using real Google data, we measure and
show in Fig. 6 the percentage of the utilized (CPU and mem-
ory) resources allocated by a Google cluster to its VM
requests during one day. Observe that only about 35 percent
of the requested CPU resources and 55 percent of the request-
ed memory resources are actually utilized.

Our measurement study indicates that cloud resources tend
to be overly reserved, leading to substantial CPU and memory
resource waste. In other words, many PMs are turned ON, but
utilized only partially, which in turn translates into substantial
energy consumption. Two reasons, among others, are behind
such a resource over-reservation tendency:
• Clients usually do not know the exact amount of resources

their applications would need. Thus, they tend to reserve
more resources than needed in order to guarantee safe exe-
cution of their applications.

• The utilization of VM resources, by nature of some of the
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Figure 3. Energy savings.
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applications hosted on these VMs, may vary over time, and
may rarely be equal to its peak. For example, a VM hosting
a web server would possibly be utilizing its requested com-
puting resources fully only during short periods of the day,
while during the rest of the day, the reserved resources are
greatly under-utilized. 
Resource overcommitment [15] is a technique that has

been adopted as a way to address the above-mentioned
resource under-utilization issues. It essentially consists of allo-
cating VM resources to PMs in excess of their actual capaci-
ties, expecting that these actual capacities will not be exceeded
since VMs are not likely to utilize their reserved resources
fully. Overcommitment has great potential for increasing over-
all PM resource utilization, resulting thus in making great
energy savings as VMs are now hosted on a smaller number
of PMs, which allows more PMs to be turned into lower
power states.

One major problem that comes with overcommitment is
PM overload, where an overload occurs when the aggregate
amount of resources requested by the scheduled VMs exceeds
the hosting PM capacity. When an overload occurs, some or
all of the VMs running on the overloaded PM will witness
performance degradation, and some VMs may even crash,
possibly leading to the violation of SLAs between the cloud
and its clients. The good news is that with virtualization tech-
nology, these overloads can be avoided or at least handled. It
does so by migrating VMs to under-utilized or idle PMs when-
ever a PM experiences or is about to experience an overload.

In essence, there are three key questions that need to be
answered when developing resource overcommitment tech-
niques that can be used to save energy in cloud centers:
• What is the overcommitment level that the cloud should

support? What is an acceptable resource overcommitment
ratio, and how can such a ratio be determined?

• When should VM migrations be triggered to reduce/avoid
the performance degradation consequences that may result
from PM overloading?

• Which VMs should be migrated when VM migration deci-
sions are made, and which PMs should these migrated VMs
migrate to?
One potential approach that can be used to address the

first question is prediction. That is, one can predict future
resource utilizations of scheduled VMs, and use these predic-
tions to determine the overcommitment level that the cloud
should support. As for addressing the second question, one
can also develop suitable prediction techniques that can be
used to track and monitor PM loads to predict any possible
overload incidents, and use these predictions to trigger VM
migrations before overloads can actually occur. It can be trig-
gered when, for example, the aggregate predicted demands
for the VMs hosted on a specific PM exceeds the PM’s capacity.

The third question can be addressed by simply migrating as
few VMs as possible, thus reducing energy and delay over-
heads that can be incurred by migration. To avoid new PM
overloads, one can, for example, select the PM with the

largest free slack to be the destination of the migrated VMs.
These are just a few simple ideas, but of course a more thor-
ough investigation needs to be conducted in order to come up
with techniques that can address these challenges effectively.

In summary, resource overcommitment has great potential
to reduce cloud center energy consumption, but still requires the
investigation and development of sophisticated resource man-
agement techniques that enable it to do so. Not much research
has been done in this regard, and we are currently working on
developing techniques that address these challenges.

It is also worth mentioning that overcommitment would not
be possible without the capabilities brought by virtualization
technology, which enables real-time, dynamic/flexible alloca-
tion of resources to hosted VMs and eases the migration of
VMs across PMs in order to avoid PM overloads.

Conclusion
In this article we discussed the key challenges and opportuni-
ties for saving energy in cloud data centers. In summary, great
energy savings can be achieved by turning more servers into
lower power states and by increasing the utilization of the
already active ones. Three different, but complementary,
approaches to achieve these savings were discussed in the arti-
cle: workload prediction, VM placement and workload consol-
idation, and resource overcommitment. The key challenges
that these techniques face were also highlighted, and some
potential ways that exploit virtualization to address these chal-
lenges were also described with the aim of making cloud data
centers more energy efficient.
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Figure 6. One-day snapshot of aggregate utilization of the
reserved CPU and memory resources of the Google cluster.
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