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Abstract
Entity alignment (EA) aims to discover the equivalent entities in different knowledge graphs (KGs). It is a pivotal step for 
integrating KGs to increase knowledge coverage and quality. Recent years have witnessed a rapid increase of EA frame-
works. However, state-of-the-art solutions tend to rely on labeled data for model training. Additionally, they work under the 
closed-domain setting and cannot deal with entities that are unmatchable. To address these deficiencies, we offer an unsu-
pervised framework UEA that performs entity alignment in the open world. Specifically, we first mine useful features from 
the side information of KGs. Then, we devise an unmatchable entity prediction module to filter out unmatchable entities and 
produce preliminary alignment results. These preliminary results are regarded as the pseudo-labeled data and forwarded to 
the progressive learning framework to generate structural representations, which are integrated with the side information 
to provide a more comprehensive view for alignment. Finally, the progressive learning framework gradually improves the 
quality of structural embeddings and enhances the alignment performance. Furthermore, noticing that the pseudo-labeled 
data are of various qualities, we introduce the concept of confidence to measure the probability of an entity pair of being 
true and develop a confidence-based unsupervised EA framework CUEA. Our solutions do not require labeled data and can 
effectively filter out unmatchable entities. Comprehensive experimental evaluations validate the superiority of our proposals .
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1  Introduction

Knowledge graphs (KGs) have been applied to various 
fields such as natural language processing and information 
retrieval. To improve the quality of KGs, many efforts have 
been dedicated to the alignment of KGs, since different KGs 
usually contain complementary information. Particularly, 
entity alignment (EA), which aims to identify equivalent 
entities in different KGs, is a crucial step of KG alignment 
and has been intensively studied over the last few years 
[1–8]. We use Example 1 to illustrate this task.

Example 1  In Figure 1 are a partial English KG and a partial 
Spanish KG concerning the director Hirokazu Kore-
eda, where the dashed lines indicate known alignments 
(i.e., seeds). The task of EA aims to identify equivalent 
entity pairs between two KGs, e.g., (Shoplifters, Man-
biki Kazoku).

State-of-the-art EA solutions [9–12] assume that equiva-
lent entities usually possess similar neighboring information. 
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Consequently, they utilize KG embedding models, e.g., 
TransE [13], or graph neural network (GNN) models, e.g., 
GCN [14], to generate structural embeddings of entities 
in individual KGs. Then, these separated embeddings are 
projected into a unified embedding space by using the seed 
entity pairs as connections, so that the entities from differ-
ent KGs are directly comparable. Finally, to determine the 
alignment results, the majority of current works [3, 15–17] 
formalize the alignment process as a ranking problem; that 
is, for each entity in the source KG, they rank all the entities 
in the target KG according to some distance metric, and the 
closest entity is considered as the equivalent target entity.

Nevertheless, we still observe several issues from current 
EA works:

–	 Reliance on labeled data Most of the approaches rely 
on pre-aligned seed entity pairs to connect two KGs 
and use the unified KG structural embeddings to align 
entities. These labeled data, however, might not exist in 
real-life settings. For instance, in Example 1, the equiv-
alence between Hirokazu Koreeda in KG

EN
 and 

Hirokazu Koreeda in KG
ES

 might not be known in 
advance. In this case, state-of-the-art methods that solely 
rely on the structural information would fall short, as 
there are no seeds to connect these individual KGs.

–	 Closed-domain setting All of current EA solutions work 
under the closed-domain setting [18]; that is, they assume 
every entity in the source KG has an equivalent entity 
in the target KG. Nevertheless, in practical settings, 
there always exist unmatchable entities. For instance, in 
Example 1, for the source entity Ryo Kase, there is no 
equivalent entity in the target KG. Therefore, an ideal EA 
system should be capable of predicting the unmatchable 
entities.

In response to these issues, we put forward an unsuper-
vised EA solution UEA that is capable of addressing the 
unmatchable problem. Specifically, to mitigate the reli-
ance on labeled data, we mine useful features from the 
KG side information and use them to produce preliminary 

pseudo-labeled data. These preliminary seeds are for-
warded to our devised progressive learning framework to 
generate unified KG structural representations, which are 
integrated with the side information to provide a more 
comprehensive view for alignment. This framework also 
progressively augments the training data and improves the 
alignment results in a self-training fashion. Besides, to 
tackle the unmatchable issue, we design an unmatchable 
entity prediction module, which leverages thresholded bi-
directional nearest neighbor search (TBNNS) to filter out 
the unmatchable entities and exclude them from the align-
ment results. We embed the unmatchable entity prediction 
module into the progressive learning framework to control 
the pace of progressive learning by dynamically adjusting 
the thresholds in TBNNS. Nevertheless, we discover that 
there is still a notable issue with UEA:

–	 Ignorance of the quality of pseudo-labeled data. 
UEA treats the pseudo-labeled data generated in the 
progressive learning process equally. Nevertheless, 
these pseudo-labeled data are generated with different 
degrees of confidence. That is, the framework could 
have a higher degree of confidence for believing some 
pseudo-labeled entity pairs to be correct, while for the 
others such confidence could be relatively low.

As thus, we introduce the concept of confidence to meas-
ure the probability of an entity pair of being correct. We 
further incorporate such confidence scores into KG repre-
sentation learning with the aim of producing more accu-
rate structural embeddings. Through empirical studies, we 
demonstrate that the confidence-based framework, CUEA, 
has a more stable performance than UEA regardless of the 
quality of input side information, and is particularly useful 
when the side information is low-grade.

This article is an extended version of our previous 
work [19]. In this extension, we make the following 
improvement:

–	 We extend UEA to a confidence-based framework 
CUEA, where we put forward C-TBNNS to assign confi-
dence scores to aligned entity pairs and incorporate such 
probabilities into the KG representation learning process, 
so as to improve the quality of learned entity representa-
tions and also the alignment performance.

–	 We add more datasets for evaluation and conduct a more 
comprehensive analysis, which empirically validate that, 
compared with UEA, CUEA has a more consistent per-
formance and is more effective given low-quality side 
information.

Organization In Section 2, we formally define the task of 
EA and introduce related work. In Section 3, we introduce 

KGEN KGES
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[Nobody Knows]

[Kirin Kiki]

[Shoplifters]

[Nadie sabe]

[Kirin Kiki]

[Japón]

[Aruitemo 

aruitemo]

[Manbiki 

Kazoku]

[Ryo Kase]
[Hirokazu 

Koreeda]

Fig. 1   An example of EA



18	 X. Zhao et al.

1 3

the preliminaries. In Section 4, we detail unmatchable entity 
prediction and the confidence-based extension. In Sec-
tion 5, we introduce the progressive learning framework. In 
Section 6, we report the experimental results and conduct 
detailed analysis. In Section 7, we conclude this article.

2 � Task Definition and Related Work

In this section, we formally define the task of EA, and then 
introduce the related work.

2.1 � Task Definition

The inputs to EA are a source KG G1 and a target KG G2 . 
The task of EA is defined as finding the equivalent entities 
between the KGs, i.e., Ψ = {(u, v)|u ∈ E1, v ∈ E2, u ↔ v} , 
where E1 and E2 refer to the entity sets in G1 and G2 , respec-
tively, u ↔ v represents the source entity u and the target 
entity v are equivalent, i.e., u and v refer to the same real-
world object.

Most of current EA solutions assume that there exist a set 
of seed entity pairs Ψ

s
= {(u

s
, v

s
)|u

s
∈ E1, vs ∈ E2, us ↔ v

s
} . 

Nevertheless, in this work, we focus on unsupervised EA 
and do not assume the availability of such labeled data.

2.2 � Related Work

Entity alignment The majority of state-of-the-art methods 
are supervised or semi-supervised, which can be roughly 
divided into three categories, i.e., methods merely using 
the structural information, methods that utilize the iterative 
training strategy, and methods using information in addition 
to the structural information [20].

The approaches in the first category aim to mine useful 
structural signals for alignment, and devise structure learn-
ing models such as recurrent skipping networks [21] and 
multi-channel GNN [17], or exploit existing models such 
as TransE [3, 9, 22–24] and graph attention networks [3]. 
The embedding spaces of different KGs are connected by 
seed entity pairs. In accordance to the distance in the uni-
fied embedding space, the alignment results can hence be 
predicted.

Methods in the second category iteratively label likely 
EA pairs as the training set and gradually improve align-
ment results [15, 22–25]. A more detailed discussion about 
these methods and the difference from our framework is pro-
vided in Section 5. Methods in the third category incorporate 
the side information to offer a complementing view to the 
KG structure, including the attributes [10, 26–30], entity 
descriptions [16, 31], and entity names [12, 25, 32–35]. 

These methods devise various models to encode the side 
information and consider them as features parallel to the 
structural information. In comparison, the side information 
in this work has an additional role, i.e., generating pseudo-
labeled data for learning unified structural representations.

Unsupervised entity alignment A few methods have 
investigated the alignment without labeled data. Qu et al. 
[36] propose an unsupervised approach toward knowledge 
graph alignment with the adversarial training framework. 
Nevertheless, the experimental results are extremely poor. 
He et al. [37] utilize the shared attributes between hetero-
geneous KGs to generate aligned entity pairs, which are 
used to detect more equivalent attributes. They perform 
entity alignment and attribute alignment alternately, lead-
ing to more high-quality aligned entity pairs, which are 
used to train a relation embedding model. Finally, they 
combine the alignment results generated by attribute and 
relation triples using a bivariate regression model. The 
overall procedure of this work might seem similar to our 
proposed model. However, there are many notable differ-
ences; for instance, the KG embeddings in our work are 
updated progressively, which can lead to more accurate 
alignment results, and our model can deal with unmatch-
able entities. We empirically demonstrate the superiority 
of our model in Sect. 6.

We notice that there are some entity resolution (ER) 
approaches established in a setting similar to EA, repre-
sented by PARIS [38]. They adopt collective alignment 
algorithms such as similarity propagation so as to model 
the relations among entities. We include them in the exper-
imental study for the comprehensiveness of the article.

3 � Preliminaries

In this section, we first introduce the outline of our pro-
posal. Then, we elaborate the processing of side informa-
tion to produce preliminary alignment seeds.

3.1 � Model Outline

As shown in Fig. 2, given two KGs, CUEA first mines use-
ful features from the side information. These features are 
forwarded to the unmatchable entity prediction module to 
generate initial alignment results with confidence scores, 
which are regarded as pseudo-labeled data. Then, the 
progressive learning framework uses these pseudo seeds, 
along with the probability scores, to connect two KGs and 
learn unified entity structural embeddings. It further com-
bines the alignment signals from the side information and 
structural information to provide a more comprehensive 
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view for alignment. Finally, it progressively improves the 
quality of structural embeddings and augments the align-
ment results by iteratively updating the pseudo-labeled 
data with results from the previous round, which also leads 
to increasingly better alignment. Note that by assigning the 
confidence score of 1 to all entity pairs, CUEA turns into 
the UEA model [19].

3.2 � Side Information

There is abundant side information in KGs, such as the 
attributes, descriptions and classes. In this work, we use 
a particular form of the attributes—the entity name, as it 
exists in the majority of KGs. To make the most of the 
entity name information, inspired by [12], we exploit it 
from the semantic level and string-level and generate the 
textual distance matrix between entities in two KGs.

More specifically, we use the averaged word embed-
dings to represent the semantic meanings of entity names. 
Given the semantic embeddings of a source and a target 
entity, we obtain the semantic distance score by subtract-
ing their cosine similarity score from 1. We denote the 
semantic distance matrix between the entities in two KGs 
as �� , where rows represent source entities, columns 
denote target entities, and each element in the matrix 
denotes the distance score between a pair of source and 
target entities. As for the string-level feature, we adopt 
the Levenshtein distance [39] to measure the difference 
between two sequences. We denote the string distance 
matrix as ��.

To obtain a more comprehensive view of alignment, 
we combine the two distance matrices and generate the 
textual distance matrix as �� = ��� + (1 − �)�� , where 
� is a hyper-parameter balancing the weights. Then, we 
forward the textual distance matrix �� to the unmatch-
able entity module to produce alignment results, which 
are considered as the pseudo-labeled data for training KG 

structural embeddings. The details are introduced in the next 
subsection.

Remark The goal of this step is to exploit available side 
information to generate useful features for alignment. Other 
types of side information, e.g., attributes and entity descrip-
tions, can also be leveraged. Besides, more advanced textual 
encoders, such as misspelling oblivious word embeddings 
[40] and convolutional embedding for edit distance [41], can 
be utilized. We will investigate them in the future.

4 � Unmatchable Entity Prediction

State-of-the-art EA solutions generate for each source entity 
a corresponding target entity and fail to consider the poten-
tial unmatchable issue. Nevertheless, as discussed in [20], 
in real-life settings, KGs contain entities that other KGs 
do not contain. For instance, when aligning YAGO 4 and 
IMDB, only 1% of entities in YAGO 4 are related to mov-
ies, while the other 99% of entities in YAGO 4 necessarily 
have no match in IMDB. These unmatchable entities would 
increase the difficulty of EA. Therefore, in this work, we 
devise an unmatchable entity prediction module to predict 
the unmatchable entities and filter them out from the align-
ment results.

4.1 � Thresholded Bi‑directional Nearest Neighbor 
Search

We put forward a novel strategy, i.e., thresholded bi-direc-
tional nearest neighbor search (TBNNS), to generate the 
alignment results, and the resulting unaligned entities are 
predicted to be unmatchable. Specifically, given a source 
entity u and a target entity v, if u and v are the nearest neigh-
bor of each other, and the distance between them is below 
a given threshold � , we consider (u, v) as an aligned entity 

Fig. 2   Outline of CUEA. 
Arrows in blue represent the 
progressive learning process. 
By setting the confidence to 
1, the UEA model [19] can be 
restored
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pair. Note that �(u, v) represents the element in the u-th row 
and v-th column of the distance matrix �.

The TBNNS strategy exerts strong constraints on align-
ment, since it requires that the matched entities should both 
prefer each other the most, and the distance between their 
embeddings should be below a certain value. Therefore, 
it can effectively predict unmatchable entities and prevent 
them from being aligned. Notably, the threshold � plays a 
significant role in this strategy. A larger threshold would 
lead to more matches, whereas it would also increase the 
risk of including erroneous matches or unmatchable enti-
ties. In contrast, a small threshold would only lead to a few 
aligned entity pairs, and almost all of them would be correct. 
This is further discussed and verified in Sect. 6.3. Therefore, 
our progressive learning framework dynamically adjusts the 
threshold value to produce more accurate alignment results 
(to be discussed in the next section).

4.2 � Confidence‑based TBNNS

Considering that the aligned entity pairs generated by 
TBNNS are of different qualities (i.e., some are true while 
some are not), we further put forward confidence-based 
TBNNS, C-TBNNS, to measure the confidence of an entity 
pair (of being true). Specifically, we define the confidence 
score Θ of an entity pair (u, v) as:

where Δ1 = �(u, v�) −�(u, v) denotes the gap between the 
distance scores of the top-2 closest entities (i.e., v and v′ ) 
to entity u, while Δ2 = �(v, u�) −�(v, u) denotes the gap 

(1)Θ(u, v) = �(u, v�) −�(u, v) +�(v, u�) −�(v, u),

between the distance scores of the top-2 closest entities (i.e., 
u and u′ ) to entity v. This is based on the intuition that, for an 
entity pair (u, v), if the distance between them is the smallest 
from both sides, and there are larger margins between the 
distances of the top-2 candidates, it would be more confident 
to consider them as a correct entity pair. We further restrict 
the confidence scores to a certain range:

where Θ(S) represents the confidence scores of the entity 
pairs in S . The core of Eq. (2) is the min-max normaliza-
tion, which converts the confidence scores to [0, 1]. We add 
a hyper-parameter � ∈ [0, 1] to further restrict the range of 
the confidence scores to [�, 1] . As thus, by setting � to 1, all 
entity pairs would have the same confidence score of 1, and 
C-TBNNS can be restored to TBNNS. Hence, C-TBNNS 
can be regarded as a general case of TBNNS, which intro-
duces the concept of confidence (probability) into the align-
ment result generation process.

5 � The Progressive Learning Framework

To exploit the rich structural patterns in KGs that could 
provide useful signals for alignment, we design a progres-
sive learning framework to combine structural and textual 
features for alignment and improve the quality of structural 
embeddings and alignment results in a self-training fashion.

5.1 � Knowledge Graph Representation Learning

As mentioned above, we forward the textual distance matrix 
�

� generated by using the side information to the unmatch-
able entity prediction module to produce the preliminary 
alignment results, which are considered as pseudo-labeled 
data for learning unified KG embeddings. Concretely, fol-
lowing [26], we adopt GCN1 to capture the neighboring 
information of entities. We leave out the implementation 
details since this is not the focus of this paper, which can 
be found in [26].

Alignment objective Since the representations of source 
and target KGs are learned individually, they need to be pro-
jected into a unified embedding space, where the entities 
across KGs could be compared directly. To this end, we use 
the semi-supervised loss function to enforce the distance 
between the embeddings of the entities in the labeled entity 

(2)Θ(S) = (1 − �)
Θ(S) −min{Θ(S)}

max{Θ(S)} −min{Θ(S)}
+ �

1  More advanced structural learning models, such as recurrent skip-
ping networks [21], could also be used here. We will explore these 
alternative options in the future.
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pairs to be small and meanwhile the negative samples (i.e., 
nonequivalent entity pairs) to be large. Formally:

where [⋅]+ = max{0, ⋅} , (u, v) is a labeled entity pair from the 
training data, and S�

(u,v)
 represents the set of negative entity 

pairs obtained by corrupting (u, v) using nearest neighbor 
sampling [3]. � and � represent the embeddings of source 
and target entities learned by GCN, respectively. d(⋅, ⋅) is 
the distance function that measures the distance between 
two embeddings. � is a hyper-parameter separating positive 
samples from negative ones.

Confidence-based objective Considering that the pseudo 
labeled entity pairs have different confidences of being 
true, we incorporate such probabilities into the alignment 
objective to learn more accurate structural embeddings:

where Θ(u, v) is the confidence score attached to each entity 
pair. As thus, the more confident entity pairs would play a 
more important role during the training process, while the 
less confident pseudo entity pairs would have a smaller effect 
on the training, such that the impact from the false posi-
tives could be mitigated. We will empirically demonstrate 
its effectiveness in Section 6.

Feature fusion Given the learned structural embed-
ding matrix � , we calculate the structural distance score 
between a source and a target entity by subtracting the 
cosine similarity score between their embeddings from 
1. We denote the resultant structural distance matrix as 
�

� . Then, we combine the textual and structural infor-
mation to generate more accurate signals for alignment: 
� = ��� + (1 − �)�� , where � is a hyper-parameter that 
balances the weights. The fused distance matrix � is used 
to generate more accurate matches.

5.2 � The Progressive Learning Algorithm

The amount of training data has an impact on the qual-
ity of the unified KG embeddings, which in turn affects 
the alignment performance [10, 42]. As thus, we devise 
an algorithm (Algorithm 2) to progressively augment the 
pseudo training data, so as to improve the quality of KG 
embeddings and enhance the alignment performance. The 
algorithm starts with learning unified structural embed-
dings and generating the fused distance matrix � by 
using the preliminary pseudo-labeled data S0 (line 1-2). 
Then, the fused distance matrix is used to produce the 

(3)L =
∑

(u,v)∈S

∑

(u�,v�)∈S�
(u,v)

[d(�, �) + � − d(��, ��)]+,

(4)

L
c
=

∑

(u,v)∈S

∑

(u�,v�)∈S�
(u,v)

Θ(u, v) ∗ [d(�, �) + � − d(��, ��)]+,

new alignment results ΔS using C-TBNNS (line 4). These 
newly generated entity pairs ΔS are added to the align-
ment results, which are used for generating the fused dis-
tance matrix in the next round (line 6-7). The entities in 
S are removed from the entity sets (line 9-10). In order to 
progressively improve the quality of KG embeddings and 
detect more alignment results, we perform the aforemen-
tioned process recursively until the number of newly gen-
erated entity pairs is below a given threshold � . Finally, 
we consider the entity pairs in S as the final alignment 
results � .

Notably, in the learning process, once a pair of entities 
is considered as a match, the entities will be removed from 
the entity sets (line 9-10). This could gradually reduce the 
alignment search space and lower the difficulty for aligning 
the rest entities. Obviously, this strategy suffers from the 
error propagation issue, which, however, could be effectively 
mitigated by the progressive learning process that dynami-
cally adjusts the threshold. We will verify the effectiveness 
of this setting in Sect. 6.2.4.

5.3 � Dynamic Threshold Adjustment

It can be observed from Algorithm 2 that the matches gen-
erated by the unmatchable entity prediction module are 
not only part of the eventual alignment results, but also 
the pseudo training data for learning subsequent structural 
embeddings. Therefore, to enhance the overall alignment 
performance, the alignment results generated in each round 
should, ideally, have both large quantity and high quality. 
Unfortunately, these two goals cannot be achieved at the 
same time. This is because, as stated in Sect. 4, a larger 
threshold in TBNNS can generate more alignment results 
(large quantity), whereas some of them might be erroneous 
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(low quality). These wrongly aligned entity pairs can cause 
the error propagation problem and result in more errone-
ous matches in the following rounds. In contrast, a smaller 
threshold leads to fewer alignment results (small quantity), 
while almost all of them are correct (high quality).

To address this issue, we aim to balance between the 
quantity and the quality of the matches generated in each 
round. An intuitive idea is to set the threshold to a mod-
erate value. However, this fails to take into account the 
characteristics of the progressive learning process. That 
is, in the beginning, the quality of the matches should be 
prioritized, as these alignment results will have a long-
term impact on the subsequent rounds. In comparison, 
in the later stages where most of the entities have been 
aligned, the quantity is more important, as we need to 
include more possible matches that might not have a small 
distance score. Hence, we set the initial threshold �0 to a 
very small value so as to reduce potential errors. Then, in 
the following rounds, we gradually increase the threshold 
by � , so that more possible matches could be detected. We 
will empirically validate the superiority of this strategy 
over the fixed weight in Sect. 6.2.4.

Noteworthily, our proposed confidence-based frame-
work CUEA can further help mitigate the low-quality 
issue, as we calculate and assign a confidence score to each 
entity pair, where the wrongly-aligned entity pairs would 
presumably have lower confidence scores and thus exert 
smaller influence on the subsequent alignment process.

Remark As mentioned in the related work, there are 
some existing EA approaches that exploit the iterative 
learning (bootstrapping) strategy to improve EA perfor-
mance. Particularly, BootEA calculates for each source 
entity the alignment likelihood to every target entity, and 
includes those with likelihood above a given threshold 
in a maximum likelihood matching process under the 
1-to-1 mapping constraint, producing a solution contain-
ing EA pairs [23]. This strategy is also adopted by [15, 
24]. Zhu et al. use a threshold to select the entity pairs 
with very close distances as the pseudo-labeled data [22]. 

DAT employs a bi-directional margin-based constraint to 
select the confident EA pairs as labels [25]. Our progres-
sive learning strategy differs from these existing solutions 
in four aspects: (1) we exclude the entities in the confident 
EA pairs from the test sets; and (2) we use the dynamic 
threshold adjustment strategy to control the pace of learn-
ing process; and (3) our strategy can deal with unmatch-
able entities; and (4) we attach a confidence score to each 
selected entity pair, which can mitigate the negative influ-
ence of the false positives on the KG representation learn-
ing process as well as the alignment results. The superior-
ity of our strategy is validated in Sect. 6.

6 � Experiment

This section reports the experiment results with in-depth 
analysis. The source code is available at https://​github.​com/​
Dexte​rZeng/​UEA.

6.1 � Experiment Settings

In this subsection, we first introduce the datasets, and then 
we detail the parameter settings. Next, we introduce the eval-
uation metrics and the baseline models used for comparison.

6.1.1 � Datasets

Following existing works, we adopt the DBP15K dataset 
[10] for evaluation. This dataset consists of three multilin-
gual KG pairs extracted from DBpedia. Each KG pair con-
tains 15 thousand inter-language links as gold standards. The 
statistics can be found in Table 1. We note that state-of-the-
art studies merely consider the labeled entities and divide 
them into training and testing sets. Nevertheless, as shown in 
Table 1, there exist unlabeled entities, e.g., 4,388 and 4,572 
entities in the Chinese and English KG of ������

��−�� , 
respectively. In this connection, we adapt the dataset by 
including the unmatchable entities. Specifically, for each KG 

Table 1   The statistics of the 
evaluation benchmarks

Dataset KG pairs #Triples #Entities #Labeled Ents #Relations #Test set

������
��−�� DBpedia(Chinese) 70,414 19,388 15,000 1,701 14,888

DBpedia(English) 95,142 19,572 15,000 1,323 10,500
������

��−�� DBpedia(Japanese) 77,214 19,814 15,000 1,299 15,314
DBpedia(English) 93,484 19,780 15,000 1,153 10,500

������
��−�� DBpedia(French) 105,998 19,661 15,000 903 15,161

DBpedia(English) 115,722 19,993 15,000 1,208 10,500
�����

��−�� DBpedia(English) 36,508 15,000 15,000 221 10,500
DBpedia(French) 33,532 15,000 15,000 177 10,500

�����
��−�� DBpedia(English) 38,363 15,000 15,000 222 10,500

DBpedia(German) 37,377 15,000 15,000 120 10,500

https://github.com/DexterZeng/UEA
https://github.com/DexterZeng/UEA
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pair, we keep 30% of the labeled entity pairs as the training 
set (for training the supervised or semi-supervised methods). 
Then, to construct the test set, we include the rest of the 
entities in the first KG and the rest of the labeled entities in 
the second KG, so that the unlabeled entities in the first KG 
become unmatchable. The statistics of the test sets can be 
found in the Test set column in Table 1.

In addition, we also use the SRPRS dataset for evalua-
tion. Concretely, we adopt the two cross-lingual datasets, 
�����

��−�� and �����
��−�� , which are extracted from the 

multilingual KGs of DBpedia. Note that we do not use the 
mono-lingual KG pairs in SRPRS since using the side infor-
mation can already achieve the ground-truth results [20]. 
There are no unmatchable entities in SRPRS.

6.1.2 � Parameter Settings

For the side information module, we utilize the fastText 
embeddings [43] as word embeddings. To deal with cross-
lingual KG pairs, following [33], we use Google translate 
to translate the entity names from one language to another, 
i.e., translating Chinese, Japanese and French to English. 
� is set to 0.5. For the structural information learning, 
we set � to 0.5. Following [26], we set � in the alignment 
objectives to 3 and adopt Manhattan distance as d(⋅, ⋅) . 
Regarding C-TBNNS, we set � to 0.4. For progressive 
learning, we set the initial threshold �0 to 0.05, the incre-
mental parameter � to 0.1, the termination threshold � to 
30. Note that if the threshold � is over 0.45, we reset it 
to 0.45. These hyper-parameters are default values since 
there is no extra validation set for hyper-parameter tuning. 
We will conduct the parameter analysis in the experiment.

6.1.3 � Evaluation Metrics

We use precision (P), recall (R), and F1 score as evalua-
tion metrics. The precision is computed as the number of 
correct matches divided by the number of matches found 
by a method. The recall is computed as the number of cor-
rect matches found by a method divided by the number of 
gold matches. The F1 score is the harmonic mean between 
precision and recall.

6.1.4 � Competitors

We select the most performant state-of-the-art solutions 
for comparison. Within the group that solely utilizes struc-
tural information, we compare with:

–	 BootEA [23], which employs the bootstrapping strat-
egy to iteratively label likely entity alignment as train-

ing data for learning alignment-oriented KG embed-
dings;

–	 TransEdge [15], which proposes a novel edge-centric 
embedding model that contextualizes relation represen-
tations in terms of specific head-tail entity pairs;

–	 MRAEA [42], which models entity embeddings by 
attending over the node’s incoming and outgoing 
neighbors and its connected relations’ meta semantics;

–	 SSP [44], which jointly leverages the global KG struc-
ture and entity-specific relational triples for better 
entity alignment.

–	 RREA [45], which leverages relational reflection trans-
formation to obtain relation specific embeddings for 
each entity and achieves effective entity alignment.

Among the methods incorporating other sources of infor-
mation, we compare with:

–	 GCN-Align [26], which employs GCN to learn structural 
embeddings and attribute embeddings for alignment;

–	 HMAN [16], which harnesses the attributes and textual 
descriptions of entities to complement the structural 
information;

–	 HGCN [11], which jointly learns entity and relation rep-
resentations for EA;

–	 RE-GCN [46], which exploits multiple structural graph 
convolution driven by triadic graph and primal graph to 
learn entity and relation embeddings;

–	 DAT [25], which proposes an EA framework with empha-
sis on long-tail entities;

We also include the unsupervised approaches IMUSE [37] 
and PARIS [38]. To make a fair comparison, we only use 
entity name labels as the side information.

6.2 � Results

In this subsection, we first introduce the main alignment 
results. Then, we report the performance of unsupervised 
approaches given side information in low quality. Finally, 
we conduct the ablation study to provide insights into UEA.

6.2.1 � Main Alignment Results

Table 2 reports the alignment results, which shows that 
state-of-the-art supervised or semi-supervised methods have 
rather low precision values. This is because these approaches 
cannot predict the unmatchable source entities and generate 
a target entity for each source entity (including the unmatch-
able ones). Particularly, methods incorporating additional 
information attain relatively better performance than the 
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methods in the first group, demonstrating the benefit of lev-
eraging such additional information.

Regarding the unsupervised methods, although IMUSE 
cannot deal with the unmatchable entities and achieves a 
low precision score, it outperforms most of the supervised 
or semi-supervised methods in terms of recall and F1 score. 
This indicates that, for the EA task, the KG side informa-
tion is useful for mitigating the reliance on labeled data. 
In contrast to the methods discussed before, PARIS attains 
very high precision, since it only generates matches that it 
believes to be highly possible, which can effectively filter 
out the unmatchable entities. It also achieves the second 
best F1 score among all approaches, showcasing its effec-
tiveness when the unmatchable entities are involved. Our 
proposals, UEA and CUEA, attain the best balance between 
precision and recall and obtain the best F1 scores, outper-
forming the second-best by a large margin, validating their 
effectiveness. Notably, although our proposed models do not 
require labeled data, they achieve even better performance 
than the most performant supervised methods. This could 
be attributed to the facts that (1) Our proposals are capa-
ble of dealing with unmatchable entities and hence achieve 
a good balance between precision and recall, while all the 
supervised approaches fail to identify the unmatchable 
entities and make alignment predictions for every source 
entity (including the unmatchable ones), thus attaining a 

low precision and in turn a low F1 score; (2) Most of the 
state-of-the-art supervised approaches merely perform the 
one-time alignment and cannot benefit from the progressive 
learning framework that utilizes the pseudo-labeled data for 
better training; (3) Some supervised approaches fail to make 
use of the side information that could provide useful signals 
for alignment. To verify the effectiveness of our proposed 
modules in the supervised setting, we allow CUEA to make 
use of labeled data, resulting in CUEA-sup. The results in 
Table 2 reflect that CUEA-sup attains much better perfor-
mance than the state-of-the-art supervised approaches, as 
well as the unsupervised variant CUEA.

Furthermore, it can be seen that, by integrating the notion 
of confidence into UEA, CUEA achieves comparable results 
to UEA. At first sight, it seems that assigning confidence 
scores to entity pairs do not have a large influence on the 
representation learning and the alignment results, which, 
however, could be ascribed to the fact that the side informa-
tion is too effective on these datasets (solely using the string 
information can achieves an F1 score of 0.814, to be shown 
in Table 5), and hence rendering the structural information 
(largely affected by the confidence scores) less contributive 
to the overall results. Next, we will show that the confidence-
based framework would be much more useful on datasets 
with side information in low quality.

Table 2   Alignment results

The best alignment results are denoted in bold
1 We omit the results of RE-GCN on �����

��−�� and �����
��−�� since they are not provided in the original paper, and our implementation can-

not reproduce the reported performance.
2 On �����

��−�� and �����
��−�� , all of the entities are matchable, and the number of gold matches equals to the number of entities in a KG. 

Besides, for most methods, they generate matches for all the entities in a KG. Therefore, the number of matches produced by these methods is 
equal to the number of gold matches, and the values of precision, recall, and F1 score are equal

������
��−�� ������

��−�� ������
��−�� �����

��−�� �����
��−��

P R F1 P R F1 P R F1 P R F1 P R F1

BootEA 0.444 0.629 0.520 0.426 0.622 0.506 0.452 0.653 0.534 0.365 0.365 0.365 0.503 0.503 0.503
TransEdge 0.518 0.735 0.608 0.493 0.719 0.585 0.492 0.710 0.581 0.400 0.400 0.400 0.556 0.556 0.556
MRAEA 0.534 0.757 0.626 0.520 0.758 0.617 0.540 0.780 0.638 0.403 0.403 0.403 0.543 0.543 0.543
SSP 0.521 0.739 0.611 0.494 0.721 0.587 0.512 0.739 0.605 0.372 0.372 0.372 0.521 0.521 0.521
RREA 0.565 0.801 0.663 0.550 0.802 0.652 0.573 0.827 0.677 0.468 0.468 0.468 0.601 0.601 0.601
GCN-Align 0.291 0.413 0.342 0.274 0.399 0.325 0.258 0.373 0.305 0.296 0.758 0.426 0.428 0.428 0.428
HMAN 0.614 0.871 0.720 0.641 0.935 0.761 0.674 0.973 0.796 0.400 0.400 0.400 0.528 0.528 0.528
HGCN 0.508 0.720 0.596 0.525 0.766 0.623 0.618 0.892 0.730 0.670 0.670 0.670 0.763 0.763 0.763
RE-GCN 1 0.518 0.735 0.608 0.548 0.799 0.650 0.646 0.933 0.764 - - - - - -
DAT 0.556 0.788 0.652 0.573 0.835 0.679 0.639 0.922 0.755 0.758 0.758 0.758 0.876 0.876 0.876
CUEA-sup 0.921 0.913 0.917 0.946 0.942 0.944 0.956 0.953 0.954 0.988 0.972 0.980 0.991 0.983 0.987
IMUSE 0.608 0.862 0.713 0.625 0.911 0.741 0.618 0.892 0.730 0.905 0.905 0.905 0.916 0.916 0.916
PARIS 0.976 0.777 0.865 0.981 0.785 0.872 0.972 0.793 0.873 0.990 0.870 0.926 0.990 0.930 0.959
UEA 0.913 0.902 0.907 0.940 0.932 0.936 0.953 0.950 0.951 0.987 0.969 0.978 0.988 0.976 0.982
CUEA 0.912 0.901 0.906 0.943 0.935 0.939 0.953 0.949 0.951 0.988 0.970 0.979 0.988 0.975 0.981
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6.2.2 � Results Using Low‑Quality Side Information

We compare the unsupervised approaches under a practi-
cal scenario where the side information is in low-quality. 
Specifically, we assume that the pre-trained word embed-
dings as well as the machine translation tools are not avail-
able. Under this circumstance, to use the entity name infor-
mation, a viable solution is to compare the name strings 
directly. However, the direct string comparison would be 
ineffective for cross-lingual datasets such as ������

��−�� 
and ������

��−�� , where the languages in the source and 

target KGs are disparate. Hence, we aim to examine the 
effectiveness of these unsupervised approaches when the 
side information is in low quality and cannot provide many 
useful signals for alignment.

We report the results on ������
��−�� and ������

��−�� 
in Table 3, where the direct comparison between entity 
name strings serves as the side information. It can be 
observed that the F1 scores of all methods are very low 
(compared with those in Table 2), revealing that the qual-
ity of side information does affect the overall alignment 
results. Besides, given the low-quality side information, 
our proposed models UEA and CUEA still outperform 
the baselines IMUSE and PARIS in terms of the F1 score, 

demonstrating the effectiveness of the progressive learning 
framework and the unmatchable entity prediction module. 
Moreover, it is notable that CUEA achieves better results 
than UEA in terms of all metrics. This could be attributed 
to the confidence-based alignment results generation pro-
cess, which could enable the entity pairs of higher confi-
dence (higher probability of being correct, presumably) 
to have a larger impact on the representation learning and 
alignment process.

Table 3   Alignment results given 
low-grade side information

The best alignment results are denoted in bold

������
��−�� ������

��−��

P R F1 P R F1

IMUSE 0.056 0.080 0.066 0.053 0.077 0.063
PARIS 0.921 0.066 0.123 0.911 0.060 0.113
UEA 0.654 0.088 0.155 0.617 0.084 0.148
CUEA 0.682 0.093 0.164 0.690 0.090 0.159

Table 4   Comparison of time costs (in seconds)

DBP15K SRPRS

ZH-EN JA-EN FR-EN EN-FR EN-DE

RREA 600 597 713 335 351
HMAN 5,489 5,404 5,611 4,423 4,371
IMUSE 67 70 80 52 53
PARIS 10 7 7 5 5
UEA 464 377 384 241 256
CUEA 434 355 370 272 319

Table 5   Ablation results

The best alignment results are denoted in bold

ZH-EN JA-EN FR-EN

P R F1 P R F1 P R F1

UEA 0.913 0.902 0.907 0.940 0.932 0.936 0.953 0.950 0.951
w/o Unm 0.553 0.784 0.648 0.578 0.843 0.686 0.603 0.871 0.713
w/o Prg 0.942 0.674 0.786 0.966 0.764 0.853 0.972 0.804 0.880
w/o Adj 0.889 0.873 0.881 0.927 0.915 0.921 0.941 0.936 0.939
w/o Excl 0.974 0.799 0.878 0.982 0.862 0.918 0.985 0.887 0.933
MWGM 0.930 0.789 0.853 0.954 0.858 0.903 0.959 0.909 0.934
TH 0.743 0.914 0.820 0.795 0.942 0.862 0.807 0.953 0.874
DAT-I 0.974 0.805 0.881 0.985 0.866 0.922 0.988 0.875 0.928
��� −�

� 0.908 0.902 0.905 0.926 0.924 0.925 0.937 0.931 0.934
�

� 0.935 0.721 0.814 0.960 0.803 0.875 0.948 0.750 0.838
���−�� 0.758 0.727 0.742 0.840 0.807 0.823 0.906 0.899 0.903
�

� 0.891 0.497 0.638 0.918 0.562 0.697 0.959 0.752 0.843
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6.2.3 � Efficiency Comparison

In this subsection, we evaluate the alignment efficiency. 
In Table 4, we report the running time of unsupervised 
approaches, as well as two most performant supervised 
approaches. Corresponding alignment performance results 
can be found in Table 2. It reads from Table 4 that, gener-
ally speaking, the time costs of our proposals are accept-
able, which mainly come from the progressive learning 
process. PARIS and IMUSE have high efficiency since 
they adopt simple models to capture the KG structure 
information and mainly rely on the existing side informa-
tion for alignment, while the supervised models conduct 
complicated modeling of KG structure and hence require 
more time.

6.2.4 � Ablation Study

In this subsection, we examine the usefulness of proposed 
modules by conducting the ablation study. First, by compar-
ing the results of CUEA and UEA in Tables 2 and  3, we can 
conclude that the confidence-based framework is of great 
use, especially in cases when the side information is inferior. 
Next, we perform the ablation study on the basis of UEA.

More specifically, in Table 5, we report the results of 
UEA w/o Unm, which excludes the unmatchable entity 
prediction module, and UEA w/o Prg, which excludes the 
progressive learning process. It shows that, removing the 
unmatchable entity prediction module (UEA w/o Unm) 
brings down the performance on all metrics and datasets, 
validating its effectiveness of detecting the unmatchable 
entities and enhancing the overall alignment performance. 
Besides, without the progressive learning (UEA w/o Prg), 
the precision increases, while the recall and F1 score val-
ues drop significantly. This shows that the progressive 
learning framework can discover more correct aligned 
entity pairs and is crucial to the alignment progress.

To provide insights into the progressive learning frame-
work, we report the results of UEA w/o Adj, which does not 
adjust the threshold, and UEA w/o Excl, which does not 
exclude the entities in the alignment results from the entity 
sets during the progressive learning. Table 5 shows that set-
ting the threshold to a fixed value (UEA w/o Adj) leads to 
worse F1 results, verifying that the progressive learning pro-
cess depends on the choice of the threshold and the quality 
of the alignment results. We will further discuss the setting 
of the threshold in the next subsection. Besides, the perfor-
mance also decreases if we do not exclude the matched enti-
ties from the entity sets (UEA w/o Excl), validating that this 
strategy indeed can reduce the difficulty of aligning entities.

Moreover, we replace our progressive learning frame-
work with other state-of-the-art iterative learning strategies 
(i.e., MWGM [23], TH [22] and DAT-I [25]) and report the 
results in Table 5. It shows that using our progressive learn-
ing framework (UEA) can attain the best F1 score, verifying 
its superiority.

6.3 � Quantitative Analysis

In this subsection, we perform quantitative analysis of 
the modules in UEA and CUEA. We first investigate the 
unmatchable entity prediction module. Then, we examine 
the robustness of the progressive learning framework by var-
ying the hyper-parameters. Finally, we provide the analysis 
on the side information, i.e., the influence of the quality of 
side information on the overall results, and the usefulness 
of the preliminary alignment results generated by the side 
information.

6.3.1 � Analysis on Unmatchable Entity Prediction

Regarding the unmatchable entity prediction module, we 
aim to examine: (1) whether the unmatchable entities can 
be accurately detected; and (2) the influence of � in TBNNS 
on the overall performance; and (3) the influence of � in 
C-TBNNS on the overall performance.

Fig. 3   Alignment results given different threshold values. C-� refers to the number of correct matches generated by the progressive learning 
framework at each round given the threshold value � . W refers to the number of erroneous matches generated in each round
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Unmatchable entity prediction Zhao et al. [20] propose 
an intuitive strategy (U-TH) to predict the unmatchable enti-
ties. They set an NIL threshold, and if the distance value 
between a source entity and its closest target entity is above 
this threshold, they consider the source entity to be unmatch-
able. We compare our unmatchable entity prediction strategy 
with it in terms of the percentage of unmatchable entities 
that are included in the final alignment results and the F1 
score. On ������

��−�� , replacing our unmatchable entity 
prediction strategy with U-TH attains the F1 score at 0.837, 
which is 8.4% lower than that of UEA. Besides, in the align-
ment results generated by using U-TH, 18.9% are unmatch-
able entities, while this figure for UEA is merely 3.9%. This 
demonstrates the superiority of our unmatchable entity pre-
diction strategy.

The threshold � in TBNNS We discuss the setting of � 
to reveal the trade-off between the risk and gain from gen-
erating the alignment results in the progressive learning. 
Identifying a match leads to the integration of additional 
structural information, which benefits the subsequent 
learning. However, for the same reason, the identification 

of a false positive, i.e., an incorrect match, potentially 
leads to mistakenly modifying the connections between 
KGs, with the risk of amplifying the error in succes-
sive rounds. As shown in Fig. 3, a smaller � (e.g., 0.05) 
brings low risk and low gain; that is, it merely generates 
a small number of matches, among which almost all are 
correct. In contrast, a higher � (e.g., 0.45) increases the 
risk, and brings relatively higher gain; that is, it results 
in much more aligned pairs, while a certain portion of 
them are erroneous. Additionally, using a higher threshold 
leads to increasingly more alignment results, while for a 
lower threshold, the progressive learning process barely 
increases the number of matches. This is in consistency 
with our theoretical analysis in Sect. 4.

The hyper-parameter � in CUEA We then analyze the 
influence of � in Eq. (2), which determines the range of the 
confidence scores, on the final alignment results. To high-
light its influence on the structural representation learn-
ing, we follow the settings in 6.2.2 and report the results 
in Table 6.

Table 6   The influence of � on 
the alignment results

The best alignment results are denoted in bold

������
��−�� ������

��−��

P R F1 P R F1

UEA 0.682 0.093 0.164 0.690 0.090 0.159
� = 0.0 0.685 0.093 0.164 0.680 0.090 0.159
� = 0.1 0.687 0.092 0.162 0.683 0.090 0.159
� = 0.2 0.689 0.093 0.163 0.680 0.090 0.159
� = 0.3 0.678 0.092 0.162 0.679 0.089 0.158
� = 0.5 0.661 0.091 0.160 0.672 0.090 0.159
� = 0.6 0.670 0.090 0.159 0.648 0.088 0.155
� = 0.7 0.666 0.089 0.158 0.631 0.085 0.150
� = 0.8 0.647 0.088 0.156 0.640 0.088 0.155
� = 0.9 0.649 0.088 0.155 0.586 0.081 0.142
� = 1.0 0.654 0.088 0.155 0.617 0.084 0.148

Fig. 4   The F1 scores by setting 
� and � to different values
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It reads from Table 6 that the alignment performance is 
relatively stable when � is not too large. Nevertheless, when 
setting � to a large value (e.g., 1, to restore UEA), the results 
drop sharply. This reveals that assigning probability scores 
to the entity pairs according to their confidence of being 
true can facilitate the alignment. Besides, generally speak-
ing, CUEA is robust to the perturbation of � (as long as it 
is not too large).

6.3.2 � Analysis on Progressive Learning Framework

Influence of hyper-parameters � and � As mentioned in 
Sect. 6.1, we set � and � to 0.5 since there are no training/
validation data. Here, we aim to prove that different values 
of the parameters do not have a large influence on the final 
results. More specifically, we keep � at 0.5, and choose � 
from [0.3, 0.4, 0.5, 0.6, 0.7]; then we keep � at 0.5, and 
choose � from [0.3, 0.4, 0.5, 0.6, 0.7]. It can be observed 
from Fig. 4 that, although smaller � and � lead to better 
results, the performance does not change significantly.

6.3.3 � Analysis on Side Information

We first analyze the influence of the side information on the 
final alignment results. Then, we examine the usefulness of 
preliminary alignment results generated by using the side 
information.

Influence of input side information We adopt different 
side information as input to examine the performance of 
UEA. More specifically, we report the results of ��� −�

� , 
which merely uses the string-level feature of entity names as 
input, ���−�� , which only uses the semantic embeddings 
of entity names as input. We also provide the results of �� 
and �� , which use the string-level and semantic information 
to directly generate alignment results (without progressive 
learning), respectively.

As shown in Table 3, the performance of solely using 
the input side information is not very promising ( �� and 
�

� ). Nevertheless, by forwarding the side information into 
our model, the results of ��� −�

� and ���−�� become 
much better. This unveils that UEA can work with different 
types of side information and consistently improve the align-
ment results. Additionally, by comparing ��� −�

� with 
���−�� , it is evident that the input side information does 
affect the final results, and the quality of the side informa-
tion is of significance to the overall alignment performance.

Pseudo-labeled data We further examine the useful-
ness of the preliminary alignment results generated by the 
side information, i.e., the pseudo-labeled data. Concretely, 
we replace the training data in HGCN with these pseudo-
labeled data, resulting in HGCN-U, and then compare its 
alignment results with the original performance. Regard-
ing the F1 score, HGCN-U is 4% lower than HGCN on 

������
��−�� , 2.9% lower on ������

��−�� , 2.8% lower on 
������

��−�� . The minor difference validates the effective-
ness of the pseudo-labeled data generated by the side infor-
mation. It also demonstrates that this strategy can be applied 
to other supervised or semi-supervised frameworks to reduce 
their reliance on labeled data.

7 � Conclusion

In this article, we propose unsupervised EA solutions that 
are capable of dealing with unmatchable entities. We first 
exploit the side information of KGs to generate preliminary 
alignment results, which are considered as pseudo-labeled 
data and forwarded to the progressive learning framework 
to produce better KG embeddings and alignment results 
in a self-training fashion. We also devise an unmatchable 
entity prediction module to detect the unmatchable enti-
ties. The experimental results validate the usefulness of our 
proposed models and their superiority over state-of-the-art 
approaches.
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