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Abstract
Human symbiotic mobile robots are required to smoothly reach destinations while avoiding humans. Human-intent infor-
mation, e.g., a moving direction, must be carefully estimated since its lack leads to the hesitation and repetitious avoidance.
Conventional studies address human intent estimation and conveyance but do not consider cases of failing communication as
a systematic framework, even though the intent is essentially difficult for humans to estimate due to its interiority. In response
to this problem, we propose a framework of error-tolerant navigation (ETN) with a process to actively estimate the human
intent by iterative interaction from the robot. As a preliminary study, we focus on ‘the intent conveyance from robot to human’
and ‘its achievement’ as core information. The ETN estimates interference possibility to determine the need for inducement,
human awareness (HA) to select an inducement method, and inducement achievement (IA) to judge the need for action again.
If the ETN estimates the interference, the robot provides inducements according to HA, e.g., route indication when HA is high
or voice/physical interaction when HA is low. Each inducement corresponds to an expected behavior change in the human. IA
is calculated from the difference between the expected and actual changes. If the robot observes no change within a specified
time after the inducement, it executes inducements with a stronger intent conveyance. When IA is none after the strongest
action, it selects another route. This error-collection loop in the ETN could prevent a fatal mistake by recognizing a small
mistake and recovering it. The static and dynamic experimental results indicated that the ETN could achieve smoother human
movement and reduce psychological burden by correcting the robot behaviors, compared with a conventional navigation
system, which can contribute to constructing a practical ETN framework.
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1 Introduction

Autonomous mobile robots have been expected to pro-
vide various services safely and securely in human-crowded
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spaces such as shopping malls, station concourses, and air-
port lobbies [1, 2]. Such robots must be capable of behaving
collaboratively with humans, considering own movement
purpose (e.g., human guidance and object transport), human
movement, and surrounding environments. Here, the type
of human–robot collaboration is roughly divided into two
types [3, 4]. One is a passive avoidance strategy (PAS),
to thoroughly avoid interfering with any movements of
humans by stoppage and detour, based on the principle of
‘prioritizing humans.’ The PAS has been applied to most
conventional autonomous mobile robots as a typical path-
planning method, including a dynamic window approach
(DWA) [5] and rapidly-exploring random trees (RRT) [6].
As stated above, the conventional approach where the robot
finds a collision-free path does not allow it to coordinate with
humans even when it tries to pass through a narrow corridor.
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This will cause the freezing problem [7–10]. The other is an
active inducement strategy (AIS), to collaboratively move
by conveying the robot’s intent to the human using gestures,
voice, and physical touch [3], like humans. The AIS, which
enables the robot to do proximal navigation, could provide
more robust and efficient navigation even in human-crowded
spaces. Thus, the AIS can be one of the powerful strategies
for solving the above freezing problems [3].

In our previous studies on AIS, we have analyzed vari-
ous scenes where mobile robots interact with humans (i.e.,
situations where the relative distance is short) and proposed
a movement control scheme by active inducement [11, 12].
We have then proposed an interactive navigation framework
with situation-adaptive multimodal inducement, considering
robot efficiency and human psychology [3]. Experiments
revealed that the proposed framework enabled the robot to
move more efficiently and naturally by using the inducement
methods, e.g., path indication, voice interaction, and noti-
fying touch, depending on situations, e.g., space attributes,
available width, and the number of humans.

1.1 Intent Conveyance and Robustness
to Misrecognition

On the other hand, we found that the navigation system
should be improved regarding the effectiveness of intent con-
veyance and the robustness against misrecognition. We here
explain the importance of those improvements by illustrating
a situation in human–human communication.

First is the effectiveness of intent conveyance. Before A
starts to communicate with B, A observes B’s states to know
feasible and effective ways of communication. If B is aware
of A, A can immediately convey what A wants to tell. But,
if B is unaware of A, A needs to use inducible communi-
cation, such as voice interaction when B is reading a book,
or physical touch when B is listening to music at full vol-
ume, as shown in Fig. 1a. The physical touch can use when
A and B are close enough to touch, as shown in Fig. 1b. A
then communicates with B by the selected way. After the ini-
tial communication, A observes B’s reaction to know if A’s
intent was successfully conveyed to B. If there was a large
gap between B’s actual and expected behavioral change, A
understands that B did not receive A’s intent. If not conveyed,
A needs to determine the next action, such as increasing its
strength, changing the modality, or giving up communica-
tion, based on a series of relationships between A’s way of
communication and B’s reaction, as shown in Fig. 1c. A
then executes the selected way of communication. In sum,
humans have the looped process to observe the human state,
determine a suitable way of communication, and execute it.

Second is the robustness against misrecognition. A and B
will interfere if they continue to proceed each current path.
If A could estimate that B will avoid to right of B, A will

avoid to right of A. If the estimation was right, they would
pass through safely. However, we (humans) sometimes fail
the estimation, and this might lead to nearly colliding with
each other. Nevertheless, humans could quickly recognize
the behavioral changes of the confronting human, adequately
replan the following action, and immediately execute it. In
other words, humans ‘can’ fail the estimation. In summary,
humans have an error-tolerant navigation system, based on an
effective feedback loop and rapid recovery action function.

1.2 States to be Recognized

The capabilities of predictive inference and rapid motion
control for current robots are quite inferior to those for
humans. Moreover, human behaviors are inherently difficult
to be predicted by even humans. Some studies have tried
to make a predictive model of human motion. In [13], a
proactive social motion model was proposed based on the
socio-spatiotemporal characteristics of humans and human
groups. In [14], socially acceptable navigation was proposed
using the social force model as a heuristic approach. In [15],
how to recognize a pedestrian’s navigation intent and pre-
dict a pedestrian’s motion and how a robot dynamically
adapts its navigation policy when facing unexpected human
movements were investigated. They produced interesting
outcomes but indicated that predictive models have some
limitations in preciseness and earlier prediction. We found
from the above analysis that the navigation system should
have functions: (i) recognition of human’s intent-receivable
state, (ii) recognition of human’s intent-received state, (iii)
determination of suitable inducement considering misrecog-
nition.

• To recognize intent-receivable state (proactive state). The
current navigation system decides the inducement depend-
ing on a passing width. However, the inducement would
not reach humans if they were unaware of the robot. Thus,
the system needs to decide the inducement based on the
proactive state of the human, i.e., whether the human is in
a state where the inducement can be received and which
modality can be received.

• To recognize intent-received state (postactive state).
The current navigation system changes the inducement
depending on the position change of the human. How-
ever, the inducement is repeatedly executed if the position
change is repeated. Thus, the system needs to decide the
inducement based on the postactive state of the human,
i.e., whether the human received the intent from the robot
and to what degree it was received.

• To determine suitable inducement considering misrecog-
nition. As stated above, a new navigation system will
determine the inducement based on the proactive and
postactive states of the human.However, the systemcannot
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Fig. 1 Inducement suitable for human states, including a awareness human toward robot (voice for notice or just go), b relative position between
human and robot (voice or touch), and c reaction of human after the last inducement from robot (largely avoid or slightly avoid)

perfectly recognize those human states. Thus, the system
needs to decide the inducement based on the gap between
the expected and actual behavior changes by inducement
(what the intent of the human is).

1.3 Error-Tolerant Navigation (ETN)

In summary, the robot must have an error-tolerant navigation
(ETN) method that can robustly deal with error estimation
andmiss conveyance.Weneed to newly develop a framework
that allows the misrecognition and recovery of it.

Robot navigation methods based on human-state estima-
tion have been proposed [16, 17]. However, most conven-
tional ones are based on the PAS [18], focusing on modeling
precise human behaviors, with the philosophy that ‘robot’s
errors are unacceptable’ [13, 19, 20]. We could say that
they did not focus on human-intent estimation based on
active inducement from the robot by allowing it to make
mistakes, and there are no comprehensive frameworks for
error-tolerant navigation. We thus develop an ETN that
can recognize ‘whether a human is in a state where an
inducement from others can be acceptable’ and ‘how degree
the intention was conveyed.’ The ETN could contribute to
proposing a new human–robot interaction with the accep-
tance of error, although conventional ones do not permit a
mistake.Unavoidable errors inevitably happen, so it is impor-
tant to always consider the possibility of providing wrong
outputs. The ETN thus recognizes the errors by observing
the human reaction and recovers the errors by changing the
robot’s behavior. A way of recognizing errors should be
‘error-tolerant’ as much as possible, so the ETN estimates if
the errors happened or not by comparing the actual avoidance
distance with the expected avoidance distance. Even if the
robot makes a small mistake in a prediction process, it could
prevent a fatal mistake by recognizing the small mistake and

recovering it due to an error-correction loop, including active
inducement.

In this study, we target passing scenarios where a sin-
gle person walks in a corridor in an office. The rest of
the paper follows: Sect. 2 explains requirements, Sect. 3
details the development of ETN, Sect. 4 explains experimen-
tal conditions, and Sect. 5 describes experimental results and
discussion. Finally, Sect. 6 summarizes this study.

2 Related and RequiredWorks

In this section, we analyzed the conventional studies and
clarified the required work.

2.1 RelatedWorks

2.1.1 Intent Estimation and Conveyance

For human–robot interaction, intention estimation is quite
important [19, 21]. For conveyance interface design, intent
communication methods using light signals and indicators
[22], projection [12, 23], and bi-direction intent communica-
tion via augmented reality [24] were proposed. A method to
convey the navigation intent of a mobile robot to humans
by adopting the semantics of car’s turn indicators was
also proposed [25]. An external vehicle interface called the
automated vehicle interaction principle (AVIP) that com-
municates vehicles’ mode and intent to pedestrians was
proposed [26]. A robotic wheelchair provides its future tra-
jectory with light projection according to a goal intended by
the passenger [27]. However, those methods require special
devices such as a projector, not like a human, and do not
focus on cases of occurring miscommunication.

For human intent estimation in navigation [28], pro-
posed a method of inferring the navigation intent of humans
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based on pre-computed motion probability grids [29], pro-
posed a framework for inferring and planning concerning
themovement intention of goal-oriented agents in an interac-
tivemulti-agent setup. For automated vehicles [30], estimates
the driver’s lane-change intent by a Bayesian network-based
model in combination with a Gaussian mixture [31]. Pro-
posed a user action model using Gaussian process regression
to encapsulate the probabilistic and nonlinear relationships
among user action, state of the environment, and user inten-
tion [32]. Proposed a system to recognize the human’s hand
motion intent and plan a motion to enable the robot to
communicate its intent using legible and predictable motion
[33]. Investigated an interactive intention-predicting method
using bimodal information for a public service robot [34].
Proposed a method to infer human intents denoted by the
goal locations of reaching motions using a neural network-
based approximate EMalgorithmwith onlinemodel learning
[35]. Presented a planning framework that combines implicit
(robot motion) and explicit (visual/audio/haptic feedback)
communication during robot navigation.

In summary, conventional methods address the human
intent estimation and conveyance by focusing on the best
solution and situation, such as determining handover timing
[36], but they do not consider cases of failing communication
as a systematic framework.

2.1.2 Error-Tolerant System (Absolute or Relative)

The ETN can be assumed as a feedback control, and a way
of achieving the purpose, i.e., to make passable width for
passing a corridor, differs with time-series events and sit-
uations. In addition, the systems provide a human (plant)
with an inducement (operating variables), and the ratio of
conveyance dynamically changes in situations. Thus, it is
difficult for the system to estimate the amount of movement
change of the human (control variable). Error-tolerant sys-
tems are often studied in the field of adaptive control, such
as fault-tolerant control for uncertain nonlinear systems with
unknowndead-zone and unmodeled dynamics [37, 38]. Error
tolerance is tried to be achieved by feedforward and feedback
strategies, and specifically, an observer can output approxi-
mate values byhandling unknown (unmodeled) disturbances.
Note that such control systems are not supposed to provide
wrong outputs, such as mistaking positive for negative, while
the ETN can notionally allow such an inverse output.

One idea to solve these problems is to make precise
modeling and compensate for disturbance by introducing
the latest control technologies. For example, in [39], social
momentum, a planning framework for legible robot motion
generation, was developed due to the benefits of intent-
expressive motion. In [40], a formalism was developed to
mathematically define and distinguish the predictability and
legibility of motion. However, this approach is not suitable

due to unavoidable errors by the limitation of precision in
modeling and performance of the controller.

Thus, relatively improvement methods such as external
force measurement [41] and macroscopic control parameter
adjustment [42] would be effective. Consequently, we need
to focus on an error (disturbance)-tolerant navigation system.

2.2 RequiredWork for ETN

As a first step for the purpose, we make a framework based
on fundamental functions, focusing on an error-recovering
system. From the analysis of the human–human interaction
focusing on intent communication and error recovery (com-
pensation) mechanism, as stated in Subsect. 1.1, we could
derive a suitable relationship between a situation and induce-
ment method, so we adopt a model-based approach in this
preliminary study. To achieve the above requirements, the
ETN needs to have the following four functions.

• Interference-possibility judgment The robot first judges
if the paths of the robot and human interfere based on
environmental information, e.g., wall and obstacle, and
human, e.g., position and velocity, as shown in Fig. 2a. If
the robot recognizes interference (I P = 1), it judges the
current state as a situation where both or either the robot
or human must change the path (behavior).

• Proactive observation (human-awareness judgment) To
determine a suitable inducement in I P = 1, the robot uses
visual awareness of the human toward the robot (H A).
Estimating if the human truly recognizes the robot is quite
difficult, so the robot estimates it from the face direction
of the human, as shown in Fig. 2b. The intent-receivable
state can be judged by human position and H A since the
humans need to attend to the robot.

• Inducement selector The robot then provides the human
with inducements during I P = 1. It selects an inducement
method as the initial one, according to the states of the
robot, human, and environments as well as H A, as shown
in Fig. 2c. The robot then evaluates the human reaction
as inducement achievement I A (postactive state). If I P is
still 1, the robot determines the next inducement based on
I A and the inducement method that the robot provided the
last time, as shown in Fig. 2e.

• Postactive observation (inducement-achievement judg-
ment) After the robot provided the inducement, the robot
estimates if the intent was successfully conveyed to the
human (I A) by checking the human reaction, as shown
in Fig. 2d. If there is a large gap between the actual and
expected reactions, I A is not achieved (I A = 0). In I A
= 0, the robot selects subsequent (different) inducement
based on I A.
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Fig. 2 Diagram of error-tolerant navigation system based on human-
state estimation for human–robot collaborative movement, including
a interference possibility, b human awareness, c inducement selector,

d inducement achievement, and e inducement selector. Even if hesi-
tation and avoidance repetition occur, small correction loop decreases
large error

2.3 Preparation

As explained in [3], we refer to a robot’s action to encour-
age a human to change their cognitive (e.g., awareness of
robot), physical (e.g., standing position), and psychological
(e.g., comfort) states as ‘inducement.’ The inducement has
various types of modalities, such as body movement (appeal
to the visual sense), speech (appeal to the auditory sense),
and touch/contact (appeal to the haptic/kinesthetic sense).
The inducement also has different strengths, such as weak
notification of robot intention by body movement as well
as strong notification of robot intention by physical interac-
tion. These inducements should be selected depending on the
environment, human, and robot, as follows.

• Path indication The robot modifies its path to convey its
intent, i.e., assertion in the same way or compromise in a
different way. This inducement is natural, weak, and low-
intervene (physical and psychological).

• Voice interaction The robot uses its voice to notice its exis-
tence to humans. This inducement is natural, specific, and
medium-intervene (cognitive and psychological).

• Physical notifying touch The robot uses weak touch to
provide notification and induce the human to give way to
the robot. This inducement is a high-intervene (cognitive
and physical).

We can make a basic rule that low-intervene inducement
must be selected in the first trial, and if failed, one step higher
intervening inducement must be selected. When the interfer-
ence is not solved after the robot provides physical touch (the
highest intervention in this study), the robot selects ‘detour
to path a different route.’ Until arriving at the goal, the navi-
gation system runs the control loop, including I P , H A, and
I A, and adaptively selects its own behaviors.

3 Error-Tolerant Navigation Framework

The navigation system selects inducement methods based on
the interference possibility (I P), human awareness (H A),
and inducement achievement (I A).

3.1 Interference-Possibility Judgment

This functionoutputs binaryvalues (I P =0or 1), to judge the
need for inducement. Accurate detection of human attributes
is essential for robot navigation. There are various methods
for human detection. One way is to detect leg-like shapes
from the laser data [43]. There are many human trajec-
tory estimation methods, including using LSTM [44]. These
methods have a time delay for computation, and basically,
precise estimation is difficult, as stated in Sect. 1. Thus, we
use a simple pedestrian model, assuming that the current
velocity keeps (we will update the model in the future).
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Fig. 3 Interference possibility (IP),which is calculated based on relative
distance when robot and human are in passing point. a Current state, b
future state at passing point, and c definition of IP

3.1.1 Human and Human Velocity Estimation

Fusing the data from both the camera and laser range finder
(LRF) generally yields more precise results [45, 46]. First,
the LRF scans through the environment and then filters out
values that suggest human-like objects. We assume the 5–15
successive point clouds as humans in our experimental set-
ting, estimate eclipses from point clouds, and derivate long
and short axes. The human posture is estimated by the angle
of those axes. The system identifies the front and back of
the human by using a function of KINECT v2. To calcu-
late the velocity, we apply the least squares method using
position data for about 0.25 s (8 data). Figure 3 shows the
coordination system. We denote the human and robot posi-
tion (x, y) angle, and velocity as (xH , yH , θH , vH ) and (xR ,
yR , θR , vR), respectively. The longitudinal distance between
the human and robot along with a corridor (x direction) is
denoted by lH R , as shown in Fig. 3a. These parameters are
calculated in every sampling frequency (30 ms).

3.1.2 Interference Judgment

A time St when the robot and human reach the passing point
xp is calculated based on the current velocity vector of both
the human and robot (Fig. 3b), and it is given by

St = lH R/|vH sin θH − vR sin θR |. (1)

Then the lateral distance between the geometric center of the
human and robot (y direction) DHR is calculated in the time

St , and it is given by

DHR = |(xH − xR) + St (vH cos θH − vR cos θR)|. (2)

Finally, the system identifies if DHR is larger than the
threshold distance DL , to judge the possibility of inter-
ference. Comfortable passing between humans requires a
marginal distance (called personal space). According to [47],
humans feel the interference possibility when passing on
a narrower passage than 1.3 times the shoulder width. To
ensure safe and comfortable passing, we apply the above
marginal distance as DL [3].We denote the shoulder widths
of human and robot as SLH and SLR , respectively, and DL

is given by

DL = [(SLH + SLR) × 1.3]/2. (3)

SLR was set to 0.6 m according to the robot we used in
this study (Fig. 7) and SLH was set to 0.4 m as the mean
shoulder width of humans [47]. DL is thus a constant value
as 1.3 m. Thus, I P can be calculated by

{
I P = 1 (interference) |DHR ≤ DL

I P = 0 (no interference) |DHR > DL
. (4)

3.2 Proactive State Observation (Human Awareness)

This function outputs ternary outputs (H A = 0, 0.5, or 1), as
visual awareness of the human toward the robot.

3.2.1 Concept

It is essentially difficult to precisely estimate “if the human
is aware of the robot.” We thus focus on its necessary con-
ditions, that is, the human gaze on the robot. This can be
the strongest condition but strictly not enough. If the human
gazes at the robot, we cannot judge from outside if the human
recognizes the robot. Some studies estimate drivers’ situa-
tional awareness by using close images of drivers’ faces in
time series [48, 49]. However, for autonomousmobile robots,
gaze detection using cameras installed on the robot is quite
difficult to measure due to its small target size, robot oscilla-
tion, light condition, occlusion, and so on. Thus, we simply
used the head direction of the human in this study.

3.2.2 Human Awareness Judgment

In the horizontal plane, the face and gaze directions are
strongly related, and the gaze direction is within+ 20◦ of the
head direction [50]. Thus, we assume that the head direction
corresponds to the gaze direction. Here, the field of vision is
classified by the effective field (θE = ± 15◦) and marginal
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visual field (θM = ± 100◦) of the human. The head direction
is denoted by θHEAD and the relative angle of face is denoted
by θHR , as shown in Fig. 4a and b. The relative human posi-
tion is measured by LRF, and its face direction is measured
by KINECT v2 (30 fps). Moreover, humans must be within
a sensing range DSHR . As shown in Fig. 4c, H A is given by

⎧⎪⎨
⎪⎩

H A = 1 (High) ||θHEAD − θHR | ≤ θE/2
H A = 0.5 (Low) |θE/2 < |θHEAD − θHR | ≤ θM/2
H A = 0 (None) ||θHEAD − θHR | ≥ θM/2

.

(5)

If the robot is in the central (marginal) visual field, H A is
high (low). And if the robot is out of the effective visual field,
H A is none. For robust estimation, the system outputs H A=
1 or H A = 0.5 if its time duration is longer than 0.25 s in the
time window of 0.375 s (determined from pre-experiments).
Recognition in the effective visual field is higher resolution,
so it is effective to comprehend environments in detail. If
the robot is in the state (H A = 1), vision-based inducement
such as path change becomes effective. On the other hand,
if recognition is in the marginal visual field (H A = 0.5),
visual-based inducement is not suitable.

3.3 Postactive State Observation (Inducement
Achievement)

This function outputs ternary values (I A = 0, 0.5, or 1) by
using an avoidance distance of the human to judge the neces-
sity of the next inducement, as shown in Fig. 5.

3.3.1 Expected Avoidance Distance and Ratio

The purpose of inducement is to make the distance between
the robot and human before inducement DHR larger than DL

given by (3), i.e., I P = 0. As shown in Fig. 5a, the expected
avoidance distances of human AHE and robot ARE is given
by

AHE + ARE = DL − DHR (6)

We then determine AHE and ARE by introducing the
avoidance ratio of human RH and robot RR , so that their sum-
mation is 1. We can arbitrarily define the combination. (RH ,
RR)= (0, 1) means that the robot avoids all and (RH , RR)=
(0.5, 0.5) means that the robot and human avoid half each. In
this study,we adopted two basic combinations:mutual avoid-
ance (RH , RR) = (α, 1−α), where 0 < α < 1, and full robot
avoidance (RH , RR) = (0, 1). In mutual avoidance, AHE =
α × (DL − DHR) and ARE = (1 − α) × (DL − DHR). In
full avoidance, AHE = 0 and ARE = DL − DHR .

3.3.2 Actual Avoidance Distance

The robot will avoid the expected distance ARE , so the actual
avoidance distance of the robot ARA is definitely equal to
ARE . Thus, the system needs to check the actual avoidance
distance of human AH A. We denote the distance between the
robot and human after inducement, which includes reactive
movement of the human, as DHR

′
. We can calculate DHR

′

by using (2). As shown in Fig. 5b, AH A is thus given by

AH A = D
′
HR − (DHR + ARA), (7)

where ARA, AH A, and AHR have a positive value so that
DHR

′
gets large.

3.3.3 Inducement Achievement

The system then compares AH A with AHE .When the human
moved in the expected direction and the avoidance distance
was large enough (AH A ≥ AHE ), the robot can immediately
judge that the inducement was succeeded, and I A becomes
high (I A = 1), as shown in Fig. 5b. When the human moved
in the direction opposite to the expected one (AH A < 0), the
robot can immediately judge that the inducement failed, and
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I A becomes none (I A = 0), as shown in Fig. 5c. Further-
more, when the human moved in the expected direction but
the avoidance distance was not enough (0 < AH A < AHE ),
the system halts judging I A for a while since the reaction
might be delayed depending on the individuals. In this situa-
tion, it is unclear if the human continues to walk the current
path or avoids the expected distance. The waiting time is dif-
ficult to theoretically determine, so we adopt the maximum
time when the robot can wait due to natural and safe passing.
In this study, we set the natural avoidance angle θn , which is
not too steep (safe) avoidance, 30◦ from exploratory experi-
ments.We denote DHR when the robot avoids in the direction
of θn from the current direction as DHRL . If DHRL is larger
than DL , the robot temporally outputs that I A is low (I A =
0.5), as shown in Fig. 5d. If DHRL is DL or smaller, the robot
immediately judges that inducement failed, and I A becomes
none (I A = 0), as shown in Fig. 5e. In sum, I A is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I A = 1 (High) (AH A ≥ AHE )

I A = 0.5 (Low) (0 ≤ AH A < AHE )& (DHRL > DL)

I A = 0 (None) (0 ≤ AH A < AHE )& (DHRL ≤ DL)

I A = 0 (None) (AH A < 0)

.

(8)

Figure 5f shows a static situation where a human stands
in a corridor and H A = 0. After initial inducement using
voice interaction (then physical touch), if the human moved
in a direction so that the robot passing width became large
enough, the robot immediately judges that the inducement
was succeeded, and I A becomes high (I A = 1), otherwise,
I A = 0.

3.4 Initial and Subsequent Inducement Selector

The feature of ETN is to allow the robot to provide induce-
ments several times. At the initial inducement, the robot
should selectmutual interaction usingweaker inducement for
minimum social disruption. If the initial inducement fails, it
adopts a stronger inducement as a subsequent inducement by
reference to the failed initial inducement.We here explain the
basic rules for inducement selection for two situations where
the human walks (dynamic) and stands (static) since suitable
inducements are different, as shown in Fig. 6.

3.4.1 Dynamic Situation

• Step 1: voice notification If a humanwho obstructs the path
of the robot (I P = 1) is not aware of the robot (H A = 0),
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Fig. 6 Inducement selector, which is determined from IP, HA, and IA.
a–d shows dynamic situation where human walks and e–h show static
situation where human stands. In dynamic situations, robot first uses

path indication (mutual avoidance) then selects no inducement, pend-
ing, or path indication (full avoidance). In static situations, robot first
uses voice interaction then selects no inducement, physical touch, or
detour

the robot kindly notifies the human of the existence of the
robot by using voice interaction “I am coming through.”

• Step 2: path indication (mutual avoidance) If the human
still obstructs the robot (I P = 1) but is aware of the robot
(H A = 1), the robot provides inducement so that both the
human and robot cooperatively give way. Thus, the robot
selects a mutual-avoidance path (RH , RR) = (α, 1−α), as
shown in Fig. 6a. If the human changes the path so that the
human will not interfere with the robot (I P = 0), the robot
assumes that the inducement was successfully conveyed
to the human and does not provide any inducements, as
shown in Fig. 6b.

• Step 3: path indication (full robot avoidance) If the human
still obstructs the robot (I P = 1) and is still not aware of
the robot (H A = 0) by Step 1 or I A = 0 by Step 2, the
robot selects a full-avoidance path, (RH , RR) = (0, 1),
and heads to the widest passing space to safely avoid a
collision, as shown in Fig. 6d. In another case, if I A =
0.5 by Step 2, the robot suspends to provide inducements
during keeping a safe distance, as explained in Sect. 3.3.3.
If the human does not change the path and the robot crosses
over the safety distance, the robot executes full avoidance,
as shown in Fig. 6c.

3.4.2 Static Situation

• Step 1: voice notification If a humanwho obstructs the path
of the robot (I P = 1) is not aware of the robot (H A = 0),
the robot kindly notifies the human of the existence of the
robot by using voice interaction “Let me pass, please,” as
shown in Fig. 6e. If the human changes the path so that the
human will not interfere with the robot (I P = 0), the robot
assumes that the inducement was successfully conveyed to
the human and does not provide any inducements (Fig. 6f).

• Step 2: physical touch If the human still obstructs the robot
(I P = 1) and is still not aware of the robot (H A = 0), the
robot subsequently uses physical touch to strongly convey
the intent (Fig. 6g). In our previous work [51], humans
moved closely along the lines of the direction of touching
force, and the back and shoulder were suitable touching
points. The robot stands in a suitable position to make a
proper and safe touch with its arm and provide inducible
touch on a human’s back or upper arm, with the maximum
touching force of 50 N [51].

• Step 3: detour If the human still obstructs the robot (I P =
1), although the robot provided the strongest inducement,
the robot gives up passing theway and searches and selects
a detour route (Fig. 6h).
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Fig. 7 Autonomous mobile robot specification

3 m 
5.5m 

3 m 

3m 

Object Experimenter 
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(a) (b) 

Robot des�na�on 

Human des�na�on 

Fig. 8 a Dynamic and b static experimental conditions

4 Experimental Condition

We explain the experimental design, including path change
and physical touch scenarios using the autonomous mobile
robot with omnidirectional wheels, two 6-DOFmanipulators
with torque sensors, as shown in Fig. 7, and human subjects.

4.1 Objective and Design of Experiments

We assumed an ordinal corridor in an office and set the width
to 3 m. As representative scenarios, we conducted a path
change scenario and physical touch scenario. Figure 8 shows
the initial state of the human and robot. We used a pre-built
map that included only walls for the experiments. The objec-
tive of the experiments is to evaluate if the ETN can recover
errors and investigate how the robot with the ETN inter-
acts with humans, so we prepared fundamental and advanced

experiments for dynamic and static scenarios, respectively,
as listed in Table 1.

The fundamental experiment aims to intentionally pro-
duce situations where the robot fails intent conveyance by
asking subjects to take predefined behaviors. We evaluate
from this experiment if the robot can adequately recover
the error. The advanced experiment aims to produce non-
constraint passing situations by asking the subjects to behave
voluntarily. We evaluate from this experiment how smoothly
the robot and human interact. For all the experiments, we
briefed that the subjects would interact with the robot but did
not tell how the robot would act and react to human behavior.

4.2 Experimental Conditions

4.2.1 Path Change (Dynamic Situation)

We asked the subjects to walk at a constant speed of around
0.35 m/s (they practiced several times), the same as the robot
movement speed, to keep the condition over the experiments.
The robot and human stood in the center of the corridor, and
the distance between each other was 5.5 m in the depth direc-
tion and headed to movement destinations (Fig. 8a). This
study evaluates the error-recovering behaviors of both the
robot and humans. To easily triggermiss conveyance of robot
intent, we set the mutual avoidance ratio to (RH , RR) = (2/3
(= 0.67), 1/3 (= 0.33)).

For the fundamental experiment, we set four conditions
with different combinations of (H A, I A) = (1, without),
(1, with), (0, without), and (0, with). In H A = 1, we asked
the subject to walk while facing the robot. They moved in
the same direction as the robot movement after the subject
observed that the robot moved to intentionally produce a
situation where the robot failed to convey the intent to the
human. After this, the subjects can change the path or stop
if needed (e.g., possibly colliding with the robot). In H A =
0, we asked the subject to walk while not facing the robot
(looking at the calendar on the wall). The subjects recognize
the robot’s existence but do not know where the robot is and
how fast the robot moves. The robot provides the subjects
with voice interaction to notify its existence. The procedure
after this was the same as when H A = 1. With I A function,
the robot changes the behavior depending on proactive and
postactive states, but without IA function, the robot contin-
ues the initial inducement. For the advanced experiment, we
prepared two conditions: (HA, IA) = (1, with) and (0, with).
Initial settings were the same as the fundamental experiment,
but we asked the subjects to completely freely move. We
expect that the ETN (=with IA) will recognize the difference
between actual and expected human behaviors and immedi-
ately change robot inducement to achieve smooth passing.
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Table 1 Experimental patterns
and order Condi Fundamental Advanced

Dynamic 1/2 (1, w/o) ↔ (1, w/) 3/4 (0, w/o) ↔ (0, w/) 5/6 (1, w/) ↔ (0, w/)

Static – – 7/8 (0, w/o) ↔ (0, w/) – 9 (0, w/)

*Cell indicates [experimental order (HA, IA)]

4.2.2 Physical Touch (Static Situation)

The subject stood 0.6 m away from the wall and 3 m away
from the robot and waited for what would happen next, as
shown in Fig. 8b. The subjects had the task of having the
luggage with the experimenter. The subjects face away from
the robot (HA= 0) and do not knowwhatwill happen, i.e., the
robot will pass through. The robot interacts with the subjects
by using voice and physical interaction.

For the fundamental experiment, we prepared two condi-
tions: (HA, IA) = (0, without) and (0, with). We asked the
subject not to move since they hold delicate luggage, regard-
less of receiving any inducements, to intentionally produce
a situation where the robot fails to convey the intent to the
human. The robot without IA function continues to touch
the human, but the robot with IA function understands the
human’s intent and detours. For the advanced experiment,
we prepared one condition: (HA, IA) = (0, with). Initial set-
tings were the same as the fundamental experiment, but we
asked the subjects to freely respond to the robot inducement.
Like the dynamic situation, we expect that the ETN will rec-
ognize an error from a human reaction and re-select a suitable
inducement different from the initial inducement.

4.3 EvaluationMethod

The subject was 10 (9:male and 1: female, age: 21–28,mean:
22.2, standard deviation: 2.1). In this study, we adopted a
within-subject design to enable subjects to compare the nav-
igation systems with and without the ETN (IA function). The
subjects only know that they will interact with the robot,
but do not know how they will interact with it. In light of
the experimental contents, we can fix the orders between
dynamic/static, fundamental/advanced, andHA= 0/1. Thus,
we only randomized the order of with and without IA func-
tion for each condition, to mitigate the order effects. The
experimental order is listed in Table 1.

We recorded the human and robot positions in times series
using themotion capturing system (OptiTrack Prime 13).We
evaluated the trajectory and path efficiency called ‘hesita-
tion’ [52] as quantitative evaluation. To evaluate the change
of the velocity vector during movement, we calculated the
hesitation. The hesitation increases drastically when a rapid
velocity change occurs. We denote the velocity vector at
0.35 s ago as Vn−1 and that at time n as Vn, the avoid start

and passed time as TS and TE , and the hesitation H is given
by

H =
TP∫

TS

|Vn − Vn−1|
Vn−1

dt . (9)

Moreover, we evaluate that the ETN improves human psy-
chology, compared to the conventional method. Specifically,
the ETN requires reducing negative feelings that occur at
hesitation and repetitive avoidance. Thus, after each trial,
we asked the seven-scale questionnaires with the ordinal
scale, about [(–) unnatural, (+) no unnatural] to evaluate the
impression of robot behavior, and [(–) discomfort, (+) no dis-
comfort] and [(–) fear, (+) no fear] to analyze the subject’s
negative feelings. The subjects marked a printed question-
naire form by referring to past responses for comparison.

5 Experimental Results

We analyze the experimental results in terms of both quanti-
tative and qualitative aspects.

5.1 Evaluation: Path Change

From the fundamental experiments, we confirmed that the
ETN framework worked adequately, as shown in Fig. 9. This
result is one of themost important contributions in this paper.

5.1.1 Trajectory of Human and Robot

Figure 9 shows an example of the movement of the human
and robot in HA = 0 with/without IA function. Figure 10
shows the actual trajectories of the robot and human (the
same data as Fig. 9). As figures show,without IA function, the
robot kept avoiding to the samedirection independently of the
human reaction, leading to the human’s unsmoothmovement
change. In contrast, with IA function, the robot could observe
that the human moved in the same direction as the robot
movement. Thus, the robot smoothly changed its path to the
opposite side since keeping the same inducement had a higher
possibility of collision. Figure 10 also shows that the distance
between the robot and humanwas shorterwithout IA function
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Fig. 9 Human and robot behaviors in dynamic passing scenario (HA =
0). In a without IA function, robot kept avoiding to the same direction,
leading to unsmooth human movement. In contrast, in b with IA func-
tion, the robot smoothly changed its path to the opposite side, leading
to smooth passing of both human and robot

(around 5 s) than with IA function. This indicates that they
safely and collaboratively passed through, as we expected.

We then analyzed how the robot recovered errors in four
conditions in detail. Figure 11 shows the actual trajectories of
the robot and humanwith the avoidance timing and order, and
Fig. 12 shows the actual and expected avoidance distance of
the robot and human (ARA, ARE , AH A, AHE ). Figures 11a
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and 12a show the result without IA for HA = 1. The robot
first changed the right path to the right as mutual avoidance
at 1.0 s, and the subject intentionally changed the path to the
left at 1.1 s. The robot without IA function kept the initial
avoidance distance until the end, as shown in Fig. 12a. When
the robot-human distance reached around 0.8 m (at 4.8 s), the
subject predicted that they would collide soon, so only the
subject avoided largely. Figures 11b and 12b show the result
with IA for HA = 1. The robot first provided path indication
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Fig. 13 Human’s movement efficiency (hesitation) for dynamic exper-
iment without/with IA function for a HA = 1 and b HA = 0

to the left as mutual avoidance at 0.2 s, and the subject also
changed a path to the right at 1.2 s. The robot could recognize
the error thank to IA function and provided full avoidance to
the right at 1.4 s. As Fig. 12b shows, the robot recognized that
AH A (actual) did not reach AHE (expected) in 0.2–1.2 s, so
it changed ARE (expected) then ARA (actual) reached ARE

in 1.4–2.2 s. Finally, they could pass by each other smoothly
while avoiding at a distance of 2 m.

Figures 11c and 12c show the result without IA for HA
= 0. The robot first selected full avoidance to the right with
voice interaction at 0.9 s. The robot without IA function kept
going without changing its behavior even though the subject
was coming in the same direction. Like Fig. 11a, the subject
finally avoided the robot to the opposite side at 3.9 s, as shown
in Fig. 12c. This would make the subject evoke negative feel-
ings, and the subject responded fear (− 2), as we explained
in the later subsection. Figures 11d and 12d show the result
with IA forHA= 0. The robot first provided full avoidance to
the right at 0.7 s, and it judged I P = 0. However, the subject
changed the path to the left at 1.8 s to occur the interference
again (I P = 1). The robot then re-provided path indication to
the left (opposite direction) as mutual avoidance at 2.6 s, and
finally successfully passed through each other. As Fig. 12d
shows, the human slightly changed the actual avoidance dis-
tance AH A in 2.0–2.5 s, regardless of I P = 0. We confirmed
that the robot could seamlessly respond to the several path
changes of the human.

5.1.2 Hesitation (Movement Efficiency of Human)

In subSect. 4.3, we defined the hesitation to evaluate the
movement efficiency. This index uses the integration of vari-
ation of velocity vector while avoiding movement as losing
movement efficiency. Figure 13 shows the movement effi-
ciency of the subjects. As the figure shows, the loss of
movement efficiency with IA function regardless of human
awareness (HA) was smaller than that without IA function.
Student’s T -test revealed the significant difference between
with/ and without IA in HA = 1 (p < 0.05, t(9) = 3.117)
and marginally significance in HA = 0 (p < 0.1, t(9) =
2.131). A smaller hesitation indicates that the rapid and
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proactive behavioral changes of the robot, thanks to IA func-
tion, enabled the humans to smoother avoidance without
any sudden path changes. These results could be explained
by the trajectories and avoidance distance analyzed in sub-
Sect. 5.1.1.

5.1.3 Questionnaires

We conducted a psychological evaluation using question-
naires to compare how the behavior of robots with and
without IA affects human feelings. We asked about the three
items of unnatural, discomfort, and fear. Figure 14 shows
the questionnaire scores. As figures show, the scores of each
index with IA function regardless of human awareness (HA)
were smaller than those without IA function. Student’s T -test
revealed the significant difference between with and without
IA function in unnatural (p <0.001, t(9)= 5.250), discomfort
(p < 0.005, t(9) = 3.737), and fear (p < 0.001, t(9) = 5.000)
when HA = 1. The significant difference between with and
without IA function in unnatural (p < 0.005, t(9) = 3.473),
discomfort (p < 0.001, t(9) = 4.974), and fear (p < 0.001,
t(9) = 4.974) when HA = 0. We found from the results that
IA function could make human psychology more moderate
and acceptable. This result indicates that robot behaviors to
recover mistakes by its misrecognition would be acceptable.

5.1.4 Discussion (Advanced Experiment)

Here, we analyzed the results of the advanced experiments
to discuss how the robot and human interacted. Figure 15
shows the actual trajectories of the robot and human with the
avoidance timing and order for smooth and unsmooth avoid-
ance, and Fig. 16 shows the actual and expected avoidance
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Fig. 15 Trajectories of robot (circle) and human (triangle) with 0.5 s
time step for four conditions, including timing and order of avoidance
(inducement) of robot and human for advanced experiment. In (a) and
(c), robot changed path at 0.7 s (and 1.4 s) and then human changed
path at 1.5 s (and 2.0 s), indicating a successful intention conveyance.
In (b), robot changed path three times. In (d), robot changed path two
times and their distance was too close at second avoidance

distance of the human and robot (ARA, ARE , AH A, AHE )
for unsmooth avoidances.

Figure 15a shows the smooth avoidance for HA = 1. The
robot initially provided mutual avoidance at 0.7 s. Then,
the subject recognized the inducement from the robot and
changed the path to the left. This example well shows that
the robot’s intent could adequately convey to the human.
Figure 15b shows unsmooth avoidance for HA = 1, where
the robot provided inducements (path changes) three times.
Both the robot and human first changed paths to the direction,
which will make a collision at almost the same time (around
1.0–1.1 s). The robot thus selected full avoidance to the oppo-
site direction at 2.9 s. However, unfortunately, right after the
robot changed the path, the human also changed the path to
the same direction at 3.2 s. The robot rapidly re-changed the
path to the opposite direction at 3.8 s and finally success-
fully passed the human. From Fig. 16a, we can guess that
the reason for the three-times path change is that the human
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Fig. 16 Actual and expected avoidance distance for robot and human
(unsmooth passing situation). In (a), human avoided robot in the same
direction where robot was avoiding, leading to repetitious avoidance. In
(b), robot largely avoided since it could not precisely estimate human
intention. However, robot and human could pass safely in both cases

took a long time (about 2.7 s) to adequately understand the
robot’s path indication and/or the robot took about 2 s to
react to the human’s path change. In the future, we will con-
sider ways to make robot inducements more understandable
to humans (repetitious avoidance sometimes happens even
among humans). The emphasis should be on the fact that
the robot could change its path three times in a short period
(within 4 s), indicating that it has sufficient responsiveness
to decision-making and behavior change. They are important
factors in navigating robots in human-existing environments.

Figure 15c shows smooth avoidance in HA = 0. Initially,
the subject seemed unsure which way to avoid, but the robot
first provided a path indication to the right at 1.4 s. By
responding to it, the subject started to avoid to the opposite
side of the robot about 0.6 s later. This is an example where
the path indication initiated by the robot worked properly.
Figure 15d shows unsmooth avoidance inHA= 0. The robot
provided a path indication to the right at 0.5 s, but the human
also slightly changed the path to the same side as the robot, so
the robot largely changed the path to avoid to the left at 2.5 s.
The distance between the robot and human when they passed
was quite close. As shown in Fig. 16b, the human showed
(slight) signs of avoiding to the left side at 1.2 s, but the robot
changed the avoidance direction at 2.5 s, which had a latency
of about 1 s. To increase the responsiveness more, the system

needs to predict the actual avoidance distance based on the
time-variation of human trajectory. It is worth noting that the
fact that the robot could avoid the subject in this situation
means that it can safely avoid humans, who approach with-
out considering others, e.g., humans walking while on the
phone, and indicates that the robot is highly adaptable.

Table 2 lists the number of path changes until the robot
and subjects successfully passed through for HA = 1 and
0, respectively. We found from the table that the number of
inducements for HA = 1 is higher than that for HA = 0. For
HA = 0, the robot selected full avoidance at the first induce-
ment due toHA= 0, so the success rate of intent conveyance
was higher than mutual avoidance (RH , RR) = (2/3, 1/3).
However, it is inappropriate for the robot to always perform
full avoidance due to the robot’s movement efficiency. In
some cases, e.g., Fig. 15c, even when the robot performed
full avoidance, the human performed additional avoidance.
Thus, the ETN that enables the robot to appropriately adjust
the avoidance distance depending on the situation will be
useful.

5.2 Evaluation: Physical Touch

From the experiments, we confirmed that the proposed ETN
framework worked adequately, as shown in Fig. 17. This is
also one of the most important contributions in this paper.

5.2.1 Human and Robot Behaviors

Figure 17 shows the movement of the robot and human in
HA = 0, with/without IA function. Figure 17a shows an
example of a detour with IA function. The robot first phys-
ically touched the subject, measured the distance between
the human and wall after the initial inducement, and judged
that the robot could not pass through, that is, IA = 0. The
robot thenmoved backward to select another way. Figure 17b
shows an example without IA function. The robot repeated
the physical touch since it could not estimate the human
intent from the situational difference between before and
after inducement. We found that the proposed ETN could
select robot behaviors suitable for the situations.

5.2.2 Questionnaires

Figure 18 shows the results of the questionnaire scores. As
the figure shows, the scores of each index with IA function
were worse than those without IA function. Student’s T -test
revealed the significant difference between with and without
IA function in unnatural (p < 0.05, t(9)= 3.146), discomfort
(p < 0.05, t(9) = 2.676), and fear (p < 0.05, t(9) = 2.648).
We also confirmed from the results that IA function could
make human psychology more moderate and acceptable.
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Table 2 Number of path indications until successful avoidance

Subject No 1 2 3 4 5 6 7 8 9 10 M (SD)*

No. inducements (HA = 1) 1 3 3 2 1 1 2 1 2 1 1.7 (0.8)

No. inducements (HA = 0) 1 2 1 1 1 1 1 1 1 2 1.2 (0.4)

*M: mean, SD: standard deviation
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Fig. 17 Human and robot behaviors in static scenario (HA = 0). In
(a) with IA function, robot first provided physical touch and recognized
that human did notmove, thenmoved backward to detour. In (b) without
IA function, robot repeatedly provided physical touch because the robot
could not estimate the human intent

5.2.3 Discussion (Advanced Experiment)

In the advanced experiment for all ten subjects, the robot
could pass through, as shown in Fig. 19. Here, we describe
the procedures of the robot passing through as follows. First,
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Fig. 18 Subjective evaluation in unnatural, discomfort, and fear for
static experiment without/with IA function
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Touch 

Successfully 
passed 

Voice interac�on 

Fig. 19 Human and robot behaviors in static scenario (HA = 0) for
advanced experiment. Robot first used voice interaction and human
did not move. Then, with IA function, robot used physical touch and
successfully passed

the robot moved to the right behind the subject and asked,
“Letme pass, please.” If the subject did not respond, the robot
provided aphysical touch for notice. If the subject avoided the
distance enough to allow the robot to pass through, the robot
said, “Thank you,” and moved forward and went through.
The result shows that all the subjects made the robot pass
through, and the detour was not observed, indicating that the
robot could make a way by active inducement.

Table 3 lists the timing when the subjects gave way to the
robot. From the table, we found that six out of ten subjects
gave way to the robot through voice interaction. These six
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Table 3 Timing to give a way (1st: voice, 2nd: contact)

Subject no. 1 2 3 4 5 6 7 8 9 10

Inducement Contact Contact Voice Contact Voice Voice Voice Voice Contact Voice

subjects said, “the robot used voice when it was close to me,
so I could guess that the robot was trying to pass through the
gap between I and the wall,” “When the robot spoke to me,
I avoided it because I could guess where the robot wanted
to pass,” and “When I turned around by voice, the robot was
there. I felt that the robot talked to me, so I gave way to the
robot.” Note that the authors translated those comments from
Japanese to English. The common point is that the timing
of voice interaction and the distance between the robot and
subject are important to accurately convey the navigational
intent of the robot to humans. In this experiment, the robot
moved to the diagonally backward right of the subject and
used voice interaction. The subjects could understand that
the robot spoke to them and wanted to pass through the right
of them. Thus, the subjects finally move to the left. We found
from the discussion that the timing of inducement and stand-
ing position with respect to the subject is important when the
robot uses voice interaction.

Then,we analyzed the remaining four subjectswhomoved
by physical touch. They responded, “I did not know how
much I should move from only voice interaction, but by phys-
ical touch, I could know the direction and magnitude to be
moved.” “I did not know who was talked to by the robot since
I was looking ahead. However, from physical touch, I could
receive the intent that the robot wanted me to avoid.” “When
the robot was behind, there were many possible paths to go,
but I moved since physical touch from the robot made me
confirm that the robot wanted to pass through my right side.”
These comments indicate that the voice interaction loosely
conveys the intent to an unspecified number of people while
the physical touch could convey the detailed intent, including
direction and magnitude, to a specific person. We confirmed
that physical contact was an inducement that could strongly
convey specific information to a specific person.

Finally, we discuss the acceptability of active inducement
from the robot in different cultural norms. The experiments
were performed in Japan, and all the subjects were Japanese.
In our experiments, we did not find subjects who unaccepted
the robot inducement, but the active inducement might make
people from different cultural backgrounds uncomfortable.
We will investigate the conditions using physical touch or
the number of repetitive inducements and then develop a
parameter-tuning scheme suitable for applied domains.

6 Conclusion

In this study, we proposed error-tolerant navigation (ETN)
with a process to actively estimate the human intent by iter-
ative interaction with the robot. As a preliminary study, we
focused on ‘the intent conveyance from robot to human’ and
‘its achievement.’ The ETN estimated interference possibil-
ity (IP) to determine the necessity of inducement, human
awareness (HA) to select an inducement method, and induce-
ment achievement (IA) to judge the need for action again.
If the ETN estimated the interference, the robot provided
inducements according to HA, such as path indication when
HA was high or voice and physical interaction when HA was
low. Each inducement corresponds to an expected behavior
change in the human. IA was calculated from the difference
between the expected and actual changes. If the change was
not observed within the specified time after the inducement,
inducements with a stronger intent conveyance were exe-
cuted. When IA was none, after the strongest inducement,
the robot selected another route. The results of experiments
indicated that the proposed ETN could achieve smoother
movement of humans and reduce psychological burden com-
pared with a conventional navigation system (without ETN),
indicating that it has sufficient responsiveness to decision-
making and behavior change. They are important factors
in navigating robots in human-existing environments, so we
could say that the ETN could contribute to proposing a new
human–robot interaction with the acceptance of error. We
implemented and evaluated the ETN in the limited scenarios,
but the proposed error-correction loop would be a common
and essential feature for human-aware interactive navigation
in arbitrary scenarios. Even if the robot makes a small mis-
take in a prediction process, it could prevent a fatal mistake
by recognizing the small mistake and recovering it thanks to
an error-correction loop.

On the other hand, this study also has limitations to be
addressed in the future for making the ETNwork well in real
environmental settings. Each function of the ETN frame-
work should be improved as follows. For IP judgment, a
probabilistic model to estimate interference is required. For
HA judgment, a precise and generalized model to estimate
awareness by using time series and semantic environmental
information should be developed after consolidating a prac-
tical methodology to recognize the ground truth of whether
a human is truly aware of a robot or not. We will expand
human awareness to visual, auditory, and haptic senses. For
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IA judgment, we need to develop a learning system thatmem-
orizes the relationship between the situation and the robot
experience. Moreover, we will apply this ETN framework
to more dynamic complex environments, e.g., station con-
courses where humans walk fast or crowded shopping malls,
to make it generalized. We will also assess human accept-
ability and its transition toward the ETN framework through
long-term experiments.
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