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Abstract

This paper presents time-resolved numerical simulations of a well-cha-

racterized sooting swirl flame at elevated pressure. Recently published un-

steady Reynolds averaged Navier-Stokes simulations (URANS) are com-

pared here to newly performed large eddy simulations (LES). Finite-rate

chemistry, where transport equations are solved for each chemical species,

is employed for the gas phase, a sectional approach for polycyclic aromatic

hydrocarbons (PAHs), and a two-equation model for soot particles. Feed-

back effects such as the consumption of gaseous soot precursors by growth

of soot and PAHs are inherently captured accurately by a coupled solution of

the set of governing equations. The numerical results (velocity components,

temperature and soot volume fraction) compare well with experimental data.

No significant differences between URANS and LES are observed for time-

averaged temperatures and velocity components, while the prediction of soot

is significantly improved by LES. It will be shown that an accurate descrip-

tion of the instantaneous flame structure (especially of the hydroxyl radical

distribution) by resolution of turbulent scales is of fundamental importance

for accurate soot predictions in confined swirl flames with strong secondary

air injection.

Keywords: Model combustor, Sooting swirl flame, Finite-rate chemistry, Un-

steady Reynolds averaged Navier-Stokes simulation (URANS), Large eddy sim-

ulation (LES)

1 Introduction

Information about the soot evolution is of high relevance for the improvement of

combustion devices. Soot has a high radiative emissivity and thereby contributes
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significantly to locally elevated heat loads on combustion chamber walls (Naka-

mura et al., 1982). Knowledge of local soot concentrations may thus be impor-

tant for the design of combustion chamber walls. Furthermore, the emission of

particulate matter must be kept as low as possible due to the adverse effects of

particulates on health, environment, and climate (Kärcher , ed.; Jensen and Toon,

1997; Petzold et al., 1998, 1999). This requires in-depth knowledge about soot

formation and oxidation processes at technical combustion conditions. Soot pre-

dictions by means of CFD simulations are of high relevance in this context since

they complement experimental investigations which in many cases are limited to

exhaust gas analysis because optical access to the flame is not realizable. Pre-

vious soot CFD simulations of real scale aero-engine combustors (Blacha et al.,

2011; Eberle et al., 2014; Lecocq et al., 2014; Mueller and Pitsch, 2013) lacked a

rigorous model validation, because the experiments were limited to smoke num-

ber measurements at the combustor exit. So far detailed soot measurements were

performed mainly for academic test cases like laminar flames (Arana et al., 2004;

Figura and Gomez, 2014; Geigle et al., 2005; McEnally and Pfefferle, 2000; Saf-

faripour et al., 2011; Santoro et al., 1987; Tsurikov et al., 2005; Zhao et al., 2005)

or turbulent jet flames (Gu et al., 2017; Köhler et al., 2012; Qamar et al., 2009).

Such simple validation test cases are not representative for real scale devices, how-

ever. Therefore, Geigle et al. (2014; 2017; 2015a; 2015b) performed detailed

measurements of a semi-technical model combustor. The ethylene fueled combus-

tor provides well-defined boundary conditions and comprehensive validation data

on one hand and on the other hand features technically relevant conditions such

as a confined swirling flow and operation at elevated pressure. This combustor is

a target case of the International Sooting Flame (ISF) workshop and has been in-
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vestigated numerically by several authors. Koo et al. (2016) performed large-eddy

simulations (LES) of an earlier version (Geigle et al., 2011) of the cited model com-

bustor. Using a hybrid method of moments (HMOM) soot model (Mueller et al.,

2009) and a radiation/flamelet progress variable (RFPV) combustion model (Ihme

and Pitsch, 2008; Mueller and Pitsch, 2012), they obtained promising LES results.

Using a similar modeling approach, Wick et al. (2017) obtained a good agreement

to measured velocities and temperatures. Qualitatively, a reasonable agreement to

the soot measurements was found. An overprediction of the maximum soot vol-

ume fraction was observed, however, and attributed to either the soot model itself

or the combustion model which uses flamelet tables for non-premixed combustion.

Dupoirieux et al. (2016) investigated the cited model combustor using LES with

an artificially thickened flame (ATF) subgrid TCI model (Colin et al., 2000) and

a two-equation soot model (Leung et al., 1991) and obtained a good quantitative

agreement between LES results and measurements. Franzelli et al. (2015) used a

similar modeling framework to compare a fully-tabulated chemistry model (Vic-

quelin et al., 2011) to a hybrid model (Lecocq et al., 2014) where a few species are

transported to obtain the thermo-chemical state from look-up tables. Their LES

results were encouraging, the peak soot volume fractions obtained by the two com-

bustion models differed by about one order of magnitude, however. This indicates

that the soot evolution in this combustor is sensitive to the type of combustion

model used. That can be related to the complex combustion conditions encoun-

tered. In particular, partial premixing, mixing of recirculating burnt gas with fresh

mixture, and the modeling of soot precursor consumption can be very challeng-

ing for tabulated chemistry approaches because their thermo-chemical manifold is

limited by a priori generated look-up tables (Pope, 2013).

3



This clearly motivates the use of a more accurate description of combustion.

In the present work this is obtained by using a finite-rate chemistry (FRC) model,

which does not require a priori generated tables because combustion described by

detailed reaction mechanisms is solved on the fly. Furthermore, FRC models al-

low a full coupling of soot and the thermo-chemical state of the gas phase by a

simultaneous solution of all governing equations. Moreover, element conservation

is ensured in this approach. The applicability of finite-rate chemistry for soot pre-

dictions in turbulent swirl flames was investigated by Eberle et al. (2015). Since

LES-FRC simulations are computationally very expensive, especially at the high

Reynolds numbers encountered in real-scale combustion devices (Gicquel et al.,

2012), they decided to perform unsteady Reynolds averaged Navier-Stokes simu-

lations (URANS). The applicability of URANS for such applications was demon-

strated earlier by Bolla et al. (2014) who performed CFD soot simulations in a

heavy-duty diesel engine.

The URANS results of Eberle et al. (2015) showed good agreement with mea-

surements in terms of time-averaged velocity components and time-averaged tem-

perature; also a precessing vortex core (PVC) was resolved in accordance with the

experiments from Geigle et al. (2017). However, deviations between measured

and calculated soot distributions were observed and partially attributed to the limi-

tations of statistical turbulence modeling. In particular it was found that URANS,

in contrast to the measurements of Geigle et al. (2015a), persistently predicted high

hydroxyl (OH) concentrations on the center line of the combustor close to the stag-

nation point between the inner recirculation zone and the inflow. This prevented

soot presence in this region because of the high oxidative potential of OH. For

clarification of these earlier findings, LES of the model combustor are conducted
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in this work, employing the DLR THETA code (Di Domenico, 2008) and a two

equation soot model which has been used in a number of previous works (Blacha

et al., 2011; Di Domenico et al., 2010; Eberle et al., 2014, 2015). The LES results

will be compared to recently published URANS results (Eberle et al., 2015) and

differences will be analyzed.

2 Methodology

Basis of this work are the soot and PAH models implemented in the DLR code

THETA (Di Domenico et al., 2010; Blacha et al., 2012). THETA is an unstructured

finite-volume solver which has been optimized for low Mach number combustion

problems. Combustion is modeled by finite-rate chemistry. PAHs are described by

a sectional approach where transport equations are solved for each section and soot

is treated by a two equation model. Chemical reactions involving soot and PAHs

are formulated in Arrhenius form and are solved in the same way as reactions

of gas phase species. This allows a full coupling of soot, PAHs, and gas phase

species. Feedback effects of soot and PAHs on the gas phase such as consumption

of gaseous soot precursors (predominantly acetylene, benzene and toluene) as well

as heat radiation are thus inherently captured accurately.

5



2.1 Governing Equations

The filtered and modeled equations for conservation of mass and momentum read

∂ρ

∂ t
+

∂ρ ũi

∂xi

= 0 , (1)

∂ρ ũi

∂ t
+

∂ρ ũiũ j

∂x j

+
∂ p∗

∂xi

−2
∂

∂x j

(
(µ +µt)

(
S̃i, j −

1

3
S̃k,kδi, j

))
= ρgi . (2)

The overbars φ and φ̃ denote Reynolds and Favre averages in the URANS con-

text and respective filtering operations in the LES context. ui is the velocity com-

ponent in xi-direction, ρ the density, µ the molecular viscosity, µt the turbulent

viscosity, Si, j the strain tensor, and gi the gravity constant in xi-direction. The

pseudo-pressure p∗ is defined as p∗ = p+ 2
3
ρkδi j, with p being the pressure, k

the turbulent kinetic energy, and δi j the Kronecker delta. In case of URANS, µt

is calculated by the two-equation shear stress transport (SST) turbulence model

from Menter (1994) and in case of LES by the zero-equation wall adapting local

eddy viscosity model (WALE) from Nicoud and Ducros (1999). The filtered and

modeled transport equations of the specific enthalpy h (h is defined as the sum of

thermal and chemical enthalpy) and reactive scalars Yα (including mass fractions of

gaseous and PAH species, soot mass fraction Ys, and soot particle number density

ns) read

∂ρ h̃

∂ t
+

∂ρ ũih̃

∂xi

−
∂

∂xi

((
λ

cp

+
µt

Prt

)
∂ h̃

∂xi

)
= ωh , (3)

∂ρỸα

∂ t
+

∂ρ ũiỸα

∂xi

−
∂

∂xi

((
µ

Sc
+

µt

Sct

)
∂Ỹα

∂xi

)
= ωα , (4)
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where λ is the thermal conductivity, cp the specific heat at constant pressure,

Prt = 0.7 the turbulent Prandtl number, and Sc and Sct = 0.7 the laminar and tur-

bulent Schmidt number, respectively. Due to the large Schmidt number of soot

particles (1/Sc → 0), molecular diffusion is neglected for Ys and ns, while Sc = 0.7

is chosen for other reactive scalars. The source terms ωh and ωα describe heat ra-

diation and consumption as well as production of reactive species due to chemical

reactions. Assuming an optically thin medium, the radiative heat loss is given by

the Stefan-Boltzmann law

ωh =−4 σS ε T 4 , (5)

with σS = 5.669 × 10−8 W m−2 K−4 being the Stefan-Boltzmann constant and ε

the emissivity factor. To ensure comparability with previous results (Eberle et al.,

2015), the radiation model from Di Domenico et al. (2010) which assumes radiative

heat losses in confined ethylene flames to be dominated by soot radiation is used in

this work as well. The emissivity factor is described as a function of temperature

and soot volume fraction as

ε = 411 T fv . (6)

The constant 411 was obtained by calibration using soot and PAH models which

are very similar to those applied in the present work. This comparable simple

and efficient model was further tested in later works (Blacha et al., 2012; Eberle

et al., 2015) and generally led to satisfactory temperature predictions. The chemical

7



source term of a reactive scalar α reads

ωα = Mα

Nr

∑
r=1

(
ν ′′

α,r −ν ′
α,r

)
{

k f ,r

Nsp

∏
β=1

C
O′

β ,r

β − kb,r

Nsp

∏
β=1

C
O′′

β ,r

β

}
. (7)

where Mα is the molar mass and Nr the number of reactions. Oβ and Cβ = ρYβ/Mβ

are the reaction order and the concentration of species β . k f and kb are forward and

backward rate coefficients which are modeled by Arrhenius equations.

A major issue in turbulent combustion LES is the calculation of the filtered

chemical source term ωα(T,Y ), which is a non-linear function of temperature and

species mass fractions and thus involves unclosed correlations which are frequently

referred to as subfilter turbulence chemistry interaction (TCI). Different closures

for these subfilter TCI have been developed and some of them are reviewed in (Gic-

quel et al., 2012; Pitsch, 2006; Pope, 2013). These models differ significantly in

complexity (and thus in computational cost) and even very detailed models feature

modeling uncertainties. A simple subfilter model is the quasi laminar chemistry

(QLC) approach (also referred to as implicit LES closure (Duwig et al., 2011;

Hodzic et al., 2017)) where chemical source terms are evaluated directly on the

filtered thermo-chemical variables

ωα(T,Y ) = ωα(T̃ ,Ỹ ) (8)

While this approach is not applicable to (U)RANS (Duwig et al., 2011), some

authors report that it can be a reasonable approximation for LES if the flame is

’adequately’ resolved (Duwig et al., 2011; Edwards et al., 2012; Fulton et al.,

2016; Hodzic et al., 2017; Lourier et al., 2015; Potturi and Edwards, 2015; Ranjan
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et al., 2016; Strakey and Eggenspieler, 2010; Zhang et al., 2015, 2010). Fulton

et al. (2016) for example obtained reasonable LES-QLC results using an aver-

age mesh spacing which was half the laminar flame thickness. Another exam-

ple is the LES-QLC simulation of Strakey and Eggenspieler (2010) which showed

a good agreement to OH-measurements and little differences compared to LES-

ATF (Colin et al., 2000) and LES-EBU (eddy-break-up model) (Spalding, 1971)

simulations. This good performance has been attributed to a relatively fine grid.

The subfilter dynamics of the soot aerosol require a special consideration since

soot structures are highly intermittent in space and time. Also, due to the high

Schmidt number of soot particles, soot dynamics are characterized by very small

Batchelor scales (Paul et al., 2004). In other words, they can occur at very small

length scales, which in practice cannot be resolved by an LES grid. By assum-

ing statistical independence of gas phase scalars and soot moments, Mueller and

Pitsch (2011) developed a presumed PDF closure for the soot subfilter dynamics.

In this model, the intermittent nature of these dynamics is accounted for by two

δ -functions. Donde et al. (2013) proposed a soot subfilter model where stochastic

transport equations are solved in a Lagrangian framework to obtain the joint PDF

of gas phase scalars (mixture fraction, progress variable, and enthalpy) and soot

moments. The influence of soot subfilter dynamics on the resolved statistics of

soot evolution was not quantified, however. Other examples where subfilter TCI

models for gaseous combustion were extended to describe the subfilter dynamics of

the solid phase are the linear eddy model (LEM) (El-Asrag and Menon, 2009) and

conditional moment closure (CMC) (Bolla et al., 2014; Kronenburg et al., 2000).

Such approaches, however, are computationally very expensive especially when

coupled to finite-rate chemistry models with detailed mechanisms.
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There are on the other hand several recent turbulent flame simulations where

promising results have been obtained without an explicit modeling of the soot sub-

filter dynamics (Dupoirieux et al., 2016; Hessel et al., 2014; Lecocq et al., 2014;

Shahriari et al., 1995). This seems to indicate some robustness with respect to soot

subfilter dynamics at least as far as resolved bulk soot properties such as soot vol-

ume fractions are concerned. In this work, it was therefore deliberately decided

to take the QLC assumption for subfilter TCI and subfilter soot dynamics. For

reasons of consistency, the radiation term is also evaluated directly on the filtered

variables ωh(T, fv) = ωh(T̃ , f̃v). As we consider subfilter modeling to be important

for more detailed investigations, the present QLC-LES simulation and our expe-

rience in TCI modeling (Fiolitakis et al., 2014; Gerlinger, 2003, 2017; Gerlinger

et al., 2001, 2005) will serve as a starting point for future works which will address

the treatment of soot subfilter dynamics.

2.2 Gas Phase Chemistry

The kinetics of gas phase species are modeled by a reaction mechanism which

describes the formation of aromatic hydrocarbons up to benzene and toluene and

has been validated for the combustion of small hydrocarbons, such as methane

or ethylene at atmospheric and high-pressure conditions (Slavinskaya and Frank,

2009; Slavinskaya and Haidn, 2008). The mechanism includes 43 species and

304 elementary reactions.

2.3 PAH Model

PAHs are modeled by a sectional approach, where aromatic species with a molar

weight between 100 and 800 g/mol are discretized by three logarithmically scaled
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sections. PAH chemistry is divided into four sub mechanisms: PAH formation,

C2H2 addition, PAH collisions, and PAH oxidation. As the PAH model is de-

scribed in detail by Blacha et al. (2012), only a brief overview is given here. PAH

formation, or rather interaction between gas phase and PAH0 in general, is mod-

eled by 19 reversible reactions derived from the detailed reaction mechanisms of

Richter et al. (2005) and Slavinskaya and Frank (2009). An example is the reaction

C7H7 +CH2 = A1C2H3 +H, where styrene is replaced by (ν PAH0) and the stoi-

chiometric coefficient ν is calculated from the conservation of mass. A full list of

reactions and reaction rate parameters is given by Blacha et al. (2012). PAH growth

is described by the HACA (hydrogen abstraction - acetylene addition) mechanism

from Frenklach and Wang (1994) and by PAH collisions,

PAHk +PAH j → ν ′′
1 PAHk +ν ′′

2 PAHk+1 +ν ′′
H2

H2, (9)

with j ≤ k, where for k = 3, PAHk+1 is replaced by soot. In this way, PAH growth

reactions which involve the last PAH bin as reactant describe soot inception. The

rate of reaction (9) is determined by the kinetic theory of gases using a constant

collision efficiency γk, j = 0.3. Following Pope and Howard (1997) stoichiometric

coefficients are calculated depending on intra sectional distribution functions and

atom conservation. Regarding PAH oxidation, the two oxidants OH and O2 are

considered.

2.4 Soot Model

Different techniques for the statistical approximation of the soot particle size distri-

bution (PSD) have been developed. In two-equation models, a monodisperse soot
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PSD and spherical soot particles are assumed (Leung et al., 1991; Zamuner and

Dupoirieux, 2000). A more detailed statistical approximation of the soot PSD is

given by the method of moments (Donde et al., 2013; El-Asrag and Menon, 2009;

Frenklach and Harris, 1987; Mueller and Pitsch, 2013), where transport equations

for moments of the soot PSD are solved. In sectional approaches (Blacha et al.,

2012; D’Anna and Kent, 2008; Dworkin et al., 2011; Lindstedt and Waldheim,

2013; Richter et al., 2005; Smooke et al., 2005), the soot PSD is discretized into

sections with averaged chemical and physical properties. A detailed but costly de-

scription of the soot PSD is provided by Monte Carlo simulations (Morgan et al.,

2007; Mosbach et al., 2009). Due to their computational efficiency two equation

soot models are widely used for simulations of complex combustion configurations

as for example turbulent jet flames (Kronenburg et al., 2000), gas turbine combus-

tors (Lecocq et al., 2014) or diesel engines (Bolla et al., 2014). Therefore, a two

equation model where the soot is described by the soot mass fraction Ys and the

soot particle number density ns is used in the present work. This model considers

soot surface growth by acetylene addition and PAH condensation, coagulation, and

soot oxidation by OH and O2. As discussed above, soot nucleation is described

by PAH growth reactions which involve the last PAH section as reactant. A more

detailed derivation is given by Blacha et al. (2011) and Di Domenico et al. (2010).

The model is validated for laminar and turbulent combustion including different

fuels ranging from methane to Jet-A1 surrogates. Using the same set of model

constants for all simulations, a good overall agreement with experiments could be

demonstrated (Blacha, 2012; Blacha et al., 2012; Köhler et al., 2012).
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3 Results

3.1 Investigated Test Case

The set-up of the model combustor is illustrated in Fig. 1. The nozzle is fed by

three concentric flows. Air at room temperature is injected through a central noz-

zle (diameter 12.3 mm) and an annular nozzle (inner diameter 14.4 mm, outer

diameter 19.8 mm). Both air flows are fed from separate pleni and pass radial

swirlers. Gaseous fuel (ethylene) is injected between the co-swirling air flows

through 60 straight channels (0.5 × 0.4 mm2). The fuel channels are resolved by

the CFD grid and form a concentric ring mimicking the atomizing lip for spray

combustion in aero-engine combustors (cf. Fig. 1(b)). The combustion chamber

measures 120 mm in height and has a square cross section of 68×68 mm2 with

beveled edges. Four quartz windows (height 127 mm, width 59 mm) provide ex-

cellent optical access to the flame. Secondary air is injected from the four corners

of the combustion chamber through ducts with 5 mm diameter at a height of 80 mm

(cf. Fig. 1(a)). More details about burner configuration, test rig, and experimental

setup are given by Geigle et al. (2014).

An operating point with a pressure of 3 bar and a thermal power of 38.6 kW

is investigated. The equivalence ratio in the primary combustion zone is φ = 1.2

and the total equivalence ratio including secondary air amounts to 0.86. The inflow

boundary conditions are given in table 1. Comprehensive validation data obtained

by laser diagnostics (velocity components by stereo-PIV (particle image velocime-

try), temperatures by SV-CARS (shifted vibrational coherent anti-Stokes Raman

scattering), soot volume fractions by LII (laser-induced incandescence), and PAH

and OH concentrations by PLIF (planar laser-induced fluorescence)) is available
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(Geigle et al., 2014, 2015a,b, 2017).

The simulations are performed on a three-dimensional tetrahedral grid with

6.6 million points corresponding to 36.5 million tetrahedra. The computational

domain is shown in Fig. 1. The inflow boundaries are placed well upstream of the

swirlers. Heat losses are taken into account by isothermal walls with estimated wall

temperatures based on thermocouple measurements. These temperatures amount

to 350 K for the swirlers, 600 to 700 K for the combustion chamber, and 900 K

for the windows. The mesh was locally refined in the vicinity of the fuel channels

to a spatial resolution of ∆x = 3
√

Vcell ≈ 0.05 mm to properly resolve the mixing of

fuel and air (cf. Fig. 1(b)). The resolution in the region of flame stabilization is

0.25 mm, while 0.5 mm are applied in the majority of the computational domain,

and 1.0 mm towards the outlet passage. With this grid spacing the OH layer is

resolved by 4 to 8 points in the region of flame stabilization and soot filaments

are resolved by more than 5 points. The ratio of turbulent to molecular viscosity

is frequently used to a posteriori evaluate the grid resolution. This ratio is sig-

nificantly smaller than 10 in the present LES which indicates a good resolution

of turbulent structures (Ivanova et al., 2012). Furthermore, the ratio of resolved

to total temperature variance was evaluated and values greater than 0.9 suggest

the subfilter variance of reactive scalars to be reasonably resolved (Lourier et al.,

2015). Second order discretization schemes are used in space and time. A time

step width of 0.5 µs was applied to ensure convergence. Pressure-velocity cou-

pling is realized by a projection method from Chorin (1968). In total, 57 transport

equations are solved (five equations for momentum, pressure correction and spe-

cific enthalpy; four equations for turbulence and TCI modeling (only in case of

URANS); 43 equations for gas phase species; and five equations for PAHs and
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soot, respectively). Statistics were sampled over a physical time of approximately

60 ms, which corresponds to about six flow through times based on bulk flow ve-

locities and chamber length. One simulation took about 55 days on 256 cores (≈

338 000 CPU hours on Intel Xeon X5570 quad-core processors with a clock rate

of 2.93 GHz).

3.2 Velocity Field

Figure 2 shows streamlines of representative calculated instantaneous flow fields.

Dominant features of the turbulent swirling flame are the inner and outer recircula-

tion zones (IRZ and ORZ) which provide heat and radicals for flame stabilization

(Stöhr et al., 2015). Since statistically averaged equations are solved in URANS,

the calculated velocity field displayed in Fig. 2(a) is per model definition periodic

in time and smoother than the true turbulent field (Spalart, 2000). LES on the

other hand resolves turbulent scales and thereby predicts significantly more com-

plex flow patterns as shown in Fig. 2(b). In agreement to the measurements (Geigle

et al., 2017; Boxx et al., 2016), both, URANS and LES predict a precessing vortex

core (PVC). Spectra of axial velocity components at a probe point in the vicinity of

the PVC (see the label in Fig. 2(a)) are given in Fig. 3. It has been shown by Eberle

et al. (2015) that the velocity amplitudes at f ≈ 500 Hz correspond to the hydro-

dynamic structure of the PVC. The predicted PVC frequencies ( fURANS = 515 Hz,

fLES = 440 Hz) agree well with experimental findings from Boxx et al. (2016).

Measured and predicted time-averaged axial velocities are compared in Fig. 4.

The calculated velocity fields are very similar and agree well to the PIV-SoC (sum

of correlation) data. The only notable difference between simulation and experi-

ment is observed in the vicinity of the injection system, where the measured veloc-
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ity peaks are wider then the predicted ones. This deviation has also been observed

in the LES of Wick et al. (2017) and, as will be discussed in the following, can be

attributed to the limitations of the SoC technique.

A comparison between simulation and experiment by means of radial profiles

is given in the following. To this end, Figs. 5 to 7 show time-averaged and rms

velocity components of the non-reacting flow field, while axial velocities at flame

conditions are given in Fig. 8. Two experimental data sets are shown in the latter

case. The statistical evaluation of PIV-FoV data (field of view) is more accurate

than the PIV-SoC data (sum of correlation). While PIV-SoC provides only time-

averaged velocities, more detailed information including instantaneous and rms

velocities can be obtained by PIV-FoV (Geigle et al., 2017). Reliable PIV-FoV

data could only be determined covering a small area of the flame due to the high

complexity of the experimental setup (Geigle et al., 2017), however. Close to the

burner (x = 4 mm and x = 12 mm), the flow field is characterized by velocity peaks

and high rms values between inner and outer shear layer and by a pronounced IRZ.

At x = 45 mm, the velocity distribution is more homogeneous and the central ve-

locity plateau which develops downstream of secondary air injection is captured

well by both, LES and URANS. At non-reacting conditions, time-averaged and

rms velocities are predicted with excellent agreement. The deviations in vrms and

wrms at x = 4 mm can be explained by the limited spatial resolution of the PIV

system (1.7 × 1.7 mm2) (Geigle et al., 2017). It should also be noted that the sta-

tistical evaluation of PIV data close to walls is very challenging. This applies in

particular to the out-of-plane velocity component w. At flame conditions, the pro-

files show a qualitatively similar behavior, the uncertainty in both numerical results

and experimental data is higher, however. The uncertainty in the predicted velocity
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profiles results from feedback effects of the flame on the velocity, while the high

soot luminosity complicates the evaluation of experimental data. This leads to sig-

nificant differences between PIV-SoC and PIV-FoV data especially at x = 12 mm

where wider velocity peaks are obtained by PIV-SoC. At the cited axial position,

the calculated velocity peaks are sharper compared to the experiment, leading to a

wider IRZ. Also, the maximum negative axial velocity in the IRZ is higher than in

the experiment, especially in case of URANS at x = 4 mm. Given the high com-

plexity and the mentioned challenges of the test case, a reasonably good agreement

between simulation and experiment can be reported. This level of agreement is

comparable to previous LES of sooting swirl flames (Koo et al., 2016; Wick et al.,

2017) and no major differences in terms of time-averaged axial velocity are found

between URANS and LES. LES however provides a more detailed representation

of the instantaneous flow field (cf. Fig. 2) and more comprehensive statistics such

as rms values.

3.3 Temperature

Measured and calculated temperatures are compared in Fig. 9, where radial pro-

files at x = 1, 12, 45, and 95 mm are shown. Time-averages are given on the left

and rms values on the right side. At the most upstream position, measurements

and LES show cold gas in the IRZ, while recirculating hot gas is present in the

ORZ. This is in contrast to the URANS results where hot gas is also found in the

IRZ, which is related to the overpredicted negative axial velocity (cf. Fig. 8). As

a further difference, URANS underpredicts the temperature in the ORZ. The rms

peaks in the vicinity of the burner axis are not resolved by the measurements and

indicate the occasional presence of hot gas. At x = 12 mm, hot gas penetrates
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the IRZ and low temperatures are observed only between the inner and the outer

shear layer, where high rms temperatures indicate strong fluctuations of the flame.

URANS overpredicts the width of the central hot temperature plateau while the

LES temperatures between the inner and outer shear layer are higher than in the

experiment. Taking into account that accurate temperature predictions in the region

of flame stabilization are highly challenging under such complex conditions, a rea-

sonably good agreement between simulation and experiment is obtained, despite

the cited deviations.

The homogeneous temperature profile and the comparably low rms values at

x = 45 mm indicate a largely burnt mixture. The very good agreement at x = 45 mm

and in the post-quench region (x = 95 mm) suggests that heat losses are also

well described. Overall, the level of agreement represents the state of the art

(Dupoirieux et al., 2016; Wick et al., 2017) and, again, no significant differences

are observed between URANS and LES.

3.4 Soot evolution

Measured (Geigle et al., 2015a) and calculated soot volume fractions are shown in

Fig. 10. As discussed in detail in the work of Eberle et al. (2015), some charac-

teristic differences between experiment and simulation are observed. Firstly, the

maximum soot volume fraction in the LES (fv,max = 0.64 ppm) and the URANS

(fv,max = 0.47 ppm) is significantly higher than in the experiment (fv,max = 0.037

ppm). A possible reason for this deviation is the irreversible description of PAH

chemistry which has been shown to cause a too strong soot nucleation rate possibly

leading to an overprediction of fv (Eberle et al., 2017). In this study, Eberle et al.

(2017) investigated the influence of PAH chemistry on soot predictions for a num-
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ber of generic combustion problems and found that it was not possible to correctly

predict the soot morphology using irreversible PAH chemistry, in particular in case

of partially premixed combustion. Performing a source term analysis with subse-

quent integration over the plane shown in Fig. 10 yields a total soot growth term of

0.01 kg/(m3 s) with the contributions of nucleation, PAH-condensation, and C2H2-

addition being 8.6 %, 9.4 % and 82.0 %. In comparison to the literature (Eberle

et al., 2017; Xu et al., 1997; Kazakov et al., 1995; Balthasar and Frenklach, 2005;

Eaves et al., 2012), the contribution of nucleation to total soot growth is very high

which possibly indicates significant errors from the simplified treatment of PAH

chemistry. Thus, future studies of this burner should use a more accurate PAH

chemistry. Another difference between simulation and experiment is observed in

the ORZ. While the ORZ is soot free in both simulations, the measurements show

low soot concentrations in this region, which seem to result from an overlapping of

the ORZ and soot filaments. The low measured soot volume fractions of 0.005 ppm

and less in the ORZ, however, indicate that these overlapping events do not occur

frequently. Furthermore, soot is oxidized too fast. In both simulations, soot is com-

pletely oxidized downstream of an axial position of approximately 70 to 75 mm.

This is in contrast to the measurements where soot is observed as far as 110 mm

downstream of fuel injection. Finally, in contrast to measurements, URANS does

not predict soot on the axis of the combustion chamber close to the stagnation point

between the IRZ and inflow, whereas LES does accurately predict the shape of the

soot distribution in this region. In the following, this significant difference between

URANS and LES will be discussed in more detail.

Figure 11 compares time-averaged mass fractions of predicted and measured (Gei-

gle et al., 2015b) soot precursor species (PAH and acetylene). Recirculation zones
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are visualized by u = 0 isolines and the state of scalar mixing by mixture fraction

isolines at ξ = 0.15 and ξ = 0.064, where the latter value indicates a stoichiometric

mixture. Overall, the PAH and acetylene distributions obtained by URANS are

more localized than the LES predictions. The LES results agree better to the ex-

perimental data, where PAHs appear to be almost evenly distributed. The URANS

peak mass fractions of C2H2 and PAH are about factor two higher compared to

LES. Neither URANS nor LES predict significant amounts of soot precursors on

the burner axis, which indicates that soot nucleation and soot growth processes

mainly occur in fuel rich regions outside the IRZ. Soot structures may then be

convected into the IRZ towards the burner axis as suggested by the high soot con-

centrations found on the axis (cf. Fig. 10). Comparing the ξ = 0.15 isolines shows

that scalar mixing is on average more intense in LES, whereby parts of the IRZ are

on average fuel rich in LES. This has important implications on the soot evolution

as will be discussed later. Fig. 12 shows predicted and measured OH distribu-

tions along with soot isolines. The soot and OH measurements were conducted

by simultaneous application of LII and OH-PLIF (Geigle et al., 2015a). The in-

stantaneous URANS distributions are smoother than the measured ones and, as

analyzed by Eberle et al. (2015), show high OH concentrations on the center line

of the combustor at any given instant in time. Thereby, the presence of soot on the

center line is prevented due to the oxidative potential of OH. This persistent pre-

diction of OH in the cited region is attributed to the limitations of URANS, which

does not resolve turbulent scales but only coherent transient motion. LES, on the

other hand, more accurately describes the wrinkled flame structure by resolving

turbulent scales and subsequently predicts, in agreement to the measurements from

Geigle et al. (2015a), zones with low OH concentrations, which are filled with

20



soot, while an overlapping of soot and OH is minor at any given instant in time and

space. In other words, the instantaneous realizations show a strong anti-correlation

of OH and soot. Those low OH zones are fuel-rich and explain why LES predicts

higher mixture fractions in the IRZ than URANS (cf. Fig. 11). The overlapping of

time-averaged soot and OH distributions (see bottom row of Fig. 12) results from

statistical evaluation and does not represent a physically realizable state. Con-

cerning the time-averaged OH distribution, LES agrees well to the measurements,

while the URANS distribution is more localized with a pronounced maximum in

the IRZ. The OH peak mass fractions obtained with URANS are higher compared

to LES.

4 Conclusions

URANS and LES of a sooting swirl flame at elevated pressure using finite-rate

chemistry have been performed successfully. In accordance to experimental data,

a PVC at f ≈ 500 Hz was observed in both simulations. Given the high com-

plexity of the test case, measured and predicted velocities and temperatures agree

reasonably well. While no significant differences between URANS and LES are

observed for time-averaged axial velocities and temperatures, the shape of the soot

distribution is better predicted by LES, as high soot concentrations are found on

the flame axis. This is one the one hand related to the more intense mixing in

LES which yields locally fuel-rich conditions in the IRZ. On the other hand, it

has been found that an accurate description of the instantaneous OH distribution

is important. The LES results and the measurements indicate soot nucleation and

soot growth to occur mainly in fuel rich regions outside the IRZ. As suggested by
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the high soot concentrations on the axis, some soot structures may be convected

towards the burner axis. These soot structures are enveloped by zones with high

OH concentrations. An overlapping of soot and OH is minor at any given instant

in time and space.
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Table 1: Operating point parameters. Reynolds numbers are based on the respec-

tive hydraulic diameter.

Inflow mass flux [g/s] Re/1000 T [K]

Ring air 7.08 15 293

Central air 3.03 17 293

Secondary air 4.04 14 293

Fuel C2H4 0.83 - 297
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(a) Computational domain. (b) Injection system.

Figure 1: The model combustor. a) Computational domain with calculated temper-

ature. b) Detailed view of the nozzle and the fuel injection system with calculated

C2H4 mass fraction.

36



(a) URANS (b) LES

Figure 2: Streamline plots of representative calculated instantaneous flow fields.

(a) URANS (b) LES. The dimensions are in mm and the color bar represents the

axial velocity component. The probe point with r = 4 mm and x =3 mm is used

later to obtain spectra.
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Figure 3: Spectra of the axial velocity component at the probe point labeled in

Fig. 2(a).

38



Figure 4: Predicted and measured (Geigle et al., 2017) time-averaged axial veloci-

ties. Dimensions are in mm.
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Figure 5: Radial profiles of predicted and measured (Geigle et al., 2017) axial

velocities at non-reacting conditions. Time-averaged velocities are shown in the

left column and rms velocities in the right column.
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Figure 6: Radial profiles of predicted and measured (Geigle et al., 2017) radial

velocities at non-reacting conditions. Time-averaged velocities are shown in the

left column and rms velocities in the right column.
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Figure 7: Radial profiles of predicted and measured (Geigle et al., 2017) tangential

velocities at non-reacting conditions. Time-averaged velocities are shown in the

left column and rms velocities in the right column.
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Figure 8: Radial profiles of predicted and measured (Geigle et al., 2017) axial

velocities at reacting conditions. Time-averaged velocities are shown in the left

column and rms velocities in the right column. Note that PIV-FoV data is not

available at x = 95 mm and that PIV-FoV does not provide rms values.
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Figure 9: Radial profiles of predicted and measured (Geigle et al., 2015a) tempera-

tures at selected downstream positions. Time-averaged temperatures are shown in

the left column and rms temperatures in the right column.
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(a) URANS (b) LES (c) Experiment

Figure 10: Time-averaged soot volume fraction distributions: (a) Calculated fv,

URANS. (b) Calculated fv, LES. (c) Measured fv (Geigle et al., 2015a). A different

color bar is used for the measurements. The dimensions are in mm.
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Figure 11: Time-averages of predicted and measured (Geigle et al., 2015b) PAH

(top row) and acetylene (bottom row) mass fractions along with isolines of mixture

fraction ξ and axial velocity u. The PAH-PLIF measurements are qualitative and

the calculated PAH mass fraction is obtained by summation over all PAH bins

(YPAH = ∑iYPAHi
). The dimensions are in mm and ξ was calculated according to

Bilger et al. (1990).
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Figure 12: Predicted and measured (Geigle et al., 2015a) OH mass fractions with

soot volume fraction isolines. Representative instantaneous realizations are shown

in the top row and time-averages in the bottom row. Note that the OH-PLIF mea-

surements are qualitative. Dimensions are in mm.

47


