
Toward General Analysis of Recursive Probability Models

Daniel Pless and George Luger
Computer Science Department

University of New Mexico
Albuquerque NM 87131

{dpless, luger}@cs.unm.edu

Abstract

There is increasing interest within the research
community in the design and use of recursive
probability models. There remains concern about
computational complexity costs and the fact that
computing exact solutions can be intractable for
many nonrecursive models. Although inference
is undecidable in the general case for recursive
problems, several research groups are actively
developing computational techniques for
recursive stochastic languages. We have
developed an extension to the traditional λ-
calculus as a framework for families of Turing
complete stochastic languages. We have also
developed a class of exact inference algorithms
based on the traditional reductions of the λ-
calculus. We further propose that using the
deBruijn notation (a λ-calculus notation with
nameless dummies) supports effective caching in
such systems, as the reuse of partial solutions is
an essential component of efficient computation.
Finally, our extension to the λ-calculus offers a
foundation and general theory for the
construction of recursive stochastic modeling
languages as well as promise for effective
caching and efficient approximation algorithms
for inference.

1 INTRODUCTION
The limitations of flat Bayesian Networks (BNs) using
simple random variables have been widely noted by
researchers [Xiang et al., 1993; Laskey and Mahoney,
1997]. These limitations have motivated a variety of
recent research projects in hierarchical and composable
Bayesian models [Koller and Pfeffer, 1997; Koller and
Pfeffer, 1998; Laskey and Mahoney, 1997; Pfeffer et al.,
1999; Xiang et al., 2000]. Most of these new Bayesian
modeling formalisms support model decomposition, often
based on an object-oriented approach. Although these
approaches provide more expressive and/or succinct
representational frameworks, few of these change the
class of models that can be represented.

Recent research has addressed this issue. One example is
the functional stochastic modeling language proposed by
Koller et al. [1997]. Their language is Turing complete,
allowing the representation of a much broader class of
models. Pless et al. [2000] extends and refines this
proposed framework to one which is more object-oriented
and which allows hierarchical encapsulation of models.
Both languages provide the ability to use functions to
represent general stochastic relationships. They both also
use lazy evaluation to allow computation over potentially
infinite distributions. Pfeffer [2000] and Pfeffer and
Koller [2000] have also proposed a Turing complete
framework based on approximate inference.

Another approach to the representation problem for
stochastic inference is the extension of the usual
propositional nodes for Bayesian inference to the more
general language of first-order logic. Kersting and De
Raedt [2000] associated first-order rules with uncertainty
parameters as the basis for creating Bayesian networks as
well as more complex models. Poole [1993] gives an
earlier approach which develops an approximate
algorithm for another Turing complete probabilistic logic
language.

These approaches all have in common the development of
recursive models that bring together inference in Bayesian
Networks with more complex models such as stochastic
context free grammars. The result aims at allowing the
construction and inference in novel Bayesian models. All
of these methods depend on caching of partial results for
efficiency purposes, just as efficient inference in Bayesian
Networks requires the storage of intermediate values.

In this paper we offer an extension to the traditional λ-
calculus that provides a foundation for building Turing
complete stochastic modeling languages. We have also
developed a class of exact stochastic inference algorithms
based on the traditional reductions in the λ-calculus. We
further propose the use of deBruijn [1972] notation to
support effective caching mechanisms for efficient
computation. As noted above, caching offers an important
technique for support of efficient inference in stochastic
networks.

The problem with using the λ-calculus directly is that it is
quite natural to develop two or more expressions that are
equivalent, only differing in the choice of bound variable
names. Furthermore, variable substitution is complicated
by the requirement of variable binding and capture, which
often makes substitutions quite expensive.

deBruijn notation addresses both of these issues by
replacing arbitrary variable names with explicitly
specified positive integers, which addresses the naming
problem. It simultaneously renders the variable capture
problem easy, by eliminating the arbitrary variable names
that can be accidentally bound, and thus makes the
substitution problem less computationally expensive.

As a final note, other recent research has viewed
stochastic modeling in terms of stochastic functions
[Pearl, 2000; Koller, and Pfeffer, 1997]. For example,
Pearl’s [2000] recent book constructs a formalism for
“causality” in terms of stochastic functions. We have
expanded these ideas based on an extension of the λ-
calculus, in which the stochastic functions themselves
become first class objects, to offer a formal structure for
such modeling.

2 THE EXTENDED λ-CALCULUS
FORMALISM

We now present a formal grammar reflecting our
extension of the λ-calculus to describe stochastic
distributions. The goal of this effort is to propose an
extended form that also supports an inference algorithm
as a set of standard transformations and reductions of λ-
calculus forms. Thus, inference in our modeling language
is equivalent to finding normal forms in the λ-calculus.
We also modify our language through the use of deBruijn
notation [deBruijn, 1972]. This notation replaces
arbitrarily chosen variable names with uniquely
determined positive integers. As a result all expressions
that are α-equivalent in standard notation are identical
under deBruijn notation. This is very useful in both
constructing distributions as well as in caching partial
results.

2.1 Syntax

We next present a pseudo-BNF grammar to describe our
stochastic extension of the traditional λ-calculus:

<expr> ::=
<var> | <λ> | <application> | <distribution>

<var> ::= <integer>
<λ> ::= (λ <expr>)
<application> ::= (<expr>1 <expr>2)
<distribution> ::= ∑i <expr> i: <p> i

p ∈ (0, 1]

Thus, our stochastic λ-calculus contains the same
elements as standard λ-calculus: variables, λ-abstractions,
and function applications. In addition, in our stochastic λ-

calculus, it is legal to have an expression which is itself a
distribution of expressions.

One difficulty mentioned earlier with standard λ-calculus
is that there is an unfortunate representational
indeterminacy in the arbitrary choice of bound variable
names. Thus two completely equivalent (under α-rule)
expressions can have different forms. This presents a
problem as we need to be able to combine probabilities of
the same expression occurring within a distribution.
Therefore we use deBruijn notation to give each
expression a canonical form. This canonical form also
makes O(1) caching of the evaluation of expressions
possible.

Another advantage of deBruijn notation is that it
simplifies substitution (as discussed in section 3) and
allows for the reuse of entire sub-expressions, which
allows faster substitution when performing λ reductions.

It should be noted that deBruijn [1972] proposed the
notation as an improvement for machine manipulation of
expressions and not for human use. Our purpose in
developing the stochastic λ-calculus is to provide the
expressiveness of a higher order representation and an
effective framework for inference. We are not aiming to
develop a user-friendly language in this paper. In actual
model development, one might use a high level language
similar to the other languages discussed in the
introduction, and then compile that language to our
stochastic λ-calculus.

When using deBruijn notation, we denote a variable by a
positive integer. This number indicates how many λs one
must go out to find the one λ to which that variable is
bound. We denote a λ-abstraction with the form (λ e)
where e is some legal expression. For example (λ 1)
represents the identity function. In λ-calculus, boolean
values are often represented by functions that take two
arguments. true returns the first one, and false the second.
In this notation true becomes (λ (λ 2)) and false is (λ (λ
1)), or in an abbreviated form (λλ 2) and (λλ 1)
respectively.

For a further example we use deBruijn notation to
describe the S operator from combinatory logic. The S
operator may be described by the rule Sxyz = (xz)(yz)
which is equivalent to the standard λ term
(λxλyλz.(xz)(yz)). In deBruijn notation, this becomes
(λλλ (3 1)(2 1)).

Function application is as one might expect: We have (e1
e2), where e1 is an expression whose value will be applied
as a function call on e2, where e2 must also be a valid
expression. We describe distributions as a set of
expressions annotated with probabilities. An example
would be a distribution that is 60% true and 40% false.
Using the representation for boolean values given above,
the resulting expression would be: {(λλ 2): 0.6, (λλ 1):
0.4}. Note that we use a summation notation in our BNF
specification. The set notation is convenient for denoting
a particular distribution, while the summation notation is
better for expressing general rules and algorithms.

2.2 SEMANTICS

We next develop a specification for the semantics of our
language. For expressions that do not contain
distributions, the semantics (like the syntax) of the
language is the same as that of the normal λ-calculus. We
have extended this semantics to handle distributions.

A distribution may be thought of as a variable whose
value will be determined randomly. It can take on the
value of any element of its set with a probability given by
the annotation for that element. For example, if T denotes
true as represented above, and F represents false, the
distribution {T: 0.6, F: 0.4} represents the distribution
over true and false with probability 0.6 and 0.4
respectively.

A distribution applied to an expression is viewed as
equivalent to the distribution of each element of the
distribution applied to the expression, weighted by the
annotated probability. An expression applied to a
distribution is likewise the distribution of the expression
applied to each element of the distribution annotated by
the corresponding probability. Note that in both these
situations, when such a distribution is formed it may be
necessary to combine syntactically identical terms by
adding the annotated probabilities.

Under our grammar it is possible to construct distributions
that contain other distributions directly within them. For
example {T: 0.5, {T: 0.6, F: 0.4}: 0.5} is the same as {T:
0.8, F: 0.2}. One could explicitly define a reduction (see
below) to handle this case, but in this paper we assume
that the construction of distributions automatically
involves a similar flattening just as it involves the
combination of probabilities of syntactically identical
terms.

In other situations an application of a function to an
expression follows the standard substitution rules for the
λ-calculus with one exception: The substitution cannot be
applied to a general expression unless it is known that the
expression is not reducible to a distribution with more
than one term. For example, an expression of the form ((λ
e1) (λ e2)) can always be reduced to an equivalent
expression by substituting e2 into e1 because (λ e2) is not
reducible. We describe this situation formally with our
presentation of the reductions in the next section on
stochastic inference.

There is an important implication of the above semantics.
Every application of a function whose body includes a
distribution causes an independent sampling of that
distribution. There is no correlation between these
samples. On the other hand, a function applied to a
distribution induces a complete correlation between
instances of the bound variables in the body of the
function.

For example, using the symbols T and F as described
earlier, we produce two similar expressions. The first
version, (λ 1 F 1){T: 0.6, F: 0.4}, demonstrates the
induced correlations. This expression is equivalent to F
(false). This expression is always false because the two

1’s in the expression are completely correlated (see the
discussion of the inference reductions below for a more
formal demonstration). Now to construct the second
version, let G = (λ {T: 0.6, F: 0.4}). Thus G applied to
anything produces the distribution {T: 0.6, F: 0.4}. So the
second version ((G T) F (G T)) looks similar to the first
one in that they both look equivalent to ({T: 0.6, F: 0.4} F
{T: 0.6, F: 0.4}). The second version is equivalent
because separate calls to the same function produce
independent distributions. The first is not equivalent
because of the induced correlation.

Finally, it should be noted that we can express Bayesian
Networks and many other more complex stochastic
models, including Hidden Markov Models, with our
language. Using the Y operator of combinatory logic
[Hindley and Seldin, 1989], any recursive function can be
represented in standard as well as stochastic λ-calculus.
This operator has the property that Yf = f(Yf) in the
standard λ-calculus. In our extended formalism, the Y
operator is no longer a fixed-point operator for all
expressions, but can be used to construct recursive
functions. Thus the language is Turing complete, and can
represent everything that other Turing complete languages
can. For illustration, we next show how to represent the
traditional Bayesian Network in our stochastic λ-calculus.

2.3 AN EXAMPLE: REPRESENTING
BAYESIAN NETWORKS (BNs)

To express a BN, we first construct a basic expression for
each variable in the network. These expressions must then
be combined to form an expression for a query. At first
we just show the process for a query with no evidence.
The technique for adding evidence will be shown later. A
basic expression for a variable is simply a stochastic
function of its parents.

To form an expression for the query, one must form each
variable in turn by passing in the distribution for its
parents as arguments. When a variable has more than one
child, an abstraction must be formed to bind its value to
be passed to each child separately.

Our example BN has three Boolean variables: A, B, and
C. Assume A is true with probability of 0.5. If A is true,
then B is always true, otherwise B is true with probability
of 0.2. Finally, C is true when either A or B is true. Any
conditional probability table can be expressed in this way,
but the structured ones given in this example yield more
terse expressions. The basic expressions (represented with
both standard and deBruijn notation) are shown below:

A

B

C

C4

A = {T: 0.5, F: 0.5}
B = (λA.(A T {T: 0.2, F: 0.8}))

= (λ 1 T {T: 0.2, F: 0.8})
C = (λAλB.(A T B)) = (λλ 2 T 1)

The complete expression for the probability distribution
for C is then ((λ C 1 (B 1)) A). One can use this to
express the conditional probability distribution that A is
true given that C is true: ((λ (C 1 (B 1)) 1 N) A) where N
is an arbitrary term (not equivalent to T or F) that denotes
the case that is conditioned away. To infer this probability
distribution, one can use the reductions (defined below) to
get to a normal form. This will be a distribution over T, F,
and N, with the subsequent marginalizing away of N.

In general, to express evidence, one can create a new node
in the BN with three states. One state is that the evidence
is false, the second is the evidence and the variable of
interest are true, and the third represents the evidence is
true and the variable of interest is false. One can then get
the distribution for the variable of interest by
marginalizing away the state representing the evidence
being false. The extension to non boolean variables of
interest is straightforward.

Of course, a language with functions as first class objects
can express more than Bayesian Networks. It is capable of
expressing the same set of stochastic models as the earlier
Turing complete modeling languages as proposed [Koller
et al., 1997; Pless et al., 2000; Pfeffer, 2000; Pfeffer and
Koller, 2000]. Any of those languages could be
implemented as a layer on top of our stochastic λ-
calculus. In Pless et al. [2000] the modeling language is
presented in terms of an outer language for the user which
is then transformed into an inner language appropriate for
inference. Our stochastic λ-calculus could also be used as
a compiled form of a more user friendly outer language.

In summary, we have created a Turing complete
specification for representing stochastic reasoning. We
have proposed an extension to the standard λ-calculus
under deBruijn notation to give an effective form for
inference (discussed in the next section). Our
specification can be used to de-couple the design of high
level stochastic languages from the development of
efficient inference schemes.

3 STOCHASTIC INFERENCE
THROUGH λ REDUCTIONS

We next describe exact stochastic inference through the
traditional methodology of the λ-calculus, a set of λ
reductions. In addition to the β and η reductions, we also
define a new form: γ reductions.

β: ((λ e1) e2) à substitute(e1, e2)
γL: ((∑i fi: pi) e) à ∑i (fi e): pi

γR: (f ∑i ei: pi) à ∑i (f ei): pi

η: (λ (e 1)) à e

We have defined β reductions in a fashion similar to
standard λ-calculus. Since we are using deBruijn notation,
α transformations become unnecessary (as there are no
arbitrary dummy variable names). β and η reductions are
similar to their conventional counterparts (see deBruijn
[1972] for restrictions on when they may be applied). In
our case the difference is that β reductions are more
restricted in that expressions that are reducible to
distributions cannot be substituted. Similarly η reductions
are restricted to those expressions (λ (e 1)) where e cannot
be reduced to a distribution. In addition to those two
standard reductions we define two additional reductions
that we term γL and γR. The γ reductions are based on the
fact that function application and distributions distribute.

One important advantage of using deBruijn notation is the
ability to reuse expressions when performing
substitutions. We next present a simple algorithm for
substitutions when e2 is a closed expression:

level(expr) = case expr
var à expr
(λ e) à max(level(e) – 1, 0)
(e1 e2) à max(level(e1), level(e2))
∑i ei: pi à max i(level(ei))

substitute((λ e1), e2) = substitute(e1, e2, 1)

substitute(expr, a, L) = if level(expr) < L then expr
else case expr

var à a
(λ e) à (λsubstitute(e, a, L+1))
(e1 e2) à (substitute(e1, a, L)

 substitute(e2, a, L))
∑i ei: pi à ∑i substitute(ei, a, L): pi

This algorithm is designed to maximize the reuse of sub-
expressions. When a new expression is built, a non-
negative integer value, called the level, is associated with
it. This value is the maximum number of λs that have to
surround the expression for it to be closed. The level is
defined recursively, and is calculated directly from the
sub-expressions from which the newly created expression
is derived.

For a variable, its level is the number denoting the
variable. For a λ-abstraction, the level is derived from the
level of the expression in the body of the abstraction, but
reduced by one (to a minimum of zero) due to the λ. For
forms that combine expressions (applications and
distributions) the level is the maximum level of the sub-
expressions being combined. The level function reflects
this recursive construction.

The level value (whose construction doesn’t increase the
asymptotic time for building expressions) is valuable for
avoiding unnecessary substitutions. The substitute
function defines how to substitute an expression e2 into a
λ-abstraction (λ e1). This results in a call to the three
parameter recursive version of substitute. The first

parameter is the expression being substituted into, the
second is the expression being substituted, and the last is
the variable value that has to be replaced by the second
argument.

If the variable to be substituted is greater than the level of
the expression, then there cannot be any substitutions
needed as the variable number is greater than the number
of λs required to close the expression. In this case the
expression can be directly returned (and reused).
Otherwise, if the expression to be substituted is a variable,
under the assumption that the original expression was
closed, it must be the variable to be replaced. Thus, the
substituting expression (second argument) can be returned
(and reused). For λ-abstractions, the substitution is
performed on the body of the abstraction, but substituting
for a variable one larger in value. The result is then placed
back into a λ-abstraction. Finally, for the combining
forms, the substitution is performed on all of the sub-
expressions and then recombined.

As noted earlier, we have defined two additional
reductions that we call γL and γR. The γR reduction is
essential for reducing applications where the β reduction
cannot be applied. Continuing the example introduced
earlier in the paper:

 γR

(λ 1 F 1){T: 0.6, F: 0.4} à
{((λ 1 F 1) T): 0.6, ((λ 1 F 1) F): 0.4)}

Now since both T and F do not contain distributions, β
reductions can be applied:

 β
{((λ 1 F 1) T): 0.6, ((λ 1 F 1) F): 0.4)} à

{(T F T): 0.6, ((λ 1 F 1) F): 0.4}

 β
{(T F T): 0.6, ((λ 1 F 1) F): 0.4} à

{(T F T): 0.6, (F F F): 0.4}

And now, using the definitions of T and F it is easy to see
that (T F T) and (F F F) both are reducible to F.

4 INFERENCE
The task of inference in our stochastic λ-calculus is the
same as the problem of finding a normal form for an
expression. In standard λ-calculus, a normal form is a
term to which no β reduction can be applied. In the
stochastic version, this must be modified to be any term to
which no β or γ reduction can be applied. It is a relatively
simple task to extend the Church-Rosser theorem
[Hindley and Seldin, 1986; deBruijn, 1972] to show that
this normal form, when it exists for a given expression, is
unique. Thus one can construct inference algorithms to
operate in a manner similar to doing evaluation in a λ-
calculus system. Just as it is possible to produce complete
function evaluation algorithms in standard λ-calculus, the
stochastic λ-calculus admits complete inference schemes.

4.1 A SIMPLE INFERENCE ALGORITHM

We next show a simple algorithm for doing such
evaluation. This algorithm doesn’t reduce to a normal
form, rather to the equivalent of a weak head normal form
[Reade, 1989].

peval(expr) = case expr
(λ e) à expr
(e1 e2) à papply(peval(e1), e2)
∑i ei: pi à ∑i peval(ei): pi

papply(f, a) = case f
∑i fi: pi à ∑i papply(fi, a)::pi

(λ fe) à case a
(λ e) à peval(substitute(f, a))
(e1 e2) à papply(f, peval(a))
∑i ei: pi à ∑i papply(f, ei): pi

peval and papply are the extended version of eval and
apply from languages such as LISP. peval implements
left outermost first evaluation for function applications
((e1 e2)). For λ-abstractions, (λ e), no further evaluation is
needed (it would be if one wanted a true normal form).
For distributions, it evaluates each term in the set and then
performs a weighted sum.

papply uses a γL reduction when a distribution is being
applied to some operand. When a λ-abstraction is being
applied, its behavior depends on the operand. When the
operand is an abstraction, it applies a β reduction. If the
operand is an application, it uses eager evaluation
(evaluating the operand). When the operand is a
distribution, it applies a γR reduction.

4.2 EFFICIENCY ISSUES

We have presented this simple, but not optimal, algorithm
for purposes of clarity. One key problem is that it uses
lazy evaluation only when the operand is a λ-abstraction.
One would like to use lazy evaluation as much as
possible. An obvious improvement would be to check to
see if the bound variable in an operator is used at least one
time. If it is not used then it doesn’t matter whether the
expression evaluates to a distribution or not, lazy
evaluation can be applied.

Another potential improvement is to expand the set of
cases in which it is determined that the operand cannot be
reduced to a distribution. To make this determination in
all cases is as hard as evaluating the operand, which is
exactly what one tries to avoid through lazy evaluation.
However, some cases may be easy to detect. For example,
an expression that doesn’t contain any distributions in its
parse tree clearly will not evaluate to a distribution. One
approach might be to use a typed λ-calculus to identify
whether or not an expression could be reduced to a
distribution.

Finally, we may tailor the algorithm using the reductions
in different orders for particular application domains. The

algorithm we presented doesn’t utilize the η reduction,
which may help in some cases. Also identifying more
cases when β reductions can be applied may allow for
more efficient algorithms in specific applications.

We propose that employing the simple algorithm with the
suggested improvements (both shown above) will
essentially replicate the variable elimination algorithm for
inference on BNs. The order for variable elimination is
implicitly defined by the way that the BN is translated
into a λ-expression. The use of λ-expressions to form
conditional probability tables also allows the algorithm to
exploit context specific independence [Boutilier et al,
1996].

4.3 CACHING

Efficient computational inference in probabilistic systems
generally involves the saving and reuse of partial and
intermediate results [Koller et al., 1997]. Algorithms for
BBNs as well as for HMMs and other stochastic problems
are often based on some form of dynamic programming
[Dechter, 1996, Koller et al., 1997]. Using deBruijn
notation makes caching expressions easy. Without the
ambiguity that arises from the arbitrary choice of variable
names (α-equivalence), one needs only to find exact
matches for expressions.

Because it is possible in λ-calculus to use the Y (fixed-
point) operator from combinatory logic to represent
recursion, there are no circular structures that need to be
cached. Thus, only trees need be represented for caching
of purely deterministic expressions. To cache
distributions (which is necessary for non-deterministic
caching) one needs to be able to cache and retrieve sets.

One way to accomplish this is to use the hashing method
of Wegman and Carter [1981]. They propose a
probabilistic method for producing hash values
(fingerprints) for sets of integers. Their method is to
associate each integer appearing in some set with a
random bit string of fixed length. The bit strings for a
particular set of integers are combined using the
exclusive-or operation. Two sets are considered to be the
same if the fingerprints for the two are the same. There is
a probability that a false match can be found this way,
which can be made arbitrarily low by increasing the string
length.

This method can be used for caching the sets of weighted
expressions (distributions) by associating a random bit
string with each probability-expression pair that exists in
some distribution. One can use a similar assignment of
random strings to the integers representing variables. Also
such a string can be assigned to fingerprint the λ in λ-
abstractions. One can assign such fingerprints to unique
pairs that occur in building up expressions. In this way
one can form a hash function which (given the values of
the sub-expression from which the expression is formed)
can be computed without increasing the asymptotic time
for expression construction.

5. APPROXIMATION
One of the strengths of viewing stochastic inference in
terms of the λ-calculus with reductions is that it allows
analysis of different parts of the expression to be handled
differently. One way that can occur is to use different
reduction orders on different parts of the expression. A
powerful approach is to use approximations on different
parts of the expression.

One may choose at some point in the evaluation to replace
an expression with a reasonable distribution over the
possible values the expression could potentially evaluate.
Doing this at a fixed recursion level in the algorithm
suggested above essentially gives the approximation
suggested by Pfeffer and Koller [2000]. Other
approximations include removing low probability
elements from a distribution prior to performing a γ
reduction. This is analogous to the approximation for
Bayesian Networks proposed by Jensen and Anderson
[1990]. Furthermore, a portion of the expression may be
sampled with a Monte-Carlo algorithm.

Finally one can perform an improper β reduction when it
is not allowed under stochastic λ-calculus: namely an
application where the argument is reducible to a
distribution and the function uses the argument more than
once in its body. This last approximation corresponds to
making an independence assumption that isn’t directly
implied by the form of the expression. That is, it assumes
that the different instances of the argument in the body of
the function are independent. The stochastic λ-calculus
provides a framework for mixing and combining all of
these different forms of approximation.

6. CONCLUSIONS AND FUTURE WORK
We have presented a formal framework for recursive
modeling languages. It is important to maintain the
distinction between our modeling language and a
traditional programming language. Our language is
designed to construct and satisfy queries on stochastic
models, not to build programs. Some of our design
decisions follow from this fact. We have made function
application on a distribution result in essentially sampling
from that distribution. If one wants to pass a distribution
to a function as an abstract object, rather than sample
from it, one must wrap the distribution in a λ-abstraction.
We believe that the use of distributions without sampling
will be rare unless the distribution is parameterized, in
which case a function is needed anyway.

The result of the above decision is that the concept of
abstract equality of expressions in our formalism is not
the same as in standard λ-calculus. In standard λ-calculus,
equality between expressions can be defined in terms of
equality of behavior when the expressions are applied to
arguments. In our λ-calculus, it is possible for two
expressions to behave the same way when applied to any
argument, but to differ in behavior when used as an
argument to some other expression.

There are a number of paths that would be interesting to
follow. It would be useful to analyze the efficiency of
various algorithms on standard problems, such as
polytrees [Pearl, 1988], where the efficiency of the
optimal algorithm is known. This may point to optimal
reduction orderings and other improvements to inference.
We are also looking at constructing formal models of the
semantics of the language. Finally, we are considering the
implications of moving from the pure λ-calculus
presented here to an applicative λ-calculus. The results of
that representational change, along with type inference
mechanisms, may be important for further development in
the theory of recursive stochastic modeling languages.

Acknowledgements

This work was supported by NSF Grant 115-9800929.
We would also like to thank Carl Stern and Barak
Pearlmutter for many important discussions on our
approach.

References
[Boutilier et al, 1996] C. Boutilier, N. Friedman, M.
Goldszmidt, D. Koller. Context-Specific Independence in
Bayesian Networks. In Proceedings of the Twelfth Annual
Conference on Uncertainty in Artificial Intelligence (UAI-
96). 1996.

[deBruijn, 1972] N.G. deBruijn. Lambda Calculus
Notation with Nameless Dummies, A Tool for Automatic
Formula Manipulation, with Application to the Church-
Rosser Theorem. In Indagationes mathematicae. 34:381-
392 1972.

[Dechter, 1996] R. Dechter. Bucket elimination: A
unifying framework for probabilistic inference. In
Proceedings of the Twelfth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-96). 1996.

[Hindley and Seldin, 1989] J.R. Hindley and J.P. Seldin.
Introduction to Combinators and λ-Calculus. Cambridge,
UK: Cambridge University Press. 1989.

[Jensen and Andersen, 1990] F. V. Jensen and S. K.
Anderson. Approximations in Bayesian Belief Universes
for Knowledge-Based Systems. In Proceedings of the
Sixth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-90), Cambridge, MIT Press. 1990.

[Kersting and De Raedt, 2000] Kristian Kersting and Luc
De Raedt. In J. Cussens and A. Frisch, editors,
Proceedings of the Work-in-Progress Track at the 10th
International Conference on Inductive Logic
Programming, pages 138-155, 2000.

[Koller et al., 1997] D. Koller, D. McAllester, and A.
Pfeffer. Effective Bayesian Inference for Stochastic
Programs. In Proceedings of American Association of
Artificial Intelligence Conference, Cambridge: MIT Press.
1997.

[Koller and Pfeffer, 1997] D. Koller and A. Pfeffer.
Object-oriented Bayesian Networks. In Proceedings of
the Thirteenth Annual Conference on Uncertainty in
Artificial Intelligence (UAI-97), San Francisco: Morgan
Kaufmann. 1997.

[Koller and Pfeffer, 1998] D. Koller and A. Pfeffer.
Probabilistic Frame-Based Systems. In Proceedings of
American Association of Artificial Intelligence
Conference, Cambridge: MIT Press. 1998.

[Laskey and Mahoney, 1997] K. Laskey and S. Mahoney.
Network Fragments: Representing Knowledge for
Constructing Probabilistic Models. In Proceedings of the
Thirteenth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-97), San Francisco: Morgan Kaufmann.
1997.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible Inference, San
Mateo CA: Morgan Kaufmann. 1988.

[Pearl, 2000] J. Pearl. Causality. Cambridge, UK:
Cambridge University Press. 2000.

[Pfeffer, 2000] A. Pfeffer. Probabilistic Reasoning for
Complex systems. Ph.D. Dissertation, Stanford University.
2000.

[Pfeffer and Koller, 2000] A. Pfeffer and D. Koller.
Semantics and Inference for Recursive Probability
Models. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence. 538-544
Cambridge: MIT Press. 2000.

[Pfeffer et al., 1999] A. Pfeffer, D. Koller, B. Milch, and
K. Takusagawa. SPOOK: A System for Probabilistic
Object-Oriented Knowledge Representation. In
Proceedings of the 15th Annual Conference on
Uncertainty in AI (UAI), San Francisco: Morgan
Kaufmann. 1999.

[Pless et al., 2000] D. Pless, G. Luger, and C. Stern. A
New Object-Oriented Stochastic Modeling Language. In
Proceedings of the IASTED International Conference,
Zurich: IASTED/ACTA Press. 2000.

[Poole, 1993] D. Poole. Logic Programming, Abduction
and Probability: a top-down anytime algorithm for
estimating prior and posterior probabilities, New
Generation Computing . 11(3-4), 377-400, 1993.

[Reade, 1989] C. Reade. Elements of Functional
Programming. New York: Addison-Wesley. 1989.

[Wegman and Carter, 1981] M.N. Wegman and J. L.
Carter. New has functions and their use in authentication
and set equality. Journal of Computer and System
Sciences. 22(3): 265-279, 1981

[Xiang et al., 2000] Y. Xiang, K.G. Olesen and F.V.
Jensen. Practical Issues in Modeling Large Diagnostic
Systems with Multiply Sectioned Bayesian Networks,
International Journal of Pattern Recognition and
Artificial Intelligence . 2000.

[Xiang et al., 1993] Y. Xiang, D. Poole, and M. Beddoes.
Multiply Sectioned Bayesian Networks and Junction
Forests for Large Knowledge-Based Systems.
Computational Intelligence, 9(2): 171-220. 1993.

