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ABSTRACT

The recent surge in activity of Neural Network research in Business is not surprising
since the underlying functions controlling business data are generally unknown and the neural
network offers a tool that can approximate the unknown function to any degree of desired
accuracy.  The vast majority of these studies rely on a gradient algorithm, typically a variation
of back propagation, to obtain the parameters (weights) of the model.   The well-known
limitations of gradient search techniques applied to complex nonlinear optimization problems
such as artificial neural networks have often resulted in inconsistent and unpredictable
performance.  

Many researchers have attempted to address the problems associated with the training
algorithm by imposing constraints on the search space or by restructuring the architecture of the
neural network.  In this paper we demonstrate that such constraints and restructuring are
unnecessary if a sufficiently complex initial architecture and an appropriate global search
algorithm is used. We further show that the genetic algorithm cannot only serve as a global
search algorithm but by appropriately defining the objective function it can simultaneously
achieve a parsimonious architecture.  The value of using the genetic algorithm over
backpropagation for neural network optimization is illustrated through a Monte Carlo study
which compares each algorithm on in-sample, interpolation, and extrapolation data for seven
test functions.  
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 These studies indicate that one can compute any continuous function using linear summations and a1

single properly chosen nonlinear c.d.f.   Technically, for a wide class of nonlinear functions NNs can provide
arbitrary approximations to arbitrary functions in a variety of normed function spaces (e.g., functions in L  spacesp

and functions in Sobolev spaces with a Sobolev norm) provided a sufficient number of hidden nodes (see [15]).

TOWARD GLOBAL OPTIMIZATION OF NEURAL
NETWORKS: A COMPARISON OF THE GENETIC

ALGORITHM AND BACKPROPAGATION

1.  INTRODUCTION

Interest in business applications of artificial neural networks is growing rapidly.  Evidence

for this exists in both the academic and trade business literature.   Increasingly, researchers are

exploring artificial neural networks as a new tool for decision support.  This is not surprising since

the underlying functions controlling business data are generally unknown and the neural network

offers a tool that can approximate not only the unknown function to any degree of desired

accuracy as demonstrated by [9] and [11] but also it’s derivatives.   The vast majority of these1

studies rely on a gradient algorithm, typically a variation of back propagation, to obtain the

parameters (weights) of the model.   The well-known limitations of gradient search techniques

applied to complex nonlinear optimization problems such as artificial neural networks have often

resulted in inconsistent and unpredictable performance.  

Many papers have attempted to address the problems associated with the training

algorithm by imposing constraints on the search space or by restructuring the architecture of the

neural network.  A recent example of imposing constraints on the search space can be seen in [23]

which proposes a “fix” for certain classification problems by constraining the NN to only

approximate monotonic functions.  Restructuring the NN architecture requires the researcher to

identify the correct number of hidden nodes to include in a NN.  Although, trial-and-error is the
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most common method for determining this value, attempts to identify the optimum number is the

subject of current research.  One line of research explores Cascade Correlation, or Cascor [8],

which builds a neural network topology while simultaneously identifying the appropriate

connection weights.  This technique has achieved encouraging success [13], [1] with gradient

search methods.  It is not clear, however, whether any particular solution is chosen because it is

the ideal parsimonious structure or because it is the easiest for gradient-based algorithms to

optimize.  Clearly this is an important direction for future research.  Our research attempts to

identify a robust optimization technique that will work regardless of the NN topology.  In this

paper we suggest that such constraints and restructuring may be unnecessary if a sufficiently

complex initial architecture and an appropriate global search algorithm is used.

2.  BACKGROUND

Since its inception by [24], [18], [14], [19] and [20], researchers have commonly trained

neural networks with backpropagation (see [21]).  The accuracy of any approximation depends on

the selection of proper weights for the neural network, unfortunately backpropagation is a local

search algorithm and thus tends to become trapped in local optima.  As with any gradient search

algorithm solutions are found, at least in part, on the serendipity of the initial random draw of

weights.  If these initial weights are located on local grades, the algorithm will likely become

trapped at a local optimum.  Even more sophisticated quasi-Newton methods such as Levenberg-

Marquardt (see[2]) offer little improvement.  

 Researchers have used a variety of approaches to try and adjust for this characteristic of

backpropagation.   For example, parameters of the algorithm can be adjusted to affect the

momentum of the search so that the search will break out of local optima and move toward the
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global solution.  The correct value of these parameters, however, is not known a priori and is

often problem specific.  Therefore, for any given problem, a wide variety of parameters must be

tried to generate confidence that a global solution has been found.   Another common method for

finding the best (perhaps global) solution using BP is to restart the training at many random

points.  Again, the number of necessary starting points is unknown and generally varies

significantly with the complexity of the problem.  

A third type of adjustment is to restructure the NN architecture in such a way that the BP

algorithm is more likely to obtain the global solution.  Although there has been significant

research in this area, see for example [16] or [22], there is no generally accepted heuristic for this

approach and different researchers prefer different methodologies.  One of the more promising

directions has been to use genetic algorithms for exploring a variety of potential architectures for

use with BP.   The problem with this approach is that although, as the architecture becomes less

complex the BP algorithm is more likely to be successful, the NN increasingly loses its ability to

model complex relationships.

Finally, another approach often used is the one represented in [23], where significant

constraints are applied to the permissible functional forms that the NN is permitted to

approximate.  Unfortunately, when a priori restrictions are placed on a model when the true

model is unknown, the likelihood that the resulting model is the  “true” model may be reduced, [6

p.24].   While these constraints can range from minimal to severe, it is often the case that the

stronger the constraints the better the performance of the BP algorithm.  In [23] the NN was

severely constrained to only approximate monotonic functions.  While it is unclear why the NN

would be used at all if the function were known to be monotonic since there are far more efficient
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Binary representations have worked effectively in many applications.  However, for the2

type of problems explored in this paper we have found that real number representations of the
weights significantly reduce search time due to the reduced dimensionality of the search space.

standard statistical methods for approximating such functions, we will demonstrate that none of

these procedures are necessary if a global search algorithm is used.

The application of genetic algorithms to neural networks has followed two separate but

related paths.  First, genetic algorithms have been used to find the optimal network architectures

for specific tasks.  This is not the main direction of our research.  For example, [22] and [16]

represented various network architectures as connection constraint matrices which were mapped

directly into a bit-string genotype.  Modified standard genetic operators were then used to act

upon populations of these genotypes to produce successively higher fitness levels.    While

interesting, this line of work seems to sidestep the issue of a universal functional mapping since it

leaves unresolved the question of whether the model's architecture perform's poorly on a given

task, due  to the appropriateness of the given architecture or rather the inability of the

backpropagation learning rule to achieve a global solution on the given architecture.  Another

example of this problem may exist in the well known study, [19], which utilizes special

architectures for solving the addition and negation problems.  Both can be solved easily with

generic structures using a genetic algorithm.  These problems are difficult however, when using a

generic structure and backpropagation.  This may be why [19] utilized their custom architectures.

The second direction involves optimization of the neural network using genetic algorithms

for search.  This is the direction of our research.  However, most of this work (see for example

[17], [25] or [26] ) uses a binary representation of the weights.   In the work reported in this

paper all weights are represented as real numbers in the genetic algorithm.2
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In the following section we describe the global search algorithm used for this study, the

genetic algorithm.  In section 3 we conduct a Monte Carlo comparison on seven test functions

between the genetic algorithm and the back propagation algorithm.  We then examine a

classification problem from [23] and show that a) the constraint of monotonicity may not be

supported by the data, b) a global search algorithm is able to achieve a superior classification

function for a completely general NN and c) the same algorithm can simultaneously find a

parsimonious structure for the NN.   In all of these comparisons our primary objective is to

compare the accuracy of the models and no consideration is given to the speed of convergence. 

In general, backpropagation will converge to a solution much more quickly than a global search

algorithm such as the genetic algorithm.  Here, our focus is on the in sample and out of sample

accuracy of the achieved solution.

3.  THE GENETIC ALGORITHM

In two recent papers Dorsey and Mayer have demonstrated, first for limited problems [4]

and then with more complex problems and an extensive Monte Carlo study [3] that the genetic

algorithm (GA) performs exceptionally well at obtaining the global solution when optimizing

difficult non-linear functions.   It was further demonstrated in [5],[7] that the GA also works well

when optimizing the NN, another complex non-linear function.  The GA is a global search

procedure that searches from one population of solutions to another, focusing on the area of the

best solution so far, while continuously sampling the total parameter space.  

A formal description of the algorithm can be found in [3].  In general, the algorithm begins

by randomly selecting a population of possible solutions.  Each potential solution is a set of

weights for the NN.  This population is the first generation from  which the genetic algorithm will
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begin its search for an optimal solution.  The size of the population is set to 20, which is

recommended in [3].  Thus, for a  genetic algorithm trained NN, 20 sets of weights, are evaluated

in each generation.   Unlike BP which moves from one point to another, the genetic algorithm

searches the weight space from one set of weights to another set, searching in many directions

simultaneously.  This enhances the probability of finding the global optimum.

The preselected objective function (not necessarily differentiable) is computed for each

candidate solution.  In this study we use the sum of squared errors for the objective function to be

consistent with BP.   A probability is assigned to each solution based on the value of the objective

function.  For example, using the sum of the squared errors, the solutions which result in the

smallest sum of squared errors are assigned the highest probabilities.  This completes the first

generation.  The second generation begins by randomly selecting a new population from the

former.  Twenty solutions are chosen with replacement so that good solutions are likely to be well

represented in the new population and poor solutions are unlikely to be drawn.   This is known as

reproduction.  The algorithm very generally parallels the process of natural selection hence its

name.   As in the saying “survival of the fittest,” the traits most favorable in optimizing the

objective function will reproduce and thrive in future generations, while weaker traits die out. 

This new population of solutions (all of which existed in the prior generation) is next

randomly grouped into pairs of solutions and a subset of the weights from each solution are

switched with its paired solution (crossover).  This creates two possible solutions, each with some

parameters (weights)  from each of the parent solutions.  Finally, each solution has a small

probability that any of its weights may be replaced with a value uniformly selected from the

parameter space (mutation).  This resulting set of solutions now becomes the new population or
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next generation, and the process repeats.  This process continues until the initial population

evolves to a generation that will best solve the optimization problem, ideally the global solution.

4.  MONTE CARLO STUDY

In order to compare the effectiveness of the GA with commonly used versions of BP a

Monte Carlo comparison was conducted on the following seven test problems.   The first five

constitute a variety of functions of two variables incorporating addition, multiplication, division

and powers.  The sixth problem is the well known Glass-Mackey chaotic time series and the last

problem is a production function that has the ability to exhibit both increasing and diminishing

marginal returns.

Fifty observations were used as the training set for the first five  problems.  The data for

these  problems was generated by randomly drawing the input variables uniformly from the

arbitrary sets X  e [-100,100] and X  e [-10,10].   For the sixth problem, 100 data points were1 2

generated from an initial point of [1.6,0,0,0,0].  For the seventh problem, 100 observations on the

three independent variables were drawn uniformly from the range [0,200].
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 In order to test the networks, twenty additional data sets were constructed for the first

five problems, consisting of 150 observations each.  The first ten test sets for each problem were

generated to test the ability of the optimized NN to interpolate.  The interpolation test data was

therefore also drawn from the sets X  e [-100,100] and X  e [-10,10], but did not include any1 2

common observations with the training set.  The second ten test sets were generated to evaluate

the ability of the optimized NN to extrapolate outside of the range of the training set.  This data

was drawn from X  e [-200, -101] and X  e [101, 200] and for X  e [-20, -11] and X  e [11, 20].  1 1 2 2

For the sixth problem ten interpolation data sets were generated by generating 150 data

points from the randomly chosen starting point, [-0.218357539, 0.05555536, 1.075291525, -

1.169494128, 0.263368033, -0.471719121].  Since the Glass-Mackey equation is stable there was

no extrapolation data set.  The ten interpolation data sets for the seventh problem each consisted

of 150 data points drawn uniformly from [0,200].  The ten extrapolation data sets also contained

150 points but were drawn from the range [201,400].

Although the GA does not require normalization of the data, the BP programs all

normalized the data.  Therefore the training data was normalized from -1 to 1 for both algorithms,

in order to have identical training and output data for comparison.  The square root of the mean

squared error, RMS, was the measure used for comparing the differences in the neural nets

optimized with BP and the GA.  Each network included 6 hidden nodes for all problems.  There

may well be better network architectures for the given problems, but since we are comparing the

optimization methods of the network, we chose a common architecture for both.   The first four

problems all had two input nodes plus a bias term.  The fifth problem had only one input node in

addition to the bias term.  The sixth problem used five input nodes for the data (five lagged values
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of the dependent variable) plus the bias term.  Only two were necessary but this information is

typically not known to the researcher.  The last problem had three input nodes plus a bias term.

In estimating unknown functions, it is rare that a researcher can identify all contributing

factors for any given output.  These unidentified variables are then incorporated as noise or error

in the model.  In order to account for such real life situations, an extension to the above

experiment was included that added an error term to the training output terms for two of the

stated problems (X  + X  and X *X  ) and again estimated by the neural net with both algorithms. 1 2 1 2

The error terms were randomly drawn from a normal distribution with a mean of  zero and

variance of  5 for  X  + X   and a mean of zero and variance of 10 for X *X .   The corresponding1 2 1 2

data sets for the problems with error were the same sizes and were drawn from the same ranges as

those without error.      

4.1.   TRAINING WITH  BACKPROPAGATION

Commercial neural network software as well as software downloaded from the Internet

were preliminarily evaluated in order to determine which package would give the best estimates

for the given problems.  These included, Neural Works Professional II/Plus by NeuralWare®,

Brain Maker by California Scientific, EXPO by Leading Markets Technologies and MATLAB by

Math Works (using both the backpropagation and the Marquardt-Levenberg algorithms). 

Although the performance was similar for all programs, Neural Works Professional II/Plus by

NeuralWare®, a PC-based neural network application seemed to give the best estimates and was

chosen for the test series.  In training each problem using BP, there were four factors that were

manipulated in an effort to find the best configuration for optimizing each problem.  They

included the learning rate, momentum, test size, and the Logicon algorithm.  The different
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combinations of the learning rate and momentum are introduced in order to try and find the right

combination that will allow the solution to escape local minima but not skip over the global

solution.  The test size is defined as the number of observations in the training set that are passed

through the network before evaluation and weight adjustments.  For example, if the training set

consisted of 50 observations and the test size was set to 10, then after 10 observations passed

through the network the error for those ten would be calculated and the weights adjusted

accordingly before continuing on to the next 10 observations.  Normally the delta rule provides

adjustment after every training pair, but recent modifications of the algorithm allow for larger test

sizes.  The Logicon algorithm was introduced by Gregg Wilensky and Narbik Manukian in 1992

and was developed  to achieve faster convergence by combining the advantages of closed and

open boundary networks, into a single network [27].  Each of these factors was varied in an effort 

to reduce the chances of becoming trapped  in  local minima.  While there are rules of thumb for

setting these values, there is no set standard upon which a researcher can draw for deriving

optimum configurations for training with backpropagation.  Guidelines suggested by the Neural

Works manual were used in selecting the values used.

4.2.  BACKPROPAGATION TRAINING FACTORS 

We examined 16 different configurations of these parameters  and the NN was trained on

the data for each problem with each configuration.  Ten replications from different starting values

were performed for each configuration and in each case the NN was trained for 20,000 epochs,

where an epoch is defined as one full pass through the training set.  These combinations are

shown in Table 1.  Although, the learning rate and momentum values selected for this study seem

relatively high they were systematically reduced by a constant value of 0.5 every 10,000 epochs,
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 Depending on where the error stopped decreasing some problems were trained more than 100,0003

epochs in order to reach 1,000,000.  However, all were trained at least 100,000 beyond the last reduction in error.

automatically by the BP software.  This was done in order to decrease the likelihood of

oscillation.  Each replication  was started with a new random seed.  Thus, there were 160 training

attempts for each problem.  Out of this set of 160, the best weights  (lowest sum of squared

errors) and the corresponding configuration (parameter settings) were used as the starting point

for additional training.

At that point the weights were saved and these weights were next used  as the starting

point for training an additional 100,000  epochs up to a total of 1,000,000 epochs for each of the3

seven problems using the optimal parameter settings.  Although, the training was still conducted

on the original in-sample data sets, the criterion for stopping this training was the reduction of

interpolation data error.  During this last sequence of  training the network, the interpolation error

was checked every 10,000 epochs for a reduction.  After 10 consecutive checks with no reduction

in interpolation error the training halted.  The set of weights that achieved the smallest

interpolation errors was then saved for the comparison with the GA.  This gives BP an added

advantage over the GA since the GA training process did not include interpolation data.

This methodology differs from the standard methodology used to compare algorithms. 

Typically when two algorithms are compared each is run several times and the average

performance is compared.  However, backpropagation does not have a standard protocol.  

Numerous papers have been written suggesting one method over another.  This leaves the

researcher in the position of being uncertain about the optimal approach to take.  We therefore

tried 160 different combinations for each problem to obtain the best solution and then tried to
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 This software was provided by  Roger W. Meier at the US Army Engineering Waterways4

Experimentation Station, Vicksburg MS.

Copies of the code for the genetic algorithm are available at 130.74.186.120/dorsey/abs/ga2.htm5

improve that solution before any comparisons were made.   Here our focus is on the best solution

achieved by each algorithm rather than the average solution although we report the range of

solutions in the tables for comparison.  Table 3 provides the best, worst, mean and standard

deviation across all different configurations used with the backpropagation algorithm and for the

genetic algorithm.

Since the GA was implemented on a CRAY-YMP,  precision and operation time could

affect the comparison with the PC-based Neural Works, so a backpropagation algorithm written

and optimized for a CRAY-YMP was acquired .   Using this program, the seven problems were4

again estimated with BP.  Each problem was trained for 1,000,000 epochs 10 times each.  Each

replication was started with a different random seed.  The best replication for each problem was

then trained for 50,000,000 additional epochs.  Although the CRAY-YMP version of BP was

trained with many thousands more epochs than the PC version, it did not obtain any of the  best

solutions for BP.  The NN that had the smallest error out of all 170 different replications for each

problem across both platforms was then selected for comparison with the GA solution.

Table 1 Approximately Here

4.3.  TRAINING WITH THE GENETIC ALGORITHM

The genetic algorithm is a global search algorithm.  Parameters of the algorithm were set

to the values recommended by Dorsey and Mayer (1995) .  The only parameters selected were the5

number of generations and the random seed.   The genetic algorithm was run on each problem ten
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 Recommendations for much lower learning and momentum rates for the Logicon algorithm were tried,6

but there was no significant difference in effect.

times and trained in each case for 5,000 generations.  The replications differed only in the

changing of the random seed.  Although, the network could have trained further with more

generations,  it was not necessary to demonstrate the effectiveness of a global search algorithm.  

In each case the genetic algorithm had not converged but was stopped after the pre-specified

number of generations.  If the GA were allowed to continue, it will converge arbitrarily close to

the global solution but the additional search time was unnecessary for the comparison.

5.  RESULTS

In all seven problems the best test size for BP was one.  Also, for these  problems  the

Logicon algorithm generated sizeably inferior estimates.   The only factor  that appeared to be6

problem specific was the learning  rate.  Table 2 shows the factors and levels that achieved  the

best results across the 160 different training runs for each problem.

Table 2 Approximately Here

The genetic algorithm was run 10 times each with different random seeds for the problems

since there was no need to explore for an optimal search configuration.  Results for the best,

worst, mean and standard deviation for the in-sample RMS errors for both BP and the GA are

given in the Table 3.  Although there was not a lot of variation in the GA performance there was a

significant amount in the BP solutions.   This wide variability supports the need for the researcher

to use many different configurations and a variety of starting values when using BP for optimizing

a NN.  In each case the error for the GA is different from zero since the GA was terminated after

5000 generations.  Additional search time would permit convergence to a solution arbitrarily close
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to zero.  This table also includes the RMS error means, standard deviations and P-Values for all

replications conducted for both BP and the GA.  As can be seen in Table 3, the GA’s in-sample

results were significantly better than the BP in-sample results for all seven test functions.  The

total number of epochs and corresponding computational time is shown in Table 4.   

Table 3 Approximately Here

Table 4 Approximately Here

The best GA and BP trained NN solutions for each problem were next compared on the

ten data sets for each problem with respect to both interpolation and extrapolation.  This

comparison is shown in Table 5.  Even though the NN's trained with the GA had far fewer

epochs, each of the best solutions for all seven problems was superior to the corresponding best

BP solution.  These results demonstrate the BP tendency to converge to a local solution. 

Table 5 Approximately Here

A statistical comparison of in-sample, interpolation and extrapolation results was

conducted using the Wilcoxon Matched Pairs Signed Ranks {2 - Tailed P Significance} test.  This

test incorporates information about the magnitude of the differences as well as the direction of the

differences between the pairs being tested.  The best estimates for both BP and the GA were used

for the interpolation and extrapolation comparison using this test method.  The routine from the

SPSS for Windows software package was used.  Table 6 provides a summary of these results.  As

can be seen, the solution obtained by the GA dominated the solution obtained by BP in every test

set at the 99% level of significance.

Table 6 Approximately Here
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Problem 5,  X -X , is used in Figures 1 and 2 to graphically illustrate the function and the1 2
2 3

out-of-sample interpolation estimates from both the BP and GA methods.   These two figures are

constructed by including the first 50 out-of-sample interpolation estimates for each algorithm with

their corresponding true values in an XY graph.  The true values are shown on the horizontal axis

and these values were also plotted on the graph in order to better show the actual difference in the

algorithms estimates for these values.  The forecast values from BP and the GA are plotted on the

vertical axis in Figures 1 and 2, respectively.  

Figure 1 Approximately Here

Figure 2 Approximately Here

While it appears that both the BP and GA method have captured the trend of the function,

the GA is obviously mapping more accurately over the training region.  Further, if derivatives of

the unknown function are important to the user, the GA clearly provides superior estimates of the

true derivatives, while the BP method  provides poor estimates of both slope and position. 

Figures 3 and 4 show the extrapolation forecasts for the GA and BP trained NNs on the same

problem.

Figure 3 Approximately Here

Figure 4 Approximately Here 

A common concern of researchers using NNs is the issue of "over fitting" or sometimes

"overtraining.”   Various recommendations have been suggested in the literature to refrain from

fully minimizing the objective function so that the NN will perform better out of sample.  This is

not an issue of "overtraining" but rather one of over parameterization.  If the objective function

should not be fully optimized then clearly the researcher has the wrong objective function.  
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When there is no error in the data, as with the examples so far, then a NN cannot be

overtrained.  However, if the data contains errors and  the NN is over parameterized there will be

a tendency for the NN to attempt to fit each point including error and thereby not represent the

true underlying function.  We will discuss using the GA to reduce the parameterization of the

model in the next section.  None the less, for a given level of parameterization  a potential concern

for researchers using the GA is how well a GA trained NN will perform outside the region of data

used to train the NN (extrapolation) when errors exist in the data.  It is important for the NN not

to fit the data with errors but to generalize the pattern and approximate the true underlying

function.  To examine the relative performance of the two algorithms for this case, noise was

added to the training data and the BP and GA were again used for training.   The best training

configuration for BP was used for 10 replications, changing the starting random seed in each case. 

The GA also was used to train the NN on the same data set for 10 replications. As can be seen in

Table 7, all of the replications of the network trained with the GA had a significantly lower RMS

error than its BP counterpart on the out-of-sample forecasts. 

Table 7 Approximately Here

The data used for the out-of-sample evaluation was without error so that the NN could be

evaluated with respect to the true functional form.  After 20,000 epochs the best set of BP

weights out of the ten replications was then used as the starting point for additional training to try

and converge on a better solution.  However, further training of this BP NN only increased the

out-of-sample RMS error, while further training with the GA continued to decrease the RMS

error.  This pattern exhibited by the BP trained neural network is often referred to as

"overtraining" but, in this case, is simply an indication of an insufficient search for an optimal



17

solution.  These results imply that the GA trained NN better approximates the true underlying

function for the two data sets including error. 

To illustrate the importance of finding global versus local minima, one only has to

compare the RMS errors of the two training methods, but in order to actually see why gradient

methods are problematic, error surfaces are provided in Figure 5.  Each surface was constructed

by using the best weights for the GA and BP for a particular problem.  X1*X2 was chosen for this

illustration because of its simplicity and nonlinearity.  Two of the 16 possible input weights were

chosen to vary by .01 increments at 50 points on each side of the original weight thus making a

101 X 101 grid.  As each individual weight was varied, all other input layer weights were held

constant.  After each change, the output layer weights were reoptimized given the input weight

change.  After each weight change and reoptimization, a new SSE was calculated.  This

procedure generated a total of more than 10,000 SSEs which were used as points in order to plot

the surfaces in Figure 5.  The plots show side by side comparisons of the GA and BP error

surfaces.  The weights chosen to vary for each plot were weight 1 of hidden node 1 and weight 2

of hidden node 2.  There are many possible combinations of weights that could have been chosen

for this illustration, and the others show similar results.  As can be seen, in this region of the

parameter space there are four local and one global solutions.  The steep sides of the global valley

are relatively close in proximity compared to the other four local valleys, so the probability of

starting in an area leading to a local solution is much greater than the probability of starting the

search in an area leading to a global solution.  It is also apparent by this graph that if the search

did start in a place leading to a local optimum, it would be difficult to obtain the global solution
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with a gradient search. Figure 5 shows three additional magnifications of these points for

comparison.  Although the problem X *X  is relatively simple, the error surfaces are complex. 1 2

Figure 5 Approximately Here

6. CLASSIFICATION

The classification example from [8, (pages 21-23)] discussed in [23] provides a further

example of the flexibility of a global search algorithm.  There are two independent variables in this

data set corresponding to the use of two different computer operating systems.  These are used to

classify the users into two classes, non-medical and medical users.   [23] assumes that the true

underlying function partitioning the space is composed of two monotonic segments and that the

connection point is known a priori.  Under these assumptions, neural networks were constrained

to approximate two monotonic functions which resulted in only four misclassifications.  This was

an improvement over the 7 misclassifications reported in [10].  Most classification problems are

far more complex than this example and it is typically not the case that the parameter space can be

divided into a small number of  monotonic segments.  See for example [12] where the

classification problem (financial impairment of insurance companies) was based on eleven financial

measures.  When the classification problem is more complex, the neural network can still serve as

a valuable tool for separating the parameter space into the appropriate regions.

To demonstrate the ability of a feedforward network optimized with a global search

algorithm we trained a neural network using the data from [10].  The architecture of the neural

network consisted of  two input nodes, six hidden nodes and one output node.  The neural

network  trained with the genetic algorithm reduced the number of misclassifications from  the

four reported in [23] to 1.  Without a priori knowledge of the true functional relationship this
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would appear to be a superior solution to the ones reported in [10] and [23].  Figure 6 illustrates

the classification data and the GA solution.

Figure 6 Approximately Here

The issue again arises however, of complexity of the solution and the possibility of over

parameterization of the neural network model.  While it may be more accurate for the training

sample if it is over paramiterized it may perform poorly out of sample.   This can be addressed by

modifying the objective function for the neural network from the traditional minimization of the

sum of squared errors to an objective function of the form:

Here, M is the number of non zero connection weights and beta is the relative weight

allocated to minimizing complexity relative to accuracy.  The sum of the absolute errors is

arbitrary and could as well be the sum of squared errors.  When this objective function was used

on the above problem with a value of beta set at 10 the neural network again achieved an

accuracy of only one error but at the same time eliminated the eight connection weights

corresponding to two of the hidden nodes.  Thus solving the problem with the same accuracy but

with a neural network of only four hidden nodes.   If prior knowledge of the problem implied that

this solution was still too complex, then by simply increasing the value for beta and reoptimizing,

a less accurate but less complex solution can be achieved.  For example, to obtain monotonic

functions similar to those presented in [23] for the problem in [10], two NNs with six hidden

nodes each were trained to replicate the reported monotonic functions.  The genetic algorithm
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was then allowed to eliminate unnecessary connections and found that eight connections could be

dropped and still maintain the same accuracy.

7.  CONCLUSIONS

Artificial neural networks offer researchers a highly versatile new tool for flexible form

estimation.  Unfortunately, the successful utilization of this procedure requires that the ANN be

fully optimized.   Many researchers are currently using local search algorithms such as

backpropagation for optimization and are thus likely to obtain local optima instead of the global

solution.   We demonstrate that such local solutions often perform poorly on even simple

problems when forecasting out of sample.  

Researchers have attempted to address this problem with ad hoc procedures such as

stopping optimization at sub-optimal solutions (not over training) or adjusting the neural network

architecture to make optimization easier.  We demonstrate that if a global optimization algorithm

is used these arbitrary procedures are not necessary.  Further we show that by using a global

search algorithm such as the genetic algorithm, the objective function can be set to balance the

tradeoff between the over parameterization of the model that may over fit the data and a

parsimonious ANN that can provide a more robust solution.
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Table 1: Alternate Backpropagation Training Parameters

                                                                       Learning Rate
                                                          .5                                       1

Logicon         Test           Momentum       Momentum
             Size
Algorithm       .3                  .9       .3             .9

          OFF           1  10 rep  10 rep  10 rep  10 rep
                50
      
          

         ON

 10 rep    10 rep  10 rep  10 rep

       1     10 rep 10 rep 10 rep 10 rep
      50

 10 rep 10 rep 10 rep 10 rep
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Table 2 - Optimal Training Parameters for Back Propagation

PROBLEM LEARNING MOMENTUM    TEST LOGICON
    RATE     SIZE

1 1 .9 1 OFF

2  1 .9 1 OFF

3 1 .9 1 OFF

4 .5 .9 1 OFF

5 1 .9 1 OFF

6 .5 .9 1 OFF

7 1 .9 1 OFF
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Table 3 - Comparisons of In-Sample RMS Error for BP and GA Trained NNs

Prob P value
BP GA BP GA BP GA BP GA

Best Best  Worst Worst Mean Mean Stdev Stdev

1 4.11E-01 4.16E-07 17.63 8.46E-06 8.56 2.61E-06 5.86 4.02E-06 .00

2 11.65 1.27E-02 337.90 5.07E-01 164.27 1.15E-01 86.45 1.22E-01 .00

3 5.31 1.82E-01 15.30 1.29 10.37 5.22E-01 2.51 6.13E-01 .00

4 178.70 4.09E-02 3,253.78 2.20 1,023.46 3.50-01 942.71 2.33 .00

5 8459.91 3.06E-02 201,063 1.09 102,707 2.56E-01 55719.38 5.60E-01 .00

6 1.33E-01 2.53E-02 5.19E-01 1.29E-01 3.83E-01 7.91E-02 1.05E-01 5.34E-03 .00

7 4.79 3.47E-01 13.50 2.49 10.56 1.32 2.50 2.29 .00
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Table 4 - Out-of-Sample Comparisons RMS errors

Interpolation Comparison Extrapolation Comparison

Mean RMS Error for Standard Deviation Mean RMS Error for Standard Deviation
10 Data Sets for 10 Data Sets 10 Data Sets for 10 Data Sets

Prob BP GA BP GA BP GA BP GA

1 1.89 4.06E-07 1.55 2.07E-08 8.45 1.42E-04 3.08 2.52E-05

2 20.20 1.56E-02 9.23 1.26E-03 265.82 1.29 23.73 7.32E-02

3 9.63 4.46E-01 4.34 3.73E-02 26.30 7.10 1.81E-01 2.72E-01

4 360.97 4.67E-02 123.58 2.43E-03 7527.68 10.47 895.07 1.18

5 25692.83 2.10E-02 7574.86 3.09E-03 183633.17 3681.31 17278.26 416.69

6 1.22E-01 3.36E-02 1.38E-02 1.37E-03 N/A N/A N/A N/A

7 5.95 1.95 5.97E-01 3.87E-01 31.77 1.03E-01 1.66 3.16E-03
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Table 5 - In-Sample Training Comparisons

   *Number of Epochs **Execution Time in
seconds 

Prob BP GA BP GA

1   1,000,000 100,000 1,250 343

2   1,000,000    100,000 1,250 343

3   1,000,000 100,000 1,250 343

4 1,000,000  100,000 1,250 343

5 1,000,000    100,000 1,100 317

6 1,000,000 100,000 1,350 508

7 1,000,000 100,000 1,250 494

* One epoch is a complete pass through the data 
** Time in seconds based on execution time on a Pentium
83MHz PC
PC version for BP NeuralWorks Professional II/PLUS 
NeuralWare, Inc.
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Table 6 - Wilcoxon Matched Pairs Ranks Test

Number of Test Sets out of 10 where the GA
Trained NN found Superior Solutions to the BP
Trained NN at the 0.99 Level of  Significance

Problem Interpolation Extrapolation

1 10 10

2 10 10

3 10 10

4 10 10

5 10 10

6 10 NA

7 10 10
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Table 7 - RMS Comparison for Functions including Error

Parameters
from
Training
Run

                   X +X +e*                    X *X +e**1 2 1 2

Interpolation Extrapolation Interpolation Extrapolation

     BP GA BP GA BP GA BP GA

  1   4.14 1.27 36.65 3.47   16.02 1.66 1303.61 8.58
  2   2.85 1.56 32.24 3.89 215.97 1.75 2037.61 8.97
  3   2.82 1.82 34.28 5.12   49.27 1.67 1460.35 8.67
  4   2.93 1.48 30.73 4.15   50.82 1.88 1399.33 8.84
  5   6.95 1.57 34.27 9.38   30.56 1.64 1479.32 8.50
  6   2.90 1.30 38.37 3.70   15.96 2.00 1321.45 9.52
  7   2.80 2.03 34.59 5.87   19.73 2.13 1317.33 9.80
  8   3.11 1.47 33.43 4.17   21.35 1.85 1322.68 9.79
  9   2.99 1.50 34.33 3.50   29.86 1.75 1348.10 9.24
10   2.71 1.60 34.02 3.69   19.48 1.65 1307.22 8.48

  *error was drawn from a normal distribution    [µ=0, s =5]2

**error was drawn from a normal distribution    [µ=0, s =10]2
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Figure 6 - Partitions of Classification Problem 
                  

       
                     

Figure 5- Four levels of Magnification of the GA and BP solutions to the X *X1 2

Problem.  The vertical axis is the sum of squared errors.  The horizontal axes
correspond to two of the NN weights.  The optimal values are centered on the axes and
result in the smallest SSE.  Four levels of magnification are shown.  The least
magnification is in the upper left, and then increasing to the lower left, upper right and
finally lower right.   In each pair the GA solution is on the left and the BP solution is on
the right.    


