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Abstract—This paper describes a vision and proposes
a method for multiple, small, fixed-wing aircraft coopera-
tively localizing in GPS-denied environments. Recent work
has focused on the development of a monocular, visual-
inertial odometry for fixed-wing aircraft that accounts for
fixed-wing flight characteristics and sensing requirements.
The odometry was developed to be a front-end for novel
methodology called relative navigation, which has been
developed in prior work. This paper describes how the
front-end could enable a back-end where odometry from
multiple vehicles and inter-vehicle measurements could be
used in a single, global, back-end, graph-based optimization.
The inter-vehicle measurements over constrain the graph
and allow the optimization to remove accumulated drift
for more accurate estimates. The goal of this work is to
show that many, small, potentially-lower-cost vehicles could
collaboratively localize better than a single, more-accurate,
higher-cost GPS-denied system.

I. INTRODUCTION

More than ever before unmanned aircraft systems

(UAS) need the ability to accurately navigate in GPS-

denied environments. In both civil and defense applica-

tions UAS need to have an accurate knowledge of their

motion to complete their mission objectives. The advent of

highly-accurate, miniaturized navigation systems that fuse

inertial measurements with GPS measurements (GPS-

INS) have allowed UAS to operate in a variety of new

applications. These navigation capabilities remain limited

because GPS-INS solutions are brittle to GPS signal

degradation and dropout. For example, civil autonomous

drone delivery services will need to accurately navigate

in and around obstacles where GPS signals are partially

or fully obstructed.

Many military defense applications require aerial nav-

igation in areas where GPS signals have been spoofed or

jammed. Some applications require long-distance, high-

speed flights and limited communication with ground-

based command centers. In contrast to low-flying delivery

and inspection aircraft, these vehicles require less preci-

sion because of their distance from obstacles, but need to

limit the accumulation of drift over time to achieve their

mission objective.
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Fig. 1. This work enables GPS-denied navigation on fixed-wing aircraft.
This high-fidelity, aircraft simulation was used to test the front-end,
odometry estimator.

UAS benefit from being small and inexpensive. Aircraft

designers often speak of size, weight, and power (SWaP)

constraints that influence trade-offs in the design. Nav-

igation capabilities have similar constraints. GPS-denied

solutions that only use inertial measurement units (IMUs)

have been successfully implemented, but these solutions

are only possible with highly-accurate, prohibitively-

expensive, military-grade IMUs that have been precisely

calibrated. Small UAS often must utilize sensors that

are much less precise and instead use advanced algo-

rithms to account for sensor noise and remove drift from

state estimates. Constructing small, lower-quality vehicles

make it possible to economically produce more vehicles

to perform the mission rather than one, higher-quality

vehicle.

In general small UAS can also benefit from collabora-

tion to produce synergistic effects. Specifically for GPS-

denied navigation, collaboration may provide significant

advantages. Without position measurements to limit drift,

global position and yaw angle are unobservable [1]–[3].

Vehicles must use other exteroreceptive sensing to help

limit how fast estimate drift accumulates. If multiple

vehicles could share measurements then the drift of all

the vehicles could be further limited and provide even
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Fig. 2. The relative navigation architecture was developed for GPS-
denied navigation. Estimation and control are performed in a front end
where the vehicle operated relative to a local coordinate frame. The back
end accounts for global information by utilizing odometry from the front
end and optimizing it in a global pose-graph map.

better accuracy.

GPS-denied navigation on fixed-wing UAS requires

specific sensing and estimation considerations. The major-

ity of previous GPS-denied research and development has

mainly focused on multirotor aircraft. Fixed-wing UAS

differ from multirotors because they have different aircraft

dynamics, they generally fly at higher speeds, and they are

unable to stop and hover in place. Multirotor UAS are

often able to utilize depth sensors, such as laser scanners,

to effectively measure their motion because they can fly in

and around structure in the environment. On fixed-wing

UAS, depth sensors are less effective at measuring the

motion of the aircraft because they usually fly high above

the environment. This work proposes the development of

a method to enable multiple, small, fixed-wing UAS to

collaboratively localize.

II. PREVIOUS WORKS

This proposed work draws from previous research in

three areas: The overall GPS-denied architecture utilizes

the relative navigation framework, the front-end, visual-

inertial odometry is a modification to the multi-state-

constraint Kalman filter (MSCKF), and the back-end

optimization comes from the wealth of literature on pose-

graph optimization. Relevant work in these areas is sum-

marized in the following sections.

A. Relative Navigation

Researchers have recently proposed on a new approach

to GPS-denied navigation called relative navigation [4],

[5]. It is a methodology and framework that separates

the navigation into two sub-tasks. It separates a front-

end estimator from a back-end optimization. The front

end operates relative to the local surroundings and a back

end that uses regular updates from the front end to create

and maintain a global map. Figure 2 shows the framework

architecture.

Relative navigation is motivated by a fairly simple

concept called the relative-reset step [6] which is closely

related to keyframe-based methods. The concept is for

the front-end estimator to regularly declare a new local

origin at the location of the vehicle. This also serves

to remove uncertainty from the filter because the new

origin is defined to be exact. At each new origin the prior

transform can be sent to the back end as an edge in a

directed pose graph.

The relative navigation approach has several advantages

over contemporary methods. It is locally observable by

construction and it has better filter consistency compared

to other state-of-the-art approaches [7]. The front end has

the computational advantages of an extended Kalman filter

(EKF). The pose graph used in the back end is able to bet-

ter represent large, nonlinear errors in odometry estimates.

The back end can also incorporate other constraints, such

as opportunistic GPS measurements or place-recognition

loop closures.

Several tests have been perform to demonstrate rela-

tive navigation [8]. Assumptions about vehicle dynamics,

sensing, and filtering have mostly limited the tests to

multirotor aircraft at relatively low speeds. The approach

has also be implemented with the entire architecture on

a single vehicle that has enough computational resources.

Sensing requirements have ensured the paths are in and

around structured environments which have allowed the

paths be relatively short and include loops back on

themselves. These factors have limited the impact of the

relative navigation architecture as a solution to the GPS-

denied navigation problem.

B. Relative MSCKF

In the majority of the relative navigation work the

front-end state estimator has been called the relative

multiplicative extended Kalman filter (RMEKF) [6]. The

RMEKF has required a keyframe-based odometry as a

measurement and the odometries have used depth sensors,

such as laser scanners and RGBD cameras, to resolve

scale ambiguity. Fixed-wing aircraft, where RGBD and

laser depth sensors are impractical due to the increased

distance to features in the environment, require a different

approach. Further, the main functions of the RMEKF were

to combine inertial and visual odometry measurements

and to perform a relative reset at each keyframe declara-

tion. The odometry alone would otherwise be sufficient to

provide the back end with odometry edge transformations

from pose to pose.

More recently, a new tightly-couple, visual-inertial

odometry has been introduced as a front-end estima-

tor [9]. It uses only monocular imagery, without depth

measurements, for exteroreceptive sensing. It combines

the odometry calculations, inertial measurements, and

relative-reset steps into one filter. This filter was developed

specifically to enable fixed-wing UAS to use the relative

navigation framework.
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The new filter is based on the MSCKF. The MSCKF

is more ideal for fixed-wing UAS because it makes

no assumptions about the distance to observed features,

requires no depth measurements, and makes no assump-

tions about the vehicle dynamics. The MSCKF uses a

unique measurement model that was originally presented

in [10]. It avoids adding uncertainty to the filter by not

initializing states that are not well known. Further, updates

are performed after a image feature moves out of view and

all information about that feature is obtained.

Since its introduction, the MSCKF has seen extensive

development in the literature. It has been demonstrated

for use on ground vehicles [11], spacecraft [12], and even

smart phones [13]. It has also been compared to several

more-recent visual-inertial odometries and its accuracy

and consistency properties remain comparable to the state-

of-the-art with less computational burden [14].

Since the new, front-end filter was first presented in [9],

several improvements have been introduced. The main

improvements come from the reimplementation of the

filter in the C++ programing language instead of Python.

The greater speed from C++ allows the filter to run in

real time while using more tracked features and more

images per second. It was tested using the ROS/Gazebo

simulation tools that were developed as part of ROS-

plane [15]. Figure 1 shows an example of the simulation.

The filter now produces nearly double the accuracy as it

did in previous results [9]. Figure 3 shows the trajectory

of the aircraft and the accumulated estimates from the

filter. Progress has also been made to use the algorithm

in a hardware flight demonstration and results will be

published when they are available.

C. Graph Optimization

The relative-navigation back end has, in the past, been

used to keep track of the global map by creating a directed

pose graph. During the relative reset, the position and

heading angle states and covariances are zeroed and the

transformation from just before the reset is sent to the

global back-end as an edge in the graph. Covariance

uncertainty is effectively removed from the front-end filter

and sent to a global back end where the pose graph

has the ability to represent non linear uncertainties from

yaw better than a Gaussian filter [7]. The back end

is able to do edge optimization on the graph of pose

estimates to improve global states for performing a global

mission. The optimization is also able to incorporate and

account for other constraints, such as opportunistic GPS

measurements and place-recognition loop closures, for

more accurate localization.

Graph-based optimization methods have been effec-

tively used in robotic localization for some time [16]. Ad-

vances in computational power and sparse-matrix math-

ematics have, more recently, increased both the speed

at which the optimizations can be performed and the

number of nodes, or factors, that can be considered in
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Fig. 3. Top: The path of the aircraft. The accumulated estimate (red)
is compared actual path (blue). Gray × indicate relative-reset origins.
Bottom: Accumulated error is less than 2% of the total distance traveled.
Gray vertical lines indicated relative resets. The aircraft flew nearly
2200 m and the filter is nearly twice as accurate as previously reported
results.

the graph. Generalized graph optimization (g2o) [17],

Georgia Tech smoothing and mapping (GTSAM), and

incremental smoothing and mapping (ISAM) [18] are

all graph optimization frameworks that have open-source

implementations that are available for research. In the

past, the relative-navigation back end has used the g2o

graph optimization framework but recently other methods

have been explored.

GTSAM is a smoothing and mapping toolbox that uses

factor graphs to iteratively optimize a bipartite graph [19].

This means that it performs maximum a-posteriori infer-

ence through the relationships of states and factors that

relate the states. Factors can be sensor measurements or

odometry between aircraft poses. Odometry estimates are

binary factors and measurements, such as opportunistic

GPS or bearing to static features, are unary factors.

Because the global back end uses a pose graph that is

a relatively sparse representation of the vehicle odometry,

it has potential to be useful for multi-vehicle cooperative

localization. Multiple vehicle cooperation has the poten-

tial to limit estimate drift over extended flights due to

the increased baseline between sensors [20], [21]. Other

work has show that multiple vehicles can collaboratively

estimate using poses as factors in factor graph smoothing

frameworks [22].

GTSAM can be easily applied to new problems. It

allows implementing factors for new measurement models

by inheriting from a factor class and implementing the loss
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Fig. 4. The proposed, multi-vehicle architecture will include each vehicle with a separate front-end odometry that provides edges to centralized
back end. This work will initially focus on localization in the back end and not on global path-planning or relative control.

function for the new factor [19]. This functionality will

be necessary for using GTSAM as a multi-vehicle back

end with custom inter-vehicle measurements.

III. DEVELOPMENT

We propose the creation of a new relative-navigation

back-end graph and optimization that will incorporate

the odometry and measurements from multiple vehicles.

The back end will use the new visual-intertial odometry

that was constructed for use of fixed-wing aircraft. The

aircraft will be able to fly high above the environment

over relatively long, straight flights. The vehicles will

also have the ability to measure the distance to the other

UAS through inter-vehicle range measurements. These

measurements, with odometry, will be combined in a

centralized back-end graph. Figure 4 shows the modified

relative-navigation architecture with a centralized, global

back end. Figure 5 shows the odometry transformations

and inter-vehicle measurements that make up the graph

of the UAS flight paths.

This work will use GTSAM framework for optimizing

the back-end pose graph. Relative transformations from

the front-end filter will be used as binary factors between

consecutive aircraft poses. Multiple-aircraft localization

will be accomplished by incorporating pose variables

and odometry factors from multiple aircraft in the same

optimization. The distance measurements between aircraft

can be modeled by implementing a binary factor with the

distance between aircraft poses as the factor constraints.

Initially, this work will assume distance measurement are

only taken simultaneous to the front-end, relative reset but

then will continue by relaxing that assumption through

the addition of nodes in the graph that correspond to the

timing of the measurement. A similar approach that was

used in [5] to utilize multiple GPS measurements between

nodes.

An intermediate step to the full multi-vehicle problem

will be to incorporate measurements to known landmarks.

These landmarks may be visual landmarks or stationary

transceivers that provide distance measurements. In this

case the measurements are unary factors in the graph

and the entire graph must shift in the global reference

frame rather than being relative to the starting pose of

the aircraft. This step will help in the development of

the back-end while still providing a valuable contribution

since these type of measurements are feasible in many

flight scenarios.

One potential challenge that this work may encounter

is the difficulty of optimizing vehicle poses with large

initial uncertainties. The odometry of the aircraft will

tend to accumulate position error over time and the

error may become large for longer-distance flights. When

large uncertainties exist, pose-graph optimizations can

get stuck in local minima that are far from the optimal

solution. Recent work in the BYU MAGICC Lab has

shown robustness to initialization errors can be achieved

by optimizing the edge transformations rather then the

poses of the vehicle. This robustness comes, however, at

some increased computational cost. The work in [23] also

directly deals with large initial uncertainty for optimizing

graphs with inter-vehicle range measurements.

IV. EXPERIMENTAL SETUP

The method will initially be demonstrated in simulation

where the full system can be simulated in detail. Figure 6

shows a Gazebo simulation with three independent aircraft

flying in close proximity. The simulation will be invalu-

able for development and testing because experiments

can be performed with relative ease and truth compari-

son is both possible and simple. The inter-vehicle range

measurements can be implemented as sensor simulations

plugins.

The architecture will use ROS for communication and

messaging. The use of ROS will make the move from

simulation to hardware flight tests easier because simu-

lated sensors can be replaced with hardware sensors on

the UAS.

The flight-test experiments will take place on small

fixed-wing platforms. A suitable aircraft platform is the

STRIX StratoSurfer by Ready Made RC. This aircraft

works well because it is sturdy and has a large payload

capability. Some initial testing has already been done on

this aircraft. The aircraft will carry an Odroid single-

board computer and use ROSplane [15] for the aircraft
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Fig. 5. A pose graph will be optimized in the global back end. It will demonstrate relative-navigation back end can be used for multi-
vehicle collaborative localization. The demo will have multiple fixed-wing aircraft fly over relatively long, straight flights where loop-closure
like measurements are obtained from inter-vehicle range measurements. Odometry is represented by black arrows and inter-vehicle measurement
are purple arrows.

Fig. 6. The proposed method will be demonstrated in a high-fidelity
simulation where multiple aircraft can be simulated, each with indepen-
dent front-end estimators and inter-vehicle measurements.

stabilization and autonomous control. The true aircraft

odometry will be measured by an accurate GPS-INS

implementation for comparison.

V. CONCLUSION

This work will demonstrated a feasible method for

collaboratively localizing fixed-wing UAS in GPS-denied

environments. The work will be significant because it

will directly acknowledge and address challenges of GPS-

denied, fixed-wing UAS. GPS-denied solutions for multi-

rotor aircraft are fairly common, but less so for fixed-wing

aircraft. Often, when solutions do exist, the approaches

make significant simplifying assumptions, such as oper-

ating over flat-earth or in Manhattan world environments,

or having complex or unreasonable sensing requirements,

such as downward facing camera or depth measurements.

The completion of this work uses minimal sensing (only

camera, IMU, and inter-vehicle range) and makes no such

simplifying assumptions. It further enables GPS-denied

navigation within a collaborative framework capable of

incorporating inter-vehicle measurements from multiple

aircraft. These measurement will over constrain the graph

and allow the graph smoothing and optimization to re-

move accumulated error from the graph.

The work will also extend the impact of the relative

navigation framework. It will allow the value of relative

navigation to be shown for a different type of vehicle with

a different mission profile. Since the back end constrains

the graph with inter-vehicle measurements and not with

loop closures, the aircraft will be able to fly in relatively

long, straight paths at high speeds. These mission profiles

may be more representative of real-world UAS scenarios.

The approach will be demonstrated using a Gazebo

simulation of a small fixed-wing aircraft with simulated

sensors. The simulated aircraft dynamics and sensor-noise

characteristics will be representative of those from an

actual small, unmanned fixed-wing aircraft. The accuracy

and consistency of the relative odometry are presented,

as well as hardware results with GPS as ground truth

comparison.

This research will contribute to the maturation of small

unmanned aircraft. Before introduction into the national

airspace or use in military applications, small unmanned

aircraft will need greater reliability and to be robust to

GPS signal degradation and dropout. This research will

utilize state-of-the-art methods and modify and combine

them in novel ways to expand the capabilities of these

aircraft.

This work will include simulation and hardware flight

testing to demonstrate the capabilities of the proposed

methods. The multi-aircraft cooperative flight demonstra-

tion that is enabled by the new relative-navigation back

end and the tightly-coupled, visual-inertial front end, will

show the value of the complete system with relative

navigation. It will be successful if multiple aircraft can

cooperatively localize with greater accurately than an

individual aircraft.
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