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I Want Out

From our lives’ beginning on

We are pushed in little forms

No one asks us how we like to be

In school they teach you what to think

But everyone says different things

But they’re all convinced that

They’re the ones to see

So they keep talking and they never stop

And at a certain point you give it up

So the only thing that’s left to think is this

I want out – to live my life alone

I want out – leave me be

I want out – to do things on my own

I want out – to live my life and to be free

People tell me A and B

They tell me how I have to see

Things that I have seen already clear

So they push me then from side to side

They’re pushing me from black to white

They’re pushing ’til there’s nothing more to hear

But don’t push me to the maximum

Shut your mouth and take it home

’Cause I decide the way things gonna be

I want out – to live my life alone

I want out – leave me be

I want out – to do things on my own

I want out – to live my life and to be free

There’s a million ways to see the things in life

A million ways to be the fool

In the end of it, none of us is right

Sometimes we need to be alone

No no no, leave me alone

I want out – to live my life alone

I want out – leave me be

I want out – to do things on my own

I want out – to live my life and to be free

Helloween, Keeper of the Seven Keys, Pt. 2 (1988)
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Abstract

H
igh-level language virtual machines (HLL VMs) have been

playing a key role as a mechanism for implementing program-

ming languages. Languages that run on these execution environments

have many advantages over languages that are compiled to native

code. These advantages have led HLL VMs to gain broad acceptance

in both academy and industry. However, much of the research in this

area has been devoted to boosting the performance of these execution

environments. Few efforts have attempted to introduce features that

automate or facilitate some software engineering activities, including

software testing. This research argues that HLL VMs provide a rea-

sonable basis for building an integrated software testing environment.

To this end, two software testing features that build on the charac-

teristics of a Java virtual machine (JVM) were devised. The purpose

of the first feature is to automate weak mutation. Augmented with

mutation support, the chosen JVM achieved speedups of as much as

95% in comparison to a strong mutation tool. To support the testing

of concurrent programs, the second feature is concerned with enabling

the deterministic re-execution of Java programs and exploration of

new scheduling sequences.

Keywords — software testing; mutation testing; weak mutation;

record-and-playback mechanism; Maxine VM; Java virtual machine.
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Resumo

M
áquinas virtuais de linguagens de programação têm desem-

penhado um papel importante como mecanismo para a imple-

mentação de linguagens de programação. Linguagens voltadas para

esses ambientes de execução possuem várias vantagens em relação às

linguagens compiladas. Essas vantagens fizeram com que tais ambi-

entes de execução se tornassem amplamente utilizados pela indústria

e academia. Entretanto, a maioria dos estudos nessa área têm se

dedicado a aprimorar o desempenho desses ambientes de execução e

poucos têm enfocado o desenvolvimento de funcionalidades que au-

tomatizem ou facilitem a condução de atividades de engenharia de

software, incluindo atividades de teste de software. Este trabalho apre-

senta ind́ıcios de que máquinas virtuais de linguagens de programação

podem apoiar a criação de ambientes de teste de software integrado.

Para tal, duas funcionalidades que tiram proveito das caracteŕısti-

cas de uma máquina virtual Java foram desenvolvidas. O propósito

da primeira funcionalidade é automatizar a condução de atividades

de mutação fraca. Após a implementação de tal funcionalidade na

máquina virtual Java selecionada, observou-se um desempenho até

95% melhor em relação a uma ferramenta de mutação forte. A fim de

apoiar o teste de programas concorrentes, a segunda funcionalidade

permite reexecutá-los de forma determińıstica além de automatizar a

exploração de que novas sequências de escalonamento.

Palavras-chave — teste de software; teste de mutação; mutação

fraca; mecanismo de record-and-playback; Maxine VM; máquina vir-

tual Java.
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Chapter

1

Introduction

High-level language virtual machines (HLL VMs) have been playing an important role

in the implementation of high-level languages (HLLs) for more than forty years (Craig,

2005). Over the years, a number of prominent HLLs have been designed to run on these

managed execution environments. The HLL VMs for the languages Lisp (Steele and

Gabriel, 1993), Pascal (Wirth, 1996), and Smalltalk (Goldberg and Robson, 1983; Kay,

1996) can be regarded as early implementations that fostered and popularized the concept.

These early HLL VMs pioneered a number of innovative techniques, e.g., incorporation of

runtime1 compilers (Deutsch and Schiffman, 1984; Arnold et al., 2005b; D’Hondt, 2008)

and automatic reclamation of storage (Lo et al., 2003; Jones et al., 2011). Thus, it can be

argued that they set the standard for later implementations.

Currently, the Java virtual machine (JVM) (Li, 1998; Lindholm and Yellin, 1999; En-

gel, 1999) and the Common Language Runtime (CLR) (Meijer and Gough, 2012) are

arguably the most widely used HLL VMs and have been driving such technology into the

mainstream (Smith and Nair, 2005b; Durelli et al., 2010). Other prominent contemporary

examples are the HLL VMs for the languages Ruby (Sasada, 2005; Flanagan and Mat-

sumoto, 2008; Thomas et al., 2009), Scala (Wampler and Payne, 2009; Odersky et al., 2011),

1Following the convention proposed by Smith and Nair (2005b), throughout this document the
single-word form runtime refers to the virtualizing runtime software in a virtual machine, whereas run

time and run-time are used in a less specific sense: the time during which a program is running and the
amount of time it takes to execute a certain program, respectively.
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Perl (Schwartz et al., 2011), Python (Lutz, 2009), and Erlang (Cesarini and Thompson,

2009).

The main benefit provided by the early HLL VM implementations was cross-platform

portability. In the following years, however, HLL VMs have become the de facto standard

for implementing programming languages largely due to the other software engineering

benefits they have brought to the mainstream, e.g., program isolation, built-in multithread

support, and automatic memory management (Craig, 2005; Smith and Nair, 2005b). Like-

wise, some of these intrinsic advantages over statically compiled binaries have led to their

widespread adoption on various platforms as real-time (Higuera-Toledano et al., 2000;

Cavanagh and Wang, 2005; Baker et al., 2006; Armbruster et al., 2007; Higuera-Toledano,

2012), low-end embedded systems (Chen and Kandemir, 2005; Koshy et al., 2009), and

mobile devices (Lawton, 2002; Riggs et al., 2003; Wolfe, 2004).

According to Ryder et al. (2005), software engineering research and practice have been

enjoying a symbiotic relationship with language design. For instance, modules can be seen

as an outgrowth of concepts such as information hiding and modularization. Similarly, data

abstraction led to the development of object-oriented languages, and the widely adoption of

such languages can be ascribed to modularity and reliability, which are established themes

in software engineering research (Ryder and Soffa, 2003). Moreover, many languages have

been devised to cope with unique demands of certain applications (Sammet, 1972). However,

the influence that research in software engineering has over programming language design

has mainly led to improvements at language-level.

Although HLL VMs have become widely used for implementing HLLs, most research

in this area has been concerned with boosting the performance of such managed execution

environments. In fact, as pointed out by a systematic mapping on the topic (Durelli et al.,

2010), the bulk of the research on HLL VMs has focused on coming up with increasingly

faster adaptive optimization techniques (Davis and Waldron, 2003; Arnold et al., 2005b)

and more effective memory management algorithms (Kazi et al., 2000). Few efforts have

tried to exploit the intrinsic control that HLL VMs exert over running programs to support

and speed up software engineering activities.

This research suggests that software testing is one of the software engineering activities

that can capitalize on HLL VMs support. We followed the threefold formula proposed

by Booth et al. (2008) to flesh out the scope of this research:2

• Research Problem: Research in HLL VMs is primarily concerned with devising

and implementing optimization and memory management algorithms. There has

2 Booth et al. refer to research problem as practical or conceptual problem and potential contribution
as significance.
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been very little research on investigating how execution environments can be used

to automate software engineering activities as software testing. As an initial step

towards addressing this lack of knowledge, this research is aimed at advancing the

knowledge and understanding of whether HLL VMs provide a viable option for

supporting software testing.

• Research Questions (RQs):

– RQ1: Can HLL VMs be harnessed to support software testing?

As the results of retrofitting software testing support into an HLL VM become

increasingly apparent, we intend to fine-tune the previous question by asking:

– RQ2: What sort of software testing support is more suited to modern HLL VMs?

• Potential Contribution: We are interested in understanding how HLL VMs can

be harnessed to support software testing. We conjecture that some software testing

activities that are currently implemented by heavily relying on instrumentation or

libraries should rather be implemented at HLL VM level. In other words, this research

can be seen as an initial foray into understanding how the interplay between the

execution environment and programs can be explored for software testing purposes.

Thus, conceptual consequences (Booth et al., 2008) of this investigation will help

researchers and practitioners to gain a deeper understanding of which characteristics

of the contemporary HLL VMs can be extended for the purpose of automating

software testing techniques. Given that we set out to modify a full-fledged HLL VM

to automate two software testing activities (described in the following sections), the

resulting HLL VM can be seen as a practical consequence (Booth et al., 2008) of

this research.

1.1 Retrofitting Software Testing Support into HLL VMs

In order to investigate whether retrofitting software testing support into managed execution

environments has a positive impact on testing activities, we decided to tackle a complex

problem: setting up an infrastructure to support the testing of concurrent programs using

mutation testing. Towards this end, the following features were identified as essential:

(i) automating the execution of mutants, (ii) enforcing the deterministic re-execution of

multithreaded programs, and (iii) enabling that subsequent executions cover schedules

different from the ones previously explored.

We decided to focus on mutation testing because, despite being a mature technique,

the cost associated with mutants execution is still one of the main challenges faced by
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researchers and practitioners. In addition, we argue that the problem is worth tackling

because previous studies have been restricted to modifying compilers (Untch et al., 1993)

and interpreters (Offutt and King, 1987), no one has investigated whether HLL VMs can

be of assistance in speeding up the execution of mutants.

The second and third features can be useful when used as part of a much larger

testing environment encompassing more testing techniques. They play a supportive role to

debugging and testing techniques in general. Although mutation and the other two features

may seem unrelated, they are complementary. For instance, these three features can be

combined to create a more sophisticated testing environment that allows for applying

mutation testing to concurrent programs. The next two subsections detail these features.

1.1.1 Harnessing HLL VMs for Speeding up Mutation Testing

Activities that entail investigating the dynamic behavior of executing programs, in partic-

ular some software testing activities, can benefit greatly from HLL VMs support. One of

these activities is mutation analysis (DeMillo et al., 1978; Jia and Harman, 2011).

Generally, mutation analysis concepts are implicitly implemented atop HLL VMs,

which may hinder managed execution environments in performing their optimizations. We

posit that mutation analysis can be further sped up by having its main concepts (e.g.,

mutants) supported as first-class status (Scott, 2009) within HLL VMs. Moreover, by

building mutation analysis support into an HLL VM implementation it is possible to

achieve extensive control over program execution; much greater than the one available to

tools built atop of execution environments.

When performing traditional mutation analysis, a significant portion of code that has

already been executed (during the execution of the original program) needs to be repeatedly

executed again for each mutant. That happens because each mutant usually contains only

one changed statement, thus a mutant execution is identical to the original program up

to the point at which the mutated statement is run. Such an execution approach, that

executes each mutant from the beginning, results in unnecessary computational burden.

Our functionality consists in further speeding up mutation analysis by making the target

HLL VM execute the original program and its respective mutants in a more effective fashion,

which entails avoiding re-executing large chunks of code that are common to both versions

of the program. This can be achieved in the following way: the mutation-aware HLL VM

has to execute the original program up to the point where the first mutated statement

occurs, from that location on, it triggers the execution of mutants. Upon completion of

a mutant, the HLL VM compares the result of the original program to the one produced

by the mutant, deciding whether such mutant should be marked as dead. After executing
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and comparing the results of all mutants, the execution of the original program resumes.

The execution is forked whenever the HLL VM executes chunks of the original code which

have corresponding mutated versions. Such execution approach is along the lines of the

approach called split-stream, which was first envisioned by King and Offutt (1991) as an

improvement to their Fortran language system for mutation-based software testing, but

not implemented.

One of the advantages of the split-stream approach is that it requires only one exe-

cution per test case to evaluate all mutants, hence only one instance of the underlying

HLL VM is needed. This is in stark contrast to the traditional approach in which there is

a one-to-one relationship between the HLL VM and the program under test. Consequently,

the conventional approach demands n instances of the HLL VM to execute n mutants.

The proposed functionality aims to take the split-stream approach even further by

capitalizing on the sophisticated multithread support provided by modern HLL VMs to

run each mutant in its own thread. Concurrently executing mutants and comparing their

results after running their respective original counterparts makes this a weak mutation

approach. The term weak is used in the sense that this sort of mutation only requires the

intermediate values to be different, the mutated program may still yield the same output

as the original. So, in essence, the term has to do with the way mutants are compared,

and not with effectiveness.

1.1.2 Towards Predictably Recording and Replaying Multithreaded

Programs and Progressively Exploring Interleavings

The increasing momentum of multicore computers has been pushing concurrent languages

into the mainstream. However, the performance advantages of concurrency come at the cost

of increased complexity. Reasoning about, implementing, testing, and debugging concurrent

programs are complex activities (Gatlin, 2004; Sutter and Larus, 2005; Lu et al., 2008),

most of this complexity stems from the inherent nondeterministic behavior of concurrent

programs.

Many languages have made great strides towards making concurrent programs easier

to implement, exposing software practitioners to accessible concurrent programming con-

structs and libraries that further support concurrency (Larson, 2008, 2009). Nevertheless,

no high-level programming language provides a way to deterministically control which

schedules will take place each time a program executes.

During run time, thread-management decisions are made by the underlying scheduler,

making it difficult to evaluate whether a program behaves as expected on every possi-

ble thread schedule. This nondeterminism renders conventional testing and debugging
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impractical (Carver and Tai, 1991). Often, when conventional testing is carried out with

no additional strategy to either control or tamper with execution, only minor variations

of the same thread interleaving tend to be exercised (Wang et al., 2011). To make mat-

ters worse, there are also concurrency problems that tend to disappear or behave slightly

differently when one attempts to isolate them. These hard-to-diagnose problems, called

Heisenbugs (Grötker et al., 2012), are rather difficult to reproduce during testing (Ball

et al., 2011). Consequently, many concurrency problems manifest themselves only when

the programs are already in production.

In effect, even a common practice such as stress testing is not very effective to uncover

these insidious, error-yielding problems. Simply put, executing a given program multiple

times does not ensure that a fault-manifesting schedule will turn up. Given that, automated

support is imperative when dealing with concurrent programs. An approach to cope with

the unpredictability of concurrent programs during testing and debugging is to implement

tools that make it possible to capture information about a given execution. Then, in a later

stage, these tools use the acquired information to deterministically enforce the re-execution

of the previously recorded execution.

Due to the technology-centered nature of this problem, researchers and practitioners

have been dealing with it in an implementation-based way. As pointed out by Carver

and Tai (1991), the implementation of concurrent languages is threefold: it comprises a

compiler, an execution environment, and an operating system (OS). By modifying some

of these elements, researchers have been developing tools for deterministically executing

concurrent programs. There are essentially three steps in implementing such tools (Carver

and Tai, 1991):

(i) Defining the format of a synchronization sequence in terms of the synchronization

constructs in the language;

(ii) Coming up with a way to transform concurrent programs so that information concern-

ing synchronization sequences is collected during execution. Modified programs must

be equivalent to originals except for the instrumentation to capture synchronization

events;

(iii) Developing a way to transform programs so that they replay executions based on

previously recorded synchronization sequences.

We set out to tackle this problem from an HLL VM perspective. Usually, steps two

and three are carried out atop the execution environment using instrumentation libraries

or some debugging facilities. We conjecture that by capitalizing on the facilities provided

by modern HLL VMs it is possible to reduce the number of technologies needed to solve
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this problem. Apart from removing non-determinism, we intend to use the information

about executions to enforce that each subsequent execution covers a different schedule

(i.e., synchronization sequence) from the ones previously explored.

Next section further elaborates on the rationale behind considering HLL VMs as a

reasonable basis for building an integrated software testing environment. It also describes

our objectives as well as the reasons that led us to settle on using a JVM implementation.

1.2 Motivation, Objective, and Rationale

Testing tools are usually built on top of HLL VMs. As a result, they often end up tamper-

ing with the emergent computation. Usually, the additional layers between the program

under test and the underlying HLL VM introduced by testing tools can have a pernicious

effect on the emergent computation. Furthermore, during run time, when tools need to

carry out computations about themselves (or the program under test) they must turn

to costly metaprogramming operations (e.g., reflection). To examine a running program,

for example, a tool has to perform introspection operations (i.e., inspecting state and

structure). Likewise, to change the behavior or structure of the program under test during

run time, tools have to resort to intercession (Lee and Zachary, 1995).

Apart from the overhead incurred by reflective operations, tools that implement weak

mutation rely heavily on state storage and retrieval. By storing state information these

tools factor out the expense of running all mutants from the beginning. Nevertheless, such

computational savings are only possible at the expense of a significantly larger memory

footprint (Fleyshgakker and Weiss, 1994).

The objective of this research is to investigate whether modern HLL VMs are a

cost-effective technology for supporting software testing. Towards this end, we set out

to extend the infrastructure provided by a full-fledged JVM with software testing support.

The rationale behind arguing that HLL VMs provide a sound basis for building an

integrated mutation testing environment is that they bear a repertoire of runtime data

structures suitable for accommodating the semantics of mutation testing. First, by cap-

italizing on existing runtime structures it is possible to decrease the amount of storage

space required to implement weak mutation: from within the execution environment it is

easier to determine what needs to be copied, narrowing the scope down and thus reducing

storage requirements. Second, there is no need to resort to costly reflective operations since

runtime information are readily available at HLL VM level. Third, by reifying mutation

analysis concepts (i.e., turning them into first-class citizens within the scope of HLL VMs)

it is easier to take advantage of high-end optimization and memory management features
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that are common in mainstream HLL VM implementations, e.g., just-in-time (JIT) compi-

lation and garbage collection (GC). Lastly, a further advantage of building on HLL VMs

data structures is that they make it possible to exert greater control over the execution of

mutants.

As stated, the inherent non-determinism of concurrent programs makes software testing

and debugging even more challenging. Therefore, a key missing element in modern execu-

tion environments is the ability to deterministically re-execute multithreaded programs.

Since HLL VMs are the locus of control during execution, we conjecture that these execu-

tion environments contain facilities that can be extended to prune away non-deterministic

behavior and enforce that subsequent executions cover distinct thread schedules from the

ones previously run.

The rationale behind settling on using a JVM realization to implement our VM-based

mutation analysis environment is that, apart from being by far the most used HLL VM

implementation within academic circles (Durelli et al., 2010), implementations of such

execution environment have sophisticated, built-in multithread support. This makes for

an infrastructure more suited to our integrated software testing environment because both

the fork-and-join model to speed up mutants execution and the deterministic replayer

heavily rely on thread support.

1.3 Conventions Used Throughout this PhD Dissertation

Throughout this PhD dissertation, Italic is used for emphasis, introducing new terms,

subscripts, and superscripts. Typewriter is used for Java operators and keywords, method

and variable names, bytecodes, and URLs that appear in the text. When method names are

mentioned in the main body of text, trailing parentheses are omitted. Whenever needed,

a method’s name is followed by a list of parameter types enclosed in parentheses, this is

used to distinguish a given method from the other overloaded versions. Symbols ➊, ➋, ➌,

and ➍ are used to draw the reader’s attention to important information in figures and

listings. Since some figures show our HLL VM being used from the command line, another

convention we adopted is a symbol for the command line: throughout this document the

$ symbol (i.e., dollar sign) from bash, which is the default shell on many GNU/Linux

distributions and on Mac OS X, is used.

1.4 Structure of this PhD Dissertation

The remainder of this document is organized as follows. Chapter 2 introduces background

on virtualization and how this concept has been implemented in software. Two categories of
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virtual machines are described: system-level and process-level virtual machines. Particular

emphasis is given to HLL VMs, which operate at process level, thus the characteristics

of these implementations are described next. Two HLL VMs are discussed, namely, the

P-machine and the JVM. We provide an overview of the P-machine due to its historical

importance and key influence on the design of the JVM instruction set. Following the

discussion of the internal organization of the JVM and its instruction set is a description

of the JVM implementation we chose, namely, Maxine VM.

Chapter 3 provides background on mutation testing, its core hypotheses, and problems.

Particular emphasis is given to the computational cost problem. The chapter outlines

studies aimed at reducing the computational expense of mutation testing. Such an overview

can be seen as an updated version of the more comprehensive survey carried out by Jia

and Harman (2011), but whose scope is limited to approximation and cost reduction

techniques. The chapter covers cost reduction techniques that are shown to fall into

two broad categories: (i) techniques to reduce the number of generated mutants and

(ii) techniques to reduce execution costs. The chapter concludes with a brief discussion

of academic tools that implement some cost reduction techniques or simply automate

mutation testing. Chapter 3 forms the foundation for the subsequent chapter where we

present our HLL VM-based mutation system, which embodies some of the techniques

discussed in this chapter.

Chapter 4 introduces our novel run-time optimization technique for speeding up muta-

tion testing. The emphasis in this chapter is on describing how we augmented Maxine VM

to support mutation testing. It is also discussed how our VM-integrated implementation

further speeds up the execution of mutants by forking new threads to execute them.

Next, we describe the experiment we carried out to evaluate our proof-of-concept imple-

mentation. The shortcomings of our implementation are discussed next, followed by a

discussion of some related work. We end the chapter with a discussion of the benefits of

our HLL VM-based mutation implementation and how it can be further improved.

In Chapter 5 we shift our attention to concurrent programs. We introduce the notion

of processes and threads. This is followed by a discussion of how these abstractions are

represented at language level. Next, the challenges posed by concurrency are outlined.

The chapter focuses mainly on the implications that the non-determinism of concurrent

programs have for testing and debugging. Some of the problems introduced by concurrency

are highlighted. We then turn to a discussion of how researchers have been trying to

overcome these concurrency-related problems. The techniques that have been used to

detect those problems are divided into main categories: static techniques and dynamic

techniques. By elucidating these techniques, this chapter motivates our implementation
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described in Chapter 6. The chapter also includes a discussion on how researchers have

been investigating the application of mutation testing to concurrent programs.

Chapter 6 describes how we retrofitted record-and-playback and interleaving explo-

ration capabilities into Maxine VM. Our implementation is built around Java’s built-in lock-

ing mechanism. Therefore, this chapter details the way in which our record-and-playback

implementation takes advantage of how the locking mechanism is realized by JVMs and

Java bytecodes. Our implementation breaks down the problem of reproducing multi-

threaded programs into two steps: record and replay. These steps entail code transforma-

tions, which are outlined in this chapter. Furthermore, the way our implementation uses

information about previously recorded executions to explore new thread schedules is also

described. An usage example is presented. Then, the results of the evaluation we carried

out are highlighted. The chapter concludes with a discussion of related work as well as the

shortcomings of our implementation.

Chapter 7 revisits the dissertation’s research problem and RQs. It also summarizes

the main contributions of this research, the current limitations of the resulting HLL VM,

and suggests future research directions. Finally, the chapter concludes with a discussion

of the relevance of this research and an overview of the challenges faced when extending a

meta-circular HLL VM as Maxine VM.
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2

High-level Language Virtual Machines

This chapter covers background on virtual machines. It emphasizes two types of virtual

machines, namely, system-level and process-level virtual machines. To elucidate the pur-

poses of these virtual machines and the differences between them, the abstraction levels

within which they operate are described. We are concerned with augmenting process-level

virtual machines used to implement portable programming languages, which are known

as HLL VMs, ergo special emphasis is given to this type of managed execution environ-

ments. Two such execution environments are described: the P-machine and the JVM.

The P-machine and its instruction set played a pivotal role in simplifying the porting of

the Pascal programming language, which led to a widespread adoption of the language.

Because of its historical relevance and due to the fact that the instruction set used by

such HLL VM inspired the JVM instruction set, a discussion of the P-machine is used

to introduce some concepts related to HLL VMs. As a JVM was chosen to be extended

in this thesis, an overview of its structure and intermediate languages is presented. In

addition, the chosen JVM implementation is detailed.

The remainder of this chapter is organized as follows. Section 2.1 contextualizes how

concepts such as abstraction and interfaces can be used to overcome complexity. Section 2.2

is concerned with describing how virtualization is employed to overcome the limitations

posed by the use of abstraction and interfaces. Section 2.3 briefly describes system-level

and process-level virtual machines. In addition, Section 2.3 focuses on the P-machine to

illustrate some of the concepts related to HLL VMs. Section 2.4 outlines the main runtime
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data areas of the JVM as well as its intermediate instruction set. After such outline, the

chapter delves into the particulars of our chosen implementation in Section 2.6. Section 2.7

makes concluding remarks.

2.1 Overcoming Complexity through Abstraction Levels

and Well-defined Interfaces

A modern, general-purpose computer system is an assemblage of hardware and software

subsystems that bears great inherent complexity. On the hardware side, it is commonplace

to have at least one processor, storage resources, peripheral devices for performing input

and output (I/O), and networking infrastructure. As for the software side, it usually

encompasses an OS, several graphics and networking libraries, and application programs.1

All in all, an intricate system. In order to circumvent such complexity and establish the

collaboration and interaction among the constituent subsystems, computer systems are

broken down into levels of abstraction separated by well-defined interfaces (Smith and

Nair, 2005b).

Abstraction has had a ubiquitous role in several disciplines, e.g., mathematics. From a

computer science viewpoint, the use of abstractions is mostly concerned with information

hiding (Parnas, 2002). Frequently, within such context, information hiding is also referred to

as indirection. In a sense, whether one has either direct or indirect access to a computational

element has to do with the amount of detail that is hidden. According to Colburn and

Shute (2007), computer scientists create levels of indirection through information hiding.

Hence, they conclude that levels of indirection can be understood as levels of abstraction.

Within the context of computer systems development, orchestrating computational

systems using multiple levels of abstraction allows implementation details at lower levels

to be ignored, thereby simplifying the development of elements at higher levels. In general,

lower levels are implemented in hardware. Since low-level elements have real properties and

are made up of parts that can be physically connected, the bottom levels of a computer

system are usually termed physical levels. By contrast, higher levels, whose elements are

implemented in software and unlike physical elements are more malleable, are called logical

levels.

The interaction between the aforementioned abstraction levels is achieved through

well-defined interfaces. By hiding the intricacies of abstraction levels behind interfaces, both

hardware and software designers are able to work in a more independent fashion (Smith and

1Application program, user-level program, user-level application, user program, and user application are
interchangeably used throughout this document.
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Nair, 2005a). An example of well-defined interface is the instruction set architecture (ISA),

which stands at the boundary between hardware and software (Hennessy and Patterson,

2006). At this boundary, after deciding on a certain ISA, it is possible for processor

designers and software engineers to work in tandem; the former developing processors

that implement the chosen ISA and the latter writing compilers that translate high-level

languages (HLLs) to the target ISA. As long as both groups adhere to the ISA, compiled

software will execute properly on a platform2 incorporating a processor geared towards

the selected ISA (Smith and Nair, 2005a,b). Another example is the OS interface, which is

seen from higher levels as a set of functions. This interface is important because it dictates

the interplay between the physical and logical parts and hides most cumbersome low-level

details from higher level logical elements of computer systems.

Despite the advantages of well-defined interfaces, there is a downside to relying on them:

subsystems developed to a certain interface will not work with those designed for other

interfaces. For example, application programs distributed as compiled binaries depend

on both an ISA and an OS interface. Even OSes are tied to specific computer structural

organizations, e.g., they may be tailored towards either uniprocessor or multiprocessor

machines. Thus, while there are a multitude of distinct physical and logical elements that

perform the same function (e.g., different I/O devices, ISAs, OSes, and HLLs), in practice,

such diversity leads to reduced interoperability.

2.2 Virtualization

A workaround for the previously mentioned constraint posed by the use of heterogeneous

interfaces is virtualization. Virtualizing a subsystem consists in mapping its interface

and all visible resources onto the interface and resources of another subsystem, which

is actually implementing the interface being virtualized. In other words, virtualization

involves the establishment of an isomorphism that maps a guest subsystem to a real host

subsystem. More formally, this isomorphism maps the guest state to the host state as

shown by the function V in Figure 2.1. Similarly, the set of operations, e, that modifies the

guest state (e changes the guest state Si to Sj) is mirrored by a corresponding sequence

of operations, e’, in the host that performs an equivalent state modification (changes S’i

to S’j).

Although abstraction also conforms to the aforementioned definition for virtualization,

Smith and Nair (2005b) distinguish the two concepts. According to them, abstraction

2The terms machine and platform are interchangeably used throughout this document. However,
according to Smith and Nair (2005a), platform is currently the term more in vogue.
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differs from virtualization in that the latter does not hide details, thus the complexity

presented by the host is typically the same as that in the virtualized guest.

Figure 2.1: Virtualization. Formally, it consists in establishing an isomorphism between
a guest and a host. This figure is adapted from Smith and Nair (2005b).

As emphasized by Smith and Nair (2005b), through virtualization the host subsystem

can also be transformed so that it appears to be several virtual subsystems. Taking a

hard disk as an example, virtualization could be applied in order to partition it into many

smaller virtual disks. In such scenario, each virtual disk would be mapped to the real hard

disk by being implemented as a large file on the real disk, as illustrated in Figure 2.2. In

addition, the files representing virtual disks would play a supportive role to the virtualizing

software managing the mapping between virtual disk contents and real disk contexts (the

function V in the isomorphism shown in Figure 2.1). In this way, each virtual disk would

appear to have a number of logical tracks and sectors and writing to one of the virtual

disks (the function e in the isomorphism) would entail both a file write and a real disk

write in the host system (the function e’ in the isomorphism).

Figure 2.2: Implementing virtual disks through virtualization. This figure is adapted
from Smith and Nair (2005b).
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2.3 Virtual Machines

Software implementations of the concept illustrated in Figure 2.1 have been around for

over four decades. Such software layers are termed virtual machines (VMs). The first

implementations took the concept of virtualization one step further by virtualizing entire

machines instead of subsystems. Such software replicas of real machines were mainly

tailored towards multiplexing low-level hardware resources, thereby maximizing the use of

such virtualized physical properties. However, over the years, VMs have been proven useful

for coping with a number of other computing problems. As a result, this technology has

spanned a wide range of domains. Furthermore, due to the versatility of this technology,

currently, there is a broad diversity of VMs and they have been designed, built, and

investigated not just by OSes and hardware developers but by language and compiler

designers as well (Rosenblum, 2004; Treese, 2005; Killalea, 2008). Naturally, each sort of

implementation has its particular characteristics and goals. Therefore, before going on to

describe the types of VMs, it is worth outlining the boundaries in which these technologies

are employed. Next section describes these boundaries by providing an overview of the

structure of computer systems.

2.3.1 Computer-system Architecture

To elucidate what VMs are, an examination of what is meant by machine and platform is

in order. In either case, the meaning is a matter of perspective. From the perspective of

a process running a user program, the machine – or platform – consists of the following

elements: logical memory address space, user-level registers, and instructions that allow

the execution of the underlying process. Usually, the running process has no direct access

to I/O operations. Instead, these operations are accessible only through the OS, which

entails that the process has to perform system calls. Consequently, the machine, from the

perspective of a process, is a combination of both the OS and the underlying hardware.

As can be seen in Figure 2.3(a) the interface via which processes communicate with the

underlying machine is called application binary interface (ABI).

In contrast, from the perspective of an OS, a whole system is implemented by the

bare hardware. Such a system is an execution environment able to simultaneously support

a multitude of processes. Within this execution environment (which persists over time)

processes (which are usually transient in nature) share resources and a file system, both of

which are managed by the OS. Therefore, from the perspective of a system, the machine

is implemented by the underlying hardware alone. Figure 2.3(b) depicts this system-level
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perspective within which the platform is implemented by the hardware and whose interface

is the underlying ISA.

(a) (b)

Figure 2.3: The underlying platform from two perspectives, namely, application and
OS. From the perspective of an application, the underlying platform is a
combination of OS and hardware. The communication between an application
and the underlying platform occurs through the ABI, as shown in (a). From
the perspective of the OS, the platform is the hardware itself. OSes and
platforms interact mostly through the ISA, as shown in (b).

Due to the fact that most VM implementations are closely tied to the boundaries shown

in Figures 2.3(a) and (b), Smith and Nair (2005a,b) propose a candidate taxonomy that

characterizes VM according to two major categories: process and system VMs. Process

VMs run atop the OS/hardware combination and, as the name of the category suggests,

are aimed at supporting an individual process as long as it runs. The scope tackled by

process VMs is shown in Figure 2.3a. In contrast with process VMs, the scope dealt by

system VMs is wider, encompassing support for an OS and its user-level applications.

Figure 2.3b illustrates the ISA boundary at which system VMs stand.

Next section presents the rationale for VMs designed to virtualize entire machines.

2.3.2 System VMs

The earliest system-level VMs date back to the late 1960s and early 1970s (Creasy, 1981;

Smith and Nair, 2005a). At that time, computational resources were quite expensive and

therefore scarce. Another factor that hindered users from making the most of computa-

tional resources was the presence of either mono-task or simple batch OSes. Consequently,

system-level virtualization was essentially conceived to pursue better usage of expensive

mainframe hardware. International Business Machines (IBM) pioneered the efforts toward

developing the first system VM implementations. The first system-level VM was the IBM

System/360 Model 40 VM (Smith and Nair, 2005a), but one of the best known implementa-
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tions was IBM’s VM/370 (Goldberg, 1974; Seawright and MacKinnon, 1979; Tanenbaum,

2007).

Whole-system VMs can be described as facsimiles of a real existing machine (Popek and

Goldberg, 1974). They act as a duplicate of the underlying real machine aimed at allowing

multiple guest OS environments to simultaneously run on a single host hardware platform.

In essence, each of these guest OSes has the impression of being running alone on raw

hardware (Rosenblum, 2004). Similarly to the example shown in Figure 2.2, system VMs

replicate a single set of hardware resources so that it appears to be multiple independent

sets of hardware resources. Thus, through virtualization, system VMs foster better hardware

usage by preventing it from either becoming idle or being underused.

Within a system-level VM environment, the layer of software responsible for keeping

track of the real resources of the host platform is called VM monitor (VMM). VMM layers

are also known as hardware-level VMMs (Rosenblum, 2004), type 1 hypervisors (Tanen-

baum, 2007), and non-hosted hypervisors (Carbone et al., 2008). The classic organization,

followed by the first implementations, places the VMM layer on bare hardware and the

guest system VMs atop of it (Goldberg, 1974). In such an organization, it is through

the VMM layer that the host platform resources are made available to the VMs. Since

only the VMM layer runs in privileged mode, whenever one of the guest OS performs an

operation that demands interaction with the underlying hardware, the VMM (i) intercepts

the operation, (ii) checks its correctness, and (iii) performs it. Moreover, it is up to the

VMM to decide how the resources will be accessed by the VMs, e.g., resources may be

either partitioned or time-shared (Smith and Nair, 2005b).

Another hallmark of VMMs is that some of the resources made available by them may

not have corresponding physical counterparts in the platform being virtualized. In such

cases, VMMs may emulate the desired resources by combining software and other resources

that are available on the underlying platform (Smith and Nair, 2005a). Examples of this

type of VM include Xen (Barham et al., 2003), VMware ESX (Waldspurger, 2002), and

Microsoft Hyper-V (Kelbley and Sterling, 2008).

Apart from type 1 hypervisors, there is another type of system-level VM, namely, type

2 hypervisor. Differently from type 1 hypervisors that interact directly with the underlying

hardware, type 2 hypervisors interface with OSes. These system-level VMs run as user-level

applications on top of the host OS. Thus, they are also known as hosted VMs. Examples

of type 2 hypervisors include Oracle VM VirtualBox3(Oracle Corporation, 2011), VMware

Server(VMware Inc., 2011), Parallels Workstation (Parallels Holdings Ltd., 2011), and

Microsoft Virtual PC (Microsoft, 2011).

3This hosted VM was formerly known as Sun xVM VirtualBox.
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It is worth mentioning that most of the early platforms were not able to support system

VMs properly. The ones that were able to host such VMs had to resort to inadequate

techniques due to their unsuitable architectures. Currently, however, most platforms are

capable of supporting VMs. Virtualization at the system level has progressed a lot, and

currently this technology is a boon to developers. According to Spinellis (2012), properly

taking advantage of virtualization allows for better development environments, easier

distribution, more efficient testing, and improved infrastructure management.

2.3.3 Process VMs

Typically, programs are compiled down to executable binaries that conform to a specific

ABI. That is to say, these programs include features of a certain ISA and an OS, as shown

in Figure 2.3(a). Given that such features are hardcoded into the executable binaries, an

important restriction is that a program compiled to a certain platform will not run on

a distinct platform (Smith and Nair, 2005b). One application of process-level VMs is to

overcome this limitation. Process VMs virtualize an individual program in order to port it

to a platform other than the one it was originally designed for. The virtualization occurs

at the ABI level (Smith and Nair, 2005a,b). As shown in the right side of Figure 2.4, when

an application is being virtualized by a process VM, it does not directly interact with the

host platform. Instead, every operation performed by the guest application is emulated by

the process VM.

The main drawback of this approach is that it is only effective on a case-by-case

basis (Smith and Nair, 2005b). For example, if one wanted to run IA-32 binaries on different

platforms such as PowerPC and MIPS, two process VMs would have to be developed.

Figure 2.4: An overview of how applications are virtualized by process VMs. This figure
is adapted from Smith and Nair (2005b).
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Instead of treating portability as an after-the-fact consideration, a more effective way

of achieving cross-platform portability is devising an abstract machine that minimizes all

platform-specific characteristics. By compiling applications to the language implemented

by the abstract machine the portability problem boils down to having an implementation

of the abstract machine in each target platform. This is the approach taken by language

designers to create programs in a platform-neutral format. Implementations of such ab-

stract machines are referred to as HLL VMs. This sort of process VM is discussed in the

next sections.

2.3.4 HLL VMs

As described in preceding sections, compiled application programs are tied to a particular

OS and ISA. As a consequence, before the concept of HLL VMs was around, porting

user-level applications to a different platform involved at least recompilation (Smith and

Nair, 2005b). However, before getting around to tackling the porting of application pro-

grams, a porting of the underlying compiler had to be made available for the target

platform, which was a major source of problems and demanded considerable effort.

Porting a HLL compiler to another platform involved facing several technical hurdles

as (i) the complexity of mapping from one conventional ISA to another and (ii) addressing

the quirks of the target ISA. In practical terms, a great deal of the complexity related to

porting a compiler stems from bridging the semantic gap between an HLL and the target

platform ISA. Thus, aimed at easing the porting of compilers, developers started adopting

an additional step to compilation: rendering HLLs to intermediate representations geared

towards abstract machines, and then translating such intermediate languages to machine

code (Groves and Rogers, 1980). In such context, the term abstract machine is used to

refer to intermediate target languages and related architectures that act as an intermediate

stage to compile HLLs (Diehl, 1998). Next subsections present further information on both

related concepts.

By adding an intermediate compilation step, porting compilers to a new platform

mostly entailed changing their back-ends to transform instructions of the intermediate

language into machine code of the target platform. Subsequently, developers realized that

the porting process could be sped up even further by implementing an interpreter to

emulate the intermediate language on the target platform rather than compiling down to

machine code. By eschewing the implementation of a machine-code-generating compiler,

it was possible to get a full-fledged execution environment up and running quickly. Such

approach proved to be very effective due to the simplicity of the interpreters that were

needed (Klint, 1981; Ballarin et al., 1988).
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Gough (2001, 2005) argues that the main benefit of using an abstract machine was

compiler factorization. By compiling to an intermediate language the problem of porting N

different languages to M differente platforms was reduced to implementing N front-ends

and either M back-ends or M interpreters rather than N×M (Mogensen, 2011). In addition

to improving portability, intermediate languages can be designed from the ground up to

take into account important features of their respective HLL. This results in efficient

implementations of the underlying HLL (Smith and Nair, 2005b).

Differently from system VMs whose role is to be a facsimile of a real machine, HLL VMs

have been conceived as abstract machines with no physical counterpart. One of the main

goals of these process VMs is to provide an execution environment for specific HLLs,

whereas the motivation behind other process VMs is to emulate conventional ISAs.

Next subsection gives further detail on HLL VMs by describing a landmark in technical

development of HLLs: the Pascal P-machine, the HLL VM that pioneered the implemen-

tation of the foregoing concepts.

2.3.4.1 Pascal P-machine

The use of an abstract machine and its virtual ISA to define program representation for

compilers dates back to the mid-to-late 1970s when the early implementations of the Pascal

programming language were developed (Wirth, 1996; Mickel, 2000; Gough, 2001; Smith

and Nair, 2005b; Gough, 2005; Scott, 2009; Wilhelm and Seidl, 2011). According to Wirth

(1996), the first Pascal implementations were a threefold technology: (i) a compiler and (ii)

an abstract machine and (iii) its virtual ISA, which were respectively known as P-compiler,

P-machine, and P-code (Nelson, 1979; Gabbrielli and Martini, 2010). Such technology was

realized by a toolkit known as P-kit (Scott, 2009), which was made available as the

following:

• a Pascal compiler written in Pascal that generated P-code;

• the same compiler already translated into P-code;

• a P-code interpreter written in Pascal.

Aimed at getting Pascal up and running on a certain platform, developers had to trans-

late the P-code interpreter into some locally available language. This was a straightforward

task since the required interpreter was small. After porting the interpreter, the P-code

version of the compiler could then be run and used to render arbitrary Pascal programs into

P-code, which could in turn be run on the ported interpreter. This solution to portability

issues played a pivotal role in driving Pascal’s widespread adoption. More importantly, it
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established such concept as an alternative for implementing platform-neutral HLL (Gregg

et al., 2005). Circa late 1978 there were over 80 Pascal implementations on distinct hosts

and by 1980 manufactures of workstations adopted Pascal for system programming (Wirth,

1996). Due to its ease of porting, Pascal thrived in academic settings (Scott, 2009). Up to

mid 1990s, Pascal used to be the most popular choice for introductory computer science

courses (Thalmann and Thalmann, 1978; Brilliant and Wiseman, 1996; Pears et al., 2007;

Goosen, 2008).

P-machine set a standard for later HLL VM implementations. A number of HLL VM

developers have gleaned knowledge from the P-machine experience, insofar as the designs

of P-machine and their HLL VMs overlap. Thus, a variety of contemporary HLL VMs are

akin to P-machine. Basically, the main differences between the currently most widely used

HLL VMs and P-machine are that the latter did not allow for (i) network support, (ii)

automatic memory management, and (iii) security features (Smith and Nair, 2005b).

To some extend, the success of Pascal can be ascribed to P-code. Since Pascal P-machine

is stack-based, P-code includes stack-manipulation instructions (e.g., instructions for push-

ing onto and popping from the stack). This characteristic made it easy to translate from

P-code to any conventional ISA because no constraint was posed on the minimum amount

of registers in the target platform. Furthermore, virtual ISAs can convey more semantic

information than machine code (Aycock, 2003), and using a stack-based virtual ISA yields

even smaller program representations. Low-memory-footprint programs were of paramount

importance at that time given that many platforms had small hard drives and supported

only small amounts of main memory (Smith and Nair, 2005b).

Using a virtual ISA to specify programs also has its shortcomings though. It is up to

the HLL VM to bridge the gap between the virtual ISA and the target platform ISA. As

mentioned, the simplest approach to implement an execution environment was through a

straightforward interpretation. However, the main disadvantage of an interpretive approach

is its slow execution speed. Since then, researchers have been devising a variety of techniques

for improving HLL VM execution engines (i.e., the component responsible for emulating

the virtual ISA) to cope with performance woes. In the next section we elaborate on the

techniques that have been used to implement execution engines. By doing so, we also

further categorize the different representations emulated by and related to HLL VMs.

2.3.4.2 HLL VM Execution Engines

There are various sorts of programs whose only purpose is to serve as an execution engine

for other application programs. Traditionally, within the context of HLL VMs, execution

engines are realized through a plain interpreter or a runtime compiler (Craig, 2005). In

either case, a spectrum of techniques can be used to implement them (Klint, 1981; Kazi
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et al., 2000; Davis and Waldron, 2003). Some of the modern HLL VMs even use an amalgam

of interpretation and compilation (Prokopski and Verbrugge, 2008; Wilhelm and Seidl,

2011).

Execution engines are heavily influenced by the abstraction level of the representation

that they emulate. Rau (1978) categorizes program representations into three broad classes:

High-level representation (HLR): HLLs such as Ruby (Flanagan and Matsumoto,

2008; Thomas et al., 2009), Scala (Wampler and Payne, 2009; Odersky et al., 2011),

Java (Sabharwal, 1998; Niemeyer and Knudsen, 2005), Perl (Schwartz et al., 2011),

and Python (Lutz, 2009) fit into this class. As Arnold et al. (2005b) point out, HLRs

convey semantic information at a high level of abstraction and aim at facilitating

human understanding rather than machine execution. Usually, HLRs comprise a myr-

iad of operators, control structures, problem-oriented constructions, and so-called

syntactic sugar. These elements do not affect their expressiveness but provide alter-

native ways of coding that can be clearer or more succinct. It is worth emphasizing

that an HLR may not be an HLL. For instance, although the programming language

C (Kernighan and Ritchie, 1988; Ritchie, 1996) is an HLR, it may be argued that it

is not an HLL per se.

Directly interpretable representation (DIR): an intermediate representation whose

syntax is fairly simple in comparison to an HLR. Usually, DIRs contain a small set

of elementary operators and, differently from conventional ISAs, these intermediate

representations are designed to be free of quirks4 and implementation-specific con-

straints (Smith and Nair, 2005b). P-code is an example of DIR. Currently, DIRs are

metadata-rich representations, encompassing both data and instructions. A main-

stream example that reflects the current bias towards metadata-centered DIRs is

Java bytecodes (Gosling, 1995; Engel, 1999; Lindholm and Yellin, 1999)5.

Directly executable representation (DER): an executable binary representation tied

to the host platform. Usually, DERs stand at the lowest abstraction level.

Approaching HLL VMs from the viewpoint of the aforementioned taxonomy, it is

possible to further refine their definition as follows: abstract machines tailored towards

bridging the semantic gap between either of the first two classes (i.e., HLR and DIR)

and the underlying host platform’s ISA (i.e., a DER representation). Within such context,

4Usually, ISAs have special features that have to be addressed in a way that deviates from what would
be expected from them, such non-conventional features are referred to as“quirks” (Smith and Nair, 2005b).

5 Another prominent example of metadata-centered intermediate language is Microsoft’s Common
Intermediate Language (CLI). However, CLI does not fit well into the classification proposed by Rau
(1978) because it is not intended to be interpreted (Smith and Nair, 2005b).
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execution engines play a central role: they are responsible for the emulation process through

which upper-level representations are translated into DERs. The way execution engines

carry out such translation differs from static (i.e., ahead-of-time) compilation, which is

the fashion in which traditional compilers operate (Klint, 1981; Aho et al., 2007; Wilhelm

and Seidl, 2011). Figure 2.5 contrasts the conventional steps in getting from an HLR to a

DER both using static compilation and HLL VM execution engines.

(a) (b) (c)

Figure 2.5: Conventional steps in getting from HLR to a DER using static compila-
tion (a), an HLL VM that uses an DIR (b), and an HLL VM that inspects
its HLR in a character-by-character fashion (c).

Figure 2.5(a) shows the steps taken by a static compiler. At first, the compiler frontend

renders the HLR into a DIR. Then the backend takes the previously created DIR and

compiles it down to a DER, which is either a form of assembly code or a sort of relocatable

object code (Elsworth, 1979; Aho et al., 2007). In effect, object code cannot be considered

a DER because it lacks symbolic information that is resolved at load time. As depicted

in Figure 2.5(a), at run time, a loader embodies missing symbolic information into object

code representations, turning them into full-blown DERs.

An HLL VM implementation may use either of the following translation approaches:

(i) interpretation of the DIR and (ii) direct interpretation of the HLR. In the former case,

Figure 2.5(b), a static compiler is employed to render the underlying HLR into a DIR.

After being translated to the respective DIR, programs are ready for being distributed

as well as executed on a compatible HLL VM implementation. At run time a loader is

invoked aimed at checking whether DIRs are in compliance with the HLL VM specification

and turning them into runtime data structures that are dependent on the HLL VM

implementation. After such step, the execution engine manages the emulation process

by interacting with runtime data structures. An example of language whose translation
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process involves statically compiling the HLR to a DIR is Java (Diehl, 1998; Lindholm

and Yellin, 1999; Niemeyer and Knudsen, 2005).

As illustrated in Figure 2.5(c), there are also HLL VMs implementations whose ex-

ecution engines inspect HLRs in a character-by-character fashion, performing actions

accordingly (Klint, 1981). As a result, these execution engines rely on repeated lexical and

syntactic analysis of the HLR, which often incurs in severe performance degradation. Two

examples of languages that are distributed in their HLR form are Ruby and Python.

2.4 A Primer on the JVM and Its Key Runtime Data

Areas and Virtual ISA

This section describes the structure of the JVM according to its specification (Lindholm

and Yellin, 1999; Lindholm et al., 2012). We describe the JVM as an abstract computing

machine in terms of its relevant runtime data areas and virtual ISA. Accordingly, im-

plementation details are deliberately omitted in this section. More details on the JVM

implementation we chose will be given in Section 2.6.

The JVM specification states that the JVM is the cornerstone of the Java programming

language (Li, 1998; Lindholm and Yellin, 1999; Lindholm et al., 2012). In general, the

additional abstraction layer provided by a JVM implementation stands between Java pro-

grams and the underlying OS and platform. Technically, this layer is the main responsible

for the Java technology’s cross-platform portability and for emulating the virtual ISA.

Early prototype implementations of the JVM, developed at Sun Microsystems, Inc.,

were specifically targeted to a hand-held device.6 Currently, since the JVM specification

does not mandate any particular host OS or host platform (Radhakrishnan et al., 2001),

there are implementations that emulate the JVM on a wide range of platforms and de-

vices (Gough and Corney, 2000; Lindholm et al., 2012) as embedded systems (Levis and

Culler, 2002; Koshy and Pandey, 2005; Simon and Cifuentes, 2005; Simon et al., 2006;

Aslam et al., 2008; Brandner et al., 2009; Thomm et al., 2010), smart-card devices (Guth-

ery, 1997; Oestreicher, 1999; Azevedo et al., 2005), desktops (Haase and Guy, 2007), and

servers (Downey, 2007), to name a few. Furthermore, apart from the conventional pure

software implementations, the JVM design allow for a variety of implementation choices

ranging from pure hardware (Hardin, 2001; Berekovic et al., 1997; O’Connor and Trem-

blay, 1997; McGhan and O’Connor, 1998; Tan et al., 2006; Puffitsch and Schoeberl, 2007;

Schoeberl, 2012) as well as a combination of hardware and software (i.e., hardware and

software co-design implementations) (Fong et al., 2012).

6The device in question was called ∗7; otherwise known as “Star7” or “StarSeven” (Haines and Potts,
2003, pages 7–8).
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The JVM was conceived with the purpose of supporting only the Java programming

language.7 Nevertheless, this technology was designed in such a way that it knows nothing

of the Java programming language per se. In effect, JVM implementations understand only

a particular binary format, i.e., the class file format (Lindholm et al., 2012). A class file

contains instructions (i.e., bytecodes) as well as a host of static metadata. Such a feature

makes it possible to port other languages to the JVM. In fact, the JVM has successfully

become the premier multi-language execution environment. So far, a host of languages has

been successfully ported to the JVM (Gough and Corney, 2000; Allman, 2004). Promi-

nent examples are the scripting languages (Ousterhout, 1998) Ruby and Python whose

Java implementations are called JRuby (Edelson and Liu, 2008; Nutter et al., 2011) and

Jython (Pedroni and Rappin, 2002; Allman, 2004), respectively. Another scripting lan-

guage that is dynamically compiled to the platform-neutral format employed by the JVM

is Groovy (Koenig et al., 2007). Apart from these scripting languages, multi-paradigm

programming languages, such as Scala (Odersky et al., 2011), have also been exploring

the applicability of the JVM as a target execution environment.

According to its specification (Lindholm and Yellin, 1999; Lindholm et al., 2012), the

JVM uses several runtime data areas to execute programs. Some runtime data areas are

created upon JVM start-up and destroyed when the JVM exits, whereas others are per

thread data areas, and as such, they are created along with a thread and destroyed as

soon as their respective thread finishes execution. The main runtime data structures are

outlined in the next subsections.

2.4.1 Heap

The global storage area for holding objects and arrays is managed as a heap. The heap

is created on JVM start-up so that several other data storage structures are allocated

from it. Objects allocated on the heap are not explicitly deallocated: despite the fact that

there is an instruction that allocates memory for new objects, there is no instruction for

explicitly deallocating memory. Rather, heap storage is managed by an automatic storage

management (i.e., GC) system. The heap can be either of a fixed size or dynamically

expanded and contracted. The specification also underlines that the memory for the heap

does not need to be contiguous (Lindholm et al., 2012). One runtime data structure that

is allocated from the heap is the method area, which is detailed in the following subsection.

7From its inception until 1994, the Java programming language was called Oak (Waldo, 2010,
pages viii–ix).
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2.4.2 Method Area

Each instance of the JVM has a method area that is shared among all threads. This

runtime data area is created on virtual machine start-up and stores per-type structures

such as the runtime constant pool (Section 2.4.3), field and method data, as well as code

for methods and constructors, including the special methods related to class, interface,

and instance initialization (Lindholm and Yellin, 1999). Although the JVM specification

does not mandate the location of the method area or policies used to manage compiled

code, usually, this structure is allocated in the heap. Similarly to the heap, the method

area can be either of a fixed size or dynamically expanded and contracted.

2.4.3 Runtime Constant Pool

A runtime constant pool is a per-class or per-interface runtime representation of the

constant_pool table in a Java class file. When a class or interface is loaded into the

JVM, a runtime constant pool is allocated in the method area. Such a per-type runtime

data structure comprises several sorts of constants that range from numeric literals to

method and field symbolic references (Lindholm and Yellin, 1999); the former are known

at compile time and the latter are resolved at run time. Although a runtime constant pool

contains a wider range of data than a typical symbol table of a conventional programming

language, both runtime representations perform a similar function.

2.4.4 Stack

In addition to the global (e.g., heap) and per-type structures (e.g., runtime constant pool),

JVM also contains per-thread and local runtime data structures. These drive the execution

of Java programs. Many threads can be spawned at run time. When a new thread is created,

it is associated with a JVM stack (Lindholm and Yellin, 1999), which manages method

invocation and returns by storing local variables and partial results. Basically, JVM stacks

use two local structures to hold data: a program counter (PC) register and a frame. PC

registers keep track of the code being executed by the underlying thread. The PC register

points into the method area, indicating the current instruction (Engel, 1999). If the current

method is not native, the PC register holds the address of the method instruction currently

being executed. Frames are more complex than PC registers. Next subsection describes

frames.
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2.4.5 Frame

As mentioned, frames are one of the runtime data structures allocated from the JVM stack.

Frames play a fundamental role in the following: storing parameters and temporary data,

performing dynamic linking, returning values for methods, and dispatching exceptions (Kazi

et al., 2000; Lindholm et al., 2012). These runtime data areas are fundamental to method

invocation: a new frame is created whenever a method is invoked. Thus, each frame

corresponds to a method invocation that has not returned yet. The top frame of a stack

is called the active frame (Engel, 1999) or current frame (Lindholm et al., 2012).

When control returns from a method, whether it is a normal or an uncaught exception,

the active frame is popped off the underlying JVM stack. Upon normal method completion,

the result of the method’s computation, if any, is transferred from the active frame to

the invoker. Moreover, the frame below the active frame becomes the new active frame.

Frames use an array of local variables and an operand stack to pass parameters and store

intermediate results.

The parameters being passed to the invoked method are stored in its array of local

variables. The array’s length is determined at compile time. The array takes two consecutive

local variables to hold the value of a long or double type, other stack types (int, float,

and reference) take up only one local variable.8 Each entry on the local variable array is

accessed by indexing. The initial index of the parameters varies depending on the type of

the method. If the method is a class method, its parameters begin at the first element of

the local variable array, that is, at index zero. Instance methods, have the first element

of their local variable arrays reserved for the this pseudovariable, thus their parameters

begin at index one (Engel, 1999; Lindholm et al., 2012).

All computations performed in the context of methods take place in the operand stack.

The operand stack is empty upon frame creation, and values are pushed onto or popped from

the stack during execution. The operand stack acts as a last-in-first-out stack (Lindholm

et al., 2012). The depth of a stack fluctuates during execution. Nevertheless, similarly to

the local variable array, the maximum depth of the operand stack is determined at compile

time (Engel, 1999; Craig, 2005) and long and double types take up two operand stack

slots. In addition, it also stores parameters to be passed to methods as well as method

results. Figure 2.6 gives an overview of how stacks, frames, arrays of local variables, and

operand stacks are organized.

Besides the internal organization, another important element of an HLL VM is its

ISA. Usually, this sort of ISA is designed with portability in mind, thereby keeping

hardware-specific characteristics to a minimum.

8The types boolean, byte, short, and char are treated as int.
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In the next section we give details about the JVM’s virtual ISA.

Figure 2.6: An overview of the organization of JVM stacks and their frames. As can be
seen, a stack is composed of frames. A frame, in turn, includes the state of
one Java method invocation. Whenever a thread calls a method, a new frame
is pushed onto that thread’s stack. Once the method returns, the frame is
popped from the stack. In white, the frame on top corresponds to the current
method (i.e., the last method invoked by the current thread). Frames in
gray represent methods that are currently inactive (i.e., methods waiting for
control to return from the current method).

2.4.6 The JVM Instruction Set: Java Bytecodes

As pointed out earlier, the JVM knows nothing about the Java programming language.

Instead, programs for this HLL VM are expressed in terms of an intermediate representation

called bytecodes (Engel, 1999; Lindholm et al., 2012). This virtual ISA is akin to the ISA

of most computer architectures. However, differently from the ISAs employed by computer

architectures, which are often register-based ISAs, bytecodes are a stack-based virtual

ISA (Gosling, 1995; Lindholm et al., 2012).

According to Gosling (1995), the design of Java bytecodes drew inspiration from Pascal

P-code. Similarly to P-code, a great deal of bytecode instructions are typed. In other words,

primitive types have specific bytecode instructions to operate on them. Bytecodes follow

a naming convention in which the first letter indicates what type the instruction operates

on (Engel, 1999). For instance, the iadd instruction adds the top two values on the operand

stack and replaces them with the sum, provided that both values are of type int (arithmetic

instructions are further described later on in this section). Analogously, the mnemonic

of the instruction that performs the same operation on long variables is ladd. In these
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mnemonics the letters i and l indicate that the instructions operate on int and long

variables, respectively. The mnemonic naming convention is outlined in Table 2.1.9

Table 2.1: Mnemonic type letters. This table was adapted from Engel (1999).

Mnemonics
Letter Type

a reference

b byte or boolean
c char

d double

f float

i int

l long

s short

Basically, a bytecode comprises a one-byte opcode field (hence the name), which repre-

sents the operation to be performed, and zero or more operands (Craig, 2005). Using one

byte to represent opcodes limits the maximum size of the virtual ISA to 256 instructions.

As of this writing, the JVM ISA consists of 212 instructions, the remaining 44 opcodes

are reserved for future extensions. Describing all 212 instructions is out of the scope of

this document. To limit the scope of our discussion, we will break the JVM virtual ISA

down into subsets of instructions, presenting examples to illustrate some characteristics

of this virtual ISA. Most instructions fall into one of the following subsets (Craig, 2005):

• Control-flow instructions;

• Data-manipulation instructions;

• Stack-manipulation instructions.

Structured programming constructs are not supported at bytecode level (Engel, 1999).

Instead, control-flow instructions are provided to transfer control from one location to

another location within a method (e.g., branch instructions). A family of conditional branch

instructions compares the topmost stack element with zero: the JVM pops the top stack

element and performs the test on it (Craig, 2005; Lindholm et al., 2012). The value on the

top of the stack must be an int. The mnemonics for opcodes of this family follow the naming

convention if<cond>, where <cond> represents the comparison to be performed. Different

9It is worth emphasizing that the prefix letters used in descriptor fields are different from the ones used
in bytecode mnemonics. Descriptor fields use uppercase letters and in some cases they do not correspond to
the lowercase letters in Table 2.1. For instance, the prefix letter for boolean types in descriptor fields is Z
rather than b. More information about description fields can be found in the JVM specification (Lindholm
and Yellin, 1999; Lindholm et al., 2012).
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comparisons with zero are performed depending on the instruction. Table 2.2 gives an

overview of the if<cond> family. Additionally, the instructions in this family include two

bytes that represent the offset to the next instruction (Figure 2.7). If the comparison of the

top element against zero succeeds, the JVM calculates the offset based on the instruction’s

last two bytes (i.e., branchbyte1 and branchbyte2) and branches.10 This causes the JVM

to continue execution with the instruction indicated by the offset (Lindholm et al., 2012).

Table 2.2: Instructions in the if<cond> family.

if<cond> Family
Mnemonic Description

ifeq succeeds if and only if the top of the stack is equal to zero
ifne succeeds if and only if the top of the stack is not zero
iflt succeeds if and only if the top of the stack is less than zero
ifle succeeds if and only if the top of the stack is less than or equal to zero
ifgt succeeds if and only if the top of the stack is greater than zero
ifge succeeds if and only if the top of the stack is greater than or equal to zero

if<cond>

branchbyte1

branchbyte2

Figure 2.7: Format of the if<cond> instruction family.

The JVM ISA also has unconditional branches. An example of unconditional branch

instruction is goto. Similarly to instructions in the if<cond> family, the goto instruction

also includes two unsigned bytes that are used to calculate the offset (Figure 2.8). After

executing a goto instruction, the JVM branches to the instruction specified by the second

and third operands (e.g., branchbyte1 and branchbyte2).

goto

branchbyte1

branchbyte2

Figure 2.8: Format of the goto instruction.

As comparing variables to null is a frequent operation in Java programs, there are

two special instructions that check whether a given reference variable is null: ifnull and

ifnonnull (Engel, 1999). An in-depth description of the other control-flow bytecodes is

provided in the JVM specification (Lindholm and Yellin, 1999; Lindholm et al., 2012).

Most instructions in the data-manipulation subset are concerned with arithmetic oper-

ations. There are bytecode instructions for performing addition, subtraction, multiplica-

tion, division, remainder, and negation operations. These instructions have the following

10Transferring control from one instruction to another is called branching (Engel, 1999).
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mnemonics: <x>add, <x>sub, <x>mul, <x>div, <x>rem, and <x>neg, respectively. As these

are type-specific instructions, <x> represents the type upon which they operate. For in-

stance, isub performs subtraction operations on int variables and ddiv divides its two

double operands. The forms that arithmetic instructions can take are listed in the first

part of Table 2.3.

Table 2.3: Data-manipulation instructions.

Opcode byte short int long float double char reference

Arithmetic Operations
<x>add iadd ladd fadd dadd

<x>sub isub lsub fsub dsub

<x>mul imul lmul fmul dmul

<x>div idiv ldiv fdiv ddiv

<x>rem irem lrem frem drem

<x>neg ineg lneg fneg dneg

Logical Operations
<x>and iand land

<x>or ior lor

<x>xor ixor lxor

Type-conversion Operations
i2<x> i2b i2s i2l i2f i2d i2c

l2<x> l2i l2f l2d

f2<x> f2i f2l f2d

d2<x> d2i d2l d2f

Note that there is no boolean type in Table 2.3. The reason is that the JVM uses int

variables to represent types that are less than 32-bits in size (e.g., char, byte, and short).

Therefore, most operations on boolean values are carried out by instructions that operate

on int or long values (Lindholm et al., 2012). Examples of operations that support only

int and long values are the logical operations: <x>and, <x>or, and <x>xor. The forms

that these instructions can take appear in the second part of Table 2.3.

Due to the fact that some operations apply only to integers (e.g., logical operations),

the JVM virtual ISA also includes type conversion instructions. The mnemonics of these

type-changing instructions follow the form <x>2<y>, where both <x> and <y> are letters

in Table 2.1: <x> represents the type that the instruction converts from and <y> is the

type that the instruction converts to (Engel, 1999). So, for instance, i2b converts the int

value on the top of the stack into a byte value. Type-conversion instructions are outlined

in the third part of Table 2.3.

In stack-based ISAs, the operands must be pushed onto the underlying stack before

any computation takes place. Being a stack-based ISA, the JVM virtual ISA includes

instructions to move data from the main storage and local storage (i.e., heap and array
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of local variables) to the operand stack. Some of the instructions that push and pop

local variables onto the stack have the following mnemonics: <x>load and <x>store,

where <x> is a letter in Table 2.1 and indicates the type upon which these instructions

operate (Lindholm et al., 2012). The <x>load instruction family loads variables from

the array of local variables to the operand stack of the current method. As shown in

Figure 2.9(a), these instructions are followed by an index into the array of local variables

(local variables are accessed by indexing, as explained in Subsection 2.4.5). For example,

fload 1 pushes the first local variable of an instance method onto the operand stack. The

<x>store instruction family, shown in Figure 2.9(b), performs the opposite operation: it

pops the value on the top of the stack and stores it into the local variable indicated by

the index operand. For example, istore 2 moves the value on the top of the stack to the

int local variable at position 2. As pointed out by Engel (1999), for efficiency purposes,

there are special instructions that load and store the variables at indexes 0, 1, 2, and

3. These special instructions incorporate the index in their mnemonic. They follow the

format <x>load<n>, where <x> is a letter in Table 2.1, indicating the type upon which

the instruction operate, and <n> is any number from 0 to 3. For instance, fload_2 has

essentially the same effect as fload 2.

<x>load

index

(a)

<x>store

index

(b)

Figure 2.9: Formats of the <x>load and <x>store instruction families.

The JVM virtual ISA is not limited to the aforementioned subsets. Some characteristics

of the Java language are reflected in bytecodes. To cite an instance, there are instructions

that support object orientation. The instruction new, for example, instantiates a new object.

Storage for the new instance is allocated from the heap, and a reference for it is placed on

the stack.

There are two concurrency-related instructions in the JVM ISA: monitorenter and

monitorexit (Lindholm and Yellin, 1999; Marr et al., 2009; Lindholm et al., 2012). These

two instructions implement the Java built-in synchronization mechanism, which is detailed

in Section 6.1.

2.4.6.1 Advantages of Java Bytecodes

Much of the success of the JVM can be ascribed to its virtual ISA. In a sense, bytecodes

are an improvement over P-code because of the following twists: there is more type and

data information, restrictions are imposed on the use of the stack, and there is reliance
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on symbolic references (Gosling, 1995). As Smith and Nair (2005b) remark, the degree of

platform independence achieved by modern virtual ISAs exceeds the one once provided by

P-code. The main reason is that instead of focusing only on the ISA aspects of portability,

contemporary virtual ISAs also emphasize how to encode data in a platform-neutral

fashion.

Given that operands are implicitly fetched from the operand stack, rather than being

explicitly represented along with instructions as register numbers, programs compiled to

bytecodes stay compact (Shi et al., 2008; Lindholm et al., 2012). Another advantage of

being stack based is that it greatly simplifies the implementation of JVMs on register-poor

architectures.

As reported by Shi et al. (2008), stack-based ISAs lead to more compact programs,

mainly when compared to register-based ISAs. This compactness makes stack-based ISAs

suitable for network computing environments because a dense program representation

saves network bandwidth.

2.5 JVM Implementations

The JVM is described as an abstract machine in its specification. As such, some imple-

mentation details are not part of this specification. For example, implementors are free

to choose any GC algorithm and internal optimization. According to Lindholm et al.

(2012), specifying all these technical details would constrain the creativity of implementors.

Furthermore, an over-specified JVM definition would compromise the implementation

of specification-compliant JVMs for certain devices. For example, demanding that every

JVM implementation includes a JIT compiler would make it difficult to design a JVM

implementation for memory-constrained devices. For these reasons, there are many dif-

ferent implementations of the JVM, some are implemented in C or C++ and others are

implemented mostly in Java itself. A non-exhaustive list of JVM implementations is shown

in Table 2.4.

An example of JVM tailored to resource constrained devices is Squawk (Simon and

Cifuentes, 2005; Simon et al., 2006). Squawk is written in Java and runs on the bare metal,

avoiding the need for an OS (Simon et al., 2006). In addition, Squawk is an interpreted JVM,

which also reduces its memory footprint. Other JVMs designed to small devices are the

following: NanoVM (Till Harbaum, 2013), FijiVM (Pizlo et al., 2010), KESO (Wawersich

et al., 2007; Thomm et al., 2010), Darjeeling (Brouwers et al., 2008), TakaTuka (Aslam

et al., 2008), Jelatine (Agosta et al., 2006), and Maté (Levis and Culler, 2002).

As for desktop implementations, Jikes RVM (Research Virtual Machine) was the first

JVM implemented in Java (Jikes RVM Project, 2013). It started out as an internal research
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project at IBM, but since 2001 Jikes RVM has been available as an open source project.

Currently, Jikes RVM runs on many platforms. It has become a research project whose

goal is to provide a versatile implementation that can be used to prototype HLL VM

technologies. Thus, many researchers have adopted Jikes RVM as their research infrastruc-

ture to explore new adaptive optimization and memory management techniques (Durelli

et al., 2010). Other widely used desktop implementations are HotSpot (Oracle Corporation,

2013c) and Maxine VM (Oracle Corporation, 2013a; Wimmer et al., 2013). We chose to

extend Maxine VM, thus a description of this HLL VM is provided in the next section.

Table 2.4: A non-exhaustive list of JVM implementations. The implementations are listed
in alphabetical order.

Execution Engine
Name Creator Interpreter JIT Availability

CACAO Vienna University of Technology No Yes Free
Darjeeling Niels Brouwers No No‡ Free
FijiVM Fiji Systems Inc. No No‡ Free
Guaraná Spin-off from Kaffe Yes Yes Free
HotSpot† Sun Microsystems, Oracle Yes Yes Free
J9 IBM Yes Yes Free
JRockit Oracle No Yes Free
JamVM Robert Lougher Yes Yes Free
JamaicaVM Aicas GmbH ? Yes Commercial
Jelatine Gabriele Svelto Yes No Free
Jikes RVM IBM No Yes Free
Joeq John Whaley Yes Yes Free
KESO Erlangen-Nürnberg University No No‡ Free
Kaffe Transvirtual Technologies Yes Yes Free
LaTTe Seoul University, MASS Lab No Yes Free
Maté University of California, Berkeley Yes No Free
Maxine VM Sun Microsystems, Oracle No Yes Free
NanoVM Till Harbaum Yes No Free
SableVM Sable Research Group Yes No Free
Squawk Sun Microsystems, Oracle Yes No Free
Steamloom Spin-off from Jikes No Yes Free
TakaTuka University of Freiburg Yes No Free
†JDK Edition.
‡Ahead-of-time compilation.

2.6 Maxine VM

Maxine VM is an open-source JVM from Oracle Laboratories (formerly Sun Microsystems

Laboratories). It is intended to be used as a replacement of the Java HotSpot VM (Oracle
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Corporation, 2013c), which is shipped with the Java Development Kit (JDK) from Oracle

and the OpenJDK (Oracle Corporation, 2013b). It is a meta-circular HLL VM (i.e., written

in the same language that it realizes). In contrast with conventional HLL VMs that are

implemented in a low or intermediate level language such as C, Maxine VM is mostly

written in Java. Only a small part of Maxime VM, called the substrate, is written in C.

Figure 2.10 contrasts the design of conventional JVMs with the design of a meta-circular

JVM.

In the Java part, two aspects leverage the meta-circularity in Maxine VM’s design: it

(i) integrates with Oracle’s standard Java Development Kit (JDK) packages, implementing

their down-calls in Java, and (ii) relies on a fast baseline compiler and an optimizing

compiler that translates the HLL VM itself.

The optimizing compiler generates a boot image of Maxine VM in an “ahead-of-time”

fashion (Oracle Corporation, 2013a). The boot image is not a native executable but a

binary blob targeted at the platform for which the image was generated. The boot image

contains data required by the HLL VM until it can begin loading further classes and

compiling methods on its own (e.g., a pre-populated heap and a binary image of method

compilations). However, since the boot image is not executable by itself, bootstrapping

Maxine VM entails invoking the substrate (Wimmer et al., 2012), which loads the boot

image and then transfers control of the execution to the HLL VM.

(a) (b)

Figure 2.10: A conventional HLL VM design (a) and a meta-circular HLL VM design (b).
This figure is adapted from Mathiske (2008).

The main reason Maxine VM was chosen is because its design was tailored to support

HLL VM research. Its modular design allows for replacing entities with different imple-

mentations, making it a flexible testbed for trying out new ideas and prototyping HLL VM

technology. For example, it is possible to plug in alternate implementations of subsystems

such as GC and compilation.
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Maxine VM is also a compelling platform because of its high performance. This JVM

implementation does not use an interpreter; instead it uses a JIT-only strategy. In effect,

a tiered compilation strategy takes place during run time. Methods are compiled with a

lightweight non-optimizing JIT compiler (i.e., baseline compiler), which in a single forward

pass translates Java bytecodes into pre-assembled native instructions. Afterwards, the JIT

optimizing compiler may be triggered to further optimize methods that are frequently

invoked (hotspots). Some of the optimizations performed by the JIT optimizing compiler

are method inlining and whole-method register allocation (Bebenita et al., 2010).

Another advantage of Maxine VM is that it has a debugger and object browser, called

Inspector (Würthinger et al., 2010). This co-designed companion tool allows the perusal of

runtime information at multiple levels of abstraction. For example, objects can be inspected

either abstractly or in terms of the platform-dependent memory layout. Likewise, methods

can be viewed as source code, bytecodes, or native instructions.

As of this writing, Maxine VMs uses a simple semi-space copying collector as its

default GC. Due to the fact that the current GC performs poorly, several other GCs are

under development: a basic flat mark-sweep GC with allocation based on segregated list

without compaction, a region-based mark-sweep GC with linear allocation per-region, and

a generation GC with a copying nursery (Oracle Corporation, 2013a).

2.7 Concluding Remarks

Computer systems are complex structures encompassing many layers of interacting com-

ponents in both software and hardware. Within this context, virtualization plays the role

of interconnection technology. This chapter summarized the underpinning concepts of

virtualization. As discussed, the concept of virtualization is implemented by VMs. Over

the years, VMs have pervaded a wide range of domains. The versatility of this technology

has led to a vast diversity of VMs. To put the most representative examples of this tech-

nology in perspective, we presented them according to the taxonomy proposed by Smith

and Nair (2005a). Their taxonomy divides VMs into two major types: (i) system VMs

and (ii) process VMs. The boundaries in which these technologies are employed were

highlighted. Given the focus of the research herein described, in the present chapter a type

of process VM was emphasized, namely, HLL VMs.

Two HLL VMs were outlined: the Pascal P-machine and the JVM. P-machine was

described because of its historical importance: it popularized the concept of using an

intermediate representation to enhance portability. As for the JVM, its intrinsic advantages

over statically compiled binaries have led to a widespread adoption on various platforms

ranging from web servers to low-end embedded systems. Many studies, including this one,

36



Chapter 2 — High-level Language Virtual Machines

have used this HLL VM (Durelli et al., 2010). This study, more specifically, uses a JVM

implementation named Maxine VM, whose main characteristics were described in this

chapter.

In the next chapter, we give an introduction to mutation testing. We focus on describing

techniques aimed at speeding up mutation testing. Thus, the following chapter is intended

to lay the theoretical foundation required for understanding our approach to weak mutation

testing and our proof-of-concept implementation, which are discussed in Chapter 4.
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3

Mutation Testing

Mutation testing has been around for more than forty years. Although it has been proven

effective as a fault revealing technique, its main downside is that it is computationally

expensive. Aimed at dealing with this computational cost problem, researchers have striven

to create approximation and cost reduction techniques. As discussed throughout this

chapter, these techniques need to strike a balance between reducing computational cost

and maintaining fault revealing effectiveness. It is not only the cost of running mutants

that has to be taken into account, thus researchers have also been tackling the problem

of reducing the amount of generated mutants. The approximation and cost reduction

techniques outlined in this chapter set the foundation for the next chapter in which we

describe our HLL VM-based cost reduction technique.

This chapter is not intended to provide a comprehensive survey of all existing work in

the area. Instead, emphasis is given to approximation and cost reduction techniques. The

chapter is organized as follows. Section 3.1 introduces mutation testing, its core hypotheses,

and problems. Section 3.2 describes how mutation is used from a procedural standpoint.

Section 3.3 presents an overview of studies that aim to mitigate the computational cost

associated with carrying out mutation testing. This section can be seen as an updated

version of the survey carried out by Jia and Harman (2011), but whose scope is limited

to approximation and cost reduction techniques. Section 3.3 briefly describes some aca-

demic mutation tools. Section 3.4 outlines efforts to apply mutation testing to concurrent

programs. Concluding remarks are given in Section 3.5.
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3.1 The Theory of Mutation Testing

The first contributions to mutation testing can be traced back to the 70’s: a student paper

by Lipton (1971) and the paper by Hamlet (1977). Nevertheless, the paper by DeMillo

et al. (1978) is the one that is usually cited as the seminal reference. Since then, research

into mutation testing has come a long way (Offutt and Untch, 2001; Jia and Harman,

2011).

Mutation testing is effective at helping to identify test data that is adequate to uncover

real faults (Andrews et al., 2005; Do and Rothermel, 2006; Jia and Harman, 2011). However,

since that mimicking all potential faults for a given program is very costly, mutation testing

focus on a subset of these faults. Faulty versions that are close to the correct version of

the program under test are emphasized, thereby reducing the number of alternate versions

of the program that needs to be generated (Morell, 1988). In doing so, it is expected that

uncovering how the faulty versions deviate from the original program is enough to emulate

all faults. This idea is based on two hypotheses: the competent programmer hypothesis and

the coupling effect (DeMillo et al., 1978).

The competent programmer hypothesis was first proposed in the seminal work of De-

Millo et al. (1978). According to such a hypothesis, programmers are competent, thereby

they tend to write programs that are close to being correct. Thus, it can be assumed that

when a program written by a competent programmer has faults, those faults are quite

simple; they are slight syntactic deviations from the correct program. As a result, when

applying mutation testing only straightforward syntactical changes are performed. That

is, only the faults that mimic mistakes that a competent programmer would make.

DeMillo et al. (1978) also proposed the coupling effect. The coupling effect has to do

with the characteristics of the faults used in mutation analysis. It states that test data

that is sensitive enough to distinguish a correct program from versions containing simple

faults is also able to uncover more complex faults. Offutt (1989, 1992) expanded on this

by proposing two hypotheses, the coupling effect and the mutation coupling effect, and

providing a definition of simple and complex faults. According to his definition, a simple

fault is a single syntactical change made to a program, whereas a complex fault is made

up of several changes. As stated by Offutt (1992), the coupling effect hypothesis boils

down to complex faults being coupled to simple faults so that a test data that is capable

of uncovering simple faults will also end up exposing most of the complex faults. As for

the mutation coupling effect hypothesis, complex mutants are coupled to simple ones in

such a way that a test data set that detects all simple mutants will also detect most

of the complex mutants (Offutt, 1992). Aside from the research by Offutt (1989, 1992),
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several studies have been conducted in order to experimentally support the coupling effect

hypothesis (Morell, 1983; Wah, 1995, 2000, 2003; Kapoor, 2006).

Before going into detail about studies on mutation testing, in the next section we

describe how mutation is used from a procedural standpoint. Then, a number of studies

tailored towards turning mutation testing into a more practical techniques are discussed

in Section 3.3.

3.2 An Overview of the Mutation Testing Process

As described in the previous section, mutation testing is centered around the idea of

devising test data for uncovering the seeded faults. Within such context, these faults

are slight syntactic changes made to a given program. The elements that describe such

syntactic changes are called mutation operators1 (Ammann and Offutt, 2008; Ahmed et al.,

2010; Hu et al., 2011). Also, as mentioned, a hallmark of these changes is that they are

analogous to mistakes that programmers make. Typical mutation operators are applied

to source code and modify expressions by replacing, inserting, or deleting either operators

or variables. When mutation operators are applied to the program under test, they result

in faulty versions of the program called mutants (Offutt et al., 1996a). As an illustration,

Listing 3.1 shows a Java method with examples of mutation operators. The sample method

in Listing 3.1 contains four mutated lines (➊, ➋, ➌, and ➍), each line represents a mutant

generated from the original method. Mutants ➊ and ➋ replace the relational operator <

with > and >=, respectively, ➌ replaces one variable reference with another, and mutant

➍ inserts the post-increment operator ++.

Before starting analyzing the generated mutants, test data is designed to execute the

original program and assert its correctness. To do so, the original program (i.e., P) must be

executed against a test set T. Whenever P is incorrect, it needs to be fixed before starting

the mutation analysis. After successfully running the original program, the generated

mutants (M) are run against T with the goal of fulfilling the following conditions (Ammann

and Offutt, 2008):

• Reachability: The mutated location in the mutant program must be executed.

• Infection: The state of the mutant program must be incorrect after the faulty

location is executed.

• Propagation: The infected state must be propagated to some part of the output.

1In the mutation testing literature, mutation operators are also known as mutagenic operators, mutant

operators, mutagens, and mutation rules (Offutt and Untch, 2001).
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Listing 3.1: Method min and three mutants: mutants ➊ and ➋ replace the relational
operator < with > and >=, respectively. So mutants ➊ and ➋ are examples
of mutants generated from the mutation operator called relational operator
replacement (ROR). Mutant ➌ replaces the variable d2 with d1, which is an
instance of the application of the mutation operator called scalar variable
replacement (SVR). Mutant ➍ inserts the post-increment operator ++, which
is an example of the sort of syntactical changes made by the arithmetic
operator insertion shortcut (AOIS). This listing was adapted from Offutt
et al. (1996a) and Ammann and Offutt (2008).✞

public stat ic double min(double d1 , double d2 ) {
i f ( d1 < d2 ) return d1 ;
➥ ➊ i f ( d1 > d2 ) return d1 ;
➥ ➋ i f ( d1 >= d2 ) return d1 ;

else return d2 ;
➥ ➌ else return d1 ;
➥ ➍ else return d2++;

}
✡✝ ✆

This is called the RIP model. When a test case t ∈ T satisfies the RIP model by causing

the output of the mutant to be different from the output of the original program, the test

case is said to kill the mutant; otherwise, the mutant is said to be alive. Afterwards, new

tests are run against all live mutants, killed mutants (also called dead mutants) no longer

need to remain in the mutation testing process. Dead mutants can be removed from the

process because the faults represented by these mutants have already been detected by T.

Therefore, they have fulfilled the goal of identifying an effective test case. However, if a

mutant has the same output as the original program for all possible test cases, it is said to

be equivalent. Despite the fact that equivalent mutants differ from the original program

due to the syntactical changes they have gone through, they are functionally equivalent

to the original program (Jia and Harman, 2011). In fact, the syntactical change in an

equivalent mutant cannot be considered a fault but an optimization or de-optimization

of the underlying code (Usaola and Mateo, 2010). For example, mutant ➍ in Listing 3.1

is an example of equivalent mutant because it will always return the same result as the

original program.

As the process carries on, test cases are added to T and run against live mutants until

either all mutants are killed or the tester decides that T is good enough. Eventually, the

goal of mutation analysis is to obtain a mutation score of 100%. The mutation score is the

percentage of nonequivalent mutants that have been killed (Ammann and Offutt, 2008;

Naik and Tripathy, 2008), so a score of 100% indicates that T is able to detect all the faults

represented by the mutants (i.e., M). To sum up, the purpose of the technique is twofold: (i)

providing an test-adequacy criterion and (ii) detecting faults in the program under test.
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Therefore, after applying mutation testing and achieving a mutation score of 100%, one

obtains two results: (i) a satisfactory set of test cases (i.e., T) and (ii) a reliable original

program, given that the set of test cases found no faults in P (Usaola and Mateo, 2010).

In most cases, achieving a mutation score of 100% is impractical, so a threshold value can

be established; representing the minimum value for the mutation score. Figure 3.1 gives

an overview of the mutation testing process.

Figure 3.1: An overview of the mutation testing process. This figure is adapted from two
sources: Offutt and Untch (2001) and Ammann and Offutt (2008).

From a research viewpoint, mutation testing is a mature technique (Usaola and Mateo,

2010; Jia and Harman, 2011; Offutt, 2011). Mutation testing has been used as a “gold

standard” for experimentally evaluating other software testing techniques (Andrews et al.,

2005; Do and Rothermel, 2006; Namin and Kakarla, 2011). However, several hurdles

associated with carrying it out have been hindering its adoption as a practical testing

technique. First, carrying out mutation testing also entails a lot of human effort that

might make it cost-prohibitive. To be more specific, the two steps that involve human

effort are the (i) human oracle problem (Weyuker, 1982) and (ii) the problem of identifying

equivalent mutants (Budd and Angluin, 1982). Second, mutation testing is computationally

expensive because of the high cost of running a large number of mutants against a test

set.

The human oracle problem has to do with the tester having to check the program’s

output for each test case in order to evaluate whether the program is properly functioning

for those particular inputs. However, as noted by Jia and Harman (2011), this issue is not

unique to mutation testing. In fact, in many sorts of testing, checking the outcome of the

test set is still required. As for identifying equivalent mutants, it is a well-known undecidable

problem as proved by Budd and Angluin (1982). Therefore, the identification of equivalent

mutants is often carried out manually and is labour intensive. The labor-intensiveness

associated with detecting equivalent mutants is discussed by Frankl et al. (1997). Grün

et al. (2009) report that it takes approximately 15 minutes to manually evaluate whether
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a mutant is equivalent to the original program. While it is not possible to come up with

comprehensive solutions for these two hindrances to mutation testing, the literature is rife

with studies exploring how to circumvent them (Jia and Harman, 2011).

Similarly to many testing techniques, mutation testing also requires tools to automate

some steps of the process (e.g., mutants generation and managing the execution of the gen-

erated mutants). However, this automated tool support demands high computational cost.

For instance, carrying out mutation testing, even when taking into account moderate-sized

programs, results in hundreds of mutants (Usaola and Mateo, 2010). Reducing either the

number of generated mutants or the execution cost has been the goal of a number of

research ideas including ours, which is described in Chapter 4. Thus, in order to lay the

foundation for Chapter 4, the next sections cover mutation testing cost reduction tech-

niques by providing some background and giving an overview of what has already been

investigated in this area.

3.3 Cost Reduction Techniques

Mutation testing is not a scalable criterion. As Harrold (2000) remarks, although it has

been shown that mutation testing is an effective criterion, researchers have yet to come up

with ways to carry out the testing efficiently. Since mutation testing was first proposed,

much attention has been concentrated on reducing the computational expense of generating,

compiling, and executing the mutant programs against the test set in question (Usaola and

Mateo, 2010; Jia and Harman, 2011). As pointed out by the survey of Offutt and Untch

(2001), approaches to overcome the computational cost of mutation testing are based on

one of three strategies: “do fewer”, “do smarter”, or “do faster”.

Approaches that follow the “do fewer” strategy try to devise ways of reducing the

mutants that need to be taken into account without incurring significant loss in terms of

quality. The “do smarter” approaches are concerned with distributing the computational

expense over several computers or splitting the expense up into several executions by

storing run-time information between runs. The “do faster” approaches emphasize ways

of boosting up the generation and mainly the execution of mutants. In this document,

we followed the classification proposed in the survey of Jia and Harman (2011), which

contains only two categories: (i) reduction of the generated mutants (which is equivalent

to the “do fewer” strategy) and (ii) reduction of the execution cost (which combines two

strategies, namely,“do smarter” and“do faster”). According to Jia and Harman (2011), the

cost reduction techniques that have been most studied are selective mutation and weak

mutation. These two and other cost reduction techniques are discussed in detail in the

next subsections.
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3.3.1 Reduction of the Number of Generated Mutants

In the light of the computational cost that stems from having to compile and run a

large number of mutants against a test set, a research thrust in mutation testing has

been exploring how to reduce the number of generated mutants as a way of expediting

execution. Typically, mutation systems implement lots of mutation operators. As noted

by Offutt and Untch (2001), the rationale was “to include as much testing as possible

by defining as many mutants as possible”. For instance, Mothra mutation system for

Fortran (DeMillo et al., 1988; King and Offutt, 1991) supports 22 mutation operators. Due

to high computational cost associated with executing the profusion of mutants generated

by the mutation operators, reducing the number of generated mutants has become an

important research problem.

3.3.1.1 Selective Mutation

The amount of mutants generated for a given program is roughly proportional to the

product of the number of data references times the number of data objects (Offutt et al.,

1996a). Some mutation operators yield far more mutants than others since they can mutate

nearly every statement in the original program (Usaola and Mateo, 2010). Nevertheless,

some of these mutants may turn out to be redundant. For example, two of the 22 Mothra

mutation operators generate up to 40% of all mutants (King and Offutt, 1991), namely,

array reference for scalar variable replacement (ASR) and SVR (see Listing 3.1 for an

example of the application of SVR). In an effort to effectively reduce the number of

redundant mutants, Wong et al. (1994) suggested the idea of constrained mutation, which

consists in applying mutation testing using only the most sound mutation operators. Due

to the large number of redundant mutants generated from ASR and SVR, Wong et al.

suggested leaving them out of the mutation process.

Offutt et al. expanded on this idea by proposing an approximation technique called

selective mutation, which entails selecting only mutants that are truly different from other

mutants (Offutt et al., 1993, 1996a) and play a part in strengthening the test set in question.

That is, selective mutation deals with ascertaining the smallest set of mutation operators

that generates the best subset of mutants, without compromising effectiveness. The idea of

Wong et al. was implemented by Offutt et al. (1993) as “2-selective mutation”. Apart from

omitting two mutation operators, Offutt et al. also experimentally evaluated omitting four

(“4-selective mutation”) and six (“6-selective mutation”) mutation operators. Their results

indicate that 2-selective mutation achieves a mean mutation score of 99.99% and a 24%

reduction in the number of generated mutants. As for 4-selective mutation, it achieved a

mean score of 99.84% and the number of generated mutants had a reduction of 41%. The
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figures for 6-selective mutation are a mean mutation score of 88.71% with a reduction of

60% in the number of mutants.

Wong and Mathur (1995) expanded on their previous work and came up with another

type of reduction strategy in which mutation operators are selected based on their effective-

ness. Wong and Mathur suggested using two mutation operators: absolute value insertion

(ABS) and relational operator replacement (ROR) (see Listing 3.1 for an example of the

application of ROR). According to them, the motivation behind choosing ABS is that

test cases that kill mutants generated from this mutation operator exercise different facets

of the input domain. ROR was chosen because test cases tailored to ROR mutants are

sensitive to logical expressions within predicates. Their results indicate that these two

mutation operators achieve a reduction of 80% in the number of mutants with a decrease

of only 5% in the mutation score.

Employing a reduction strategy similar to the one proposed by Wong and Mathur, Offutt

et al. (1996a) further extended their 6-selective mutation. They divided Mothra’s mutation

operators into three groups: (i) mutation operators that change statements, (ii) operators

that modify operands, and (iii) mutation operators that operate on expressions. After

grouping the mutation operators, they went on to omit operators from each class in

turn. Their findings suggest that five operators from groups (ii) and (iii) are the key

mutation operators: ABS, ROR, arithmetic operator replacement (AOR), logical connector

replacement (LCR), and unary operator insertion (UOI). It turns out that according

to Offutt et al., using this set of five mutation operators, almost the same coverage as

non-selective mutation can be achieved.

Mresa and Bottaci (1999) devised a slightly different reduction strategy. Besides aim-

ing for the smallest possible set of mutation operators that does not compromise the

fault-finding effectiveness of the test set, they suggest that the cost of detecting equiva-

lent mutants also needs to be taken into account. In their study, they report that it is

possible to reduce the number of equivalent mutants and yet retain a reasonable degree

of effectiveness.

Drawing from previous works, Barbosa et al. (2001) developed guidelines on how to

select an effective set of mutation operators from a given mutation system. Such a guideline

was applied to Proteum (Program Testing Using Mutants), which is a mutation system that

implements a comprehensive set of mutation operators for C programs (Maldonado et al.,

2001). Proteum’s set of mutation operators is made up of 77 operators, of which 10 were

selected after applying the underlying guidelines. A mean mutation score of 99.6% with

a 65.02% reduction in the number of mutants was achieved using the selected mutation

operator set.
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Namin et al. address the problem of mutant selection by formulating it as a statistical

problem: the problem of variable selection2 (Namin and Andrews, 2006, 2007; Namin et al.,

2008). Feature selection is the process of analyzing an entire set to find the optimal subset

that will yield the best results (Kohavi and John, 1997; Blum and Langley, 1997). Applying

their linear statistical approaches, they reached a subset of 28 mutation operators (out of

108 C mutation operators). According to them, their results predict the effectiveness of

a test suite and reduce the number of generated mutants in 92%. Therefore, compared

with the other approaches, Namin et al.’s approach achieved the highest rate of mutant

reduction.

Zhang et al. (2010) compared the aforementioned reduction strategies with two random

techniques. In fact, in their study, Zhang et al. examined three reduction strategies: (i) the

reduction strategy of Offutt et al. that yielded five mutation operators, (ii) Barbosa

et al.’s 10 mutation operators, and (iii) Namin et al.’s 28 mutation operators. These

three reduction strategies were compared against two random mutant-selection techniques.

The first random technique, given a number n, selects n mutants randomly. The second

random technique comprises two stages. In the first stage, a mutation operator is chosen

randomly. During the second stage, mutants generated from the chosen mutation operator

are randomly selected until n mutants have been selected. Only mutants that have not

been previously selected are chosen. Their experimental results suggest that the three

reduction strategies are no better than picking mutants randomly, none of three reduction

strategies outperforms random mutant selection in terms of effectiveness. In addition, their

study indicates that random mutant selection is able to achieve competitive results even

when selecting fewer mutants than each of the three reduction strategies.

Li et al. (2009) found that although selective mutation generates far more test re-

quirements than the edge-pair, all-uses, and prime path criteria, it needs fewer tests. An

important implication of this finding is that many mutants are redundant. This led re-

searchers to postulate that mutation testing can still be quite effective with fewer mutants.

Untch (2009) set out to investigate this by using a simple, direct approach: a single

mutation operator. Untch used the statement deletion operator (SDL), which removes

statements from the program in the hopes of impelling the tester to design tests that cause

the absence of every statement to have an effect on the outcome. Despite the fact that

the SDL operator does not mimic faults that a programmer would make, Untch obtained

promising results. Recently, Deng et al. (2013) also investigated how the SDL operator

can reduce the overlap among mutants. Deng et al. implemented the SDL operator in the

muJava (Ma et al., 2005) mutation system. Then, they performed an empirical evaluation

2In statistics and machine learning, the problem of variable selection is also known as feature selection,
feature reduction, attribute selection, and variable subset selection (Blum and Langley, 1997).
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with 40 subject programs. They killed all SDL mutants for these subjects, yielding an

SDL-adequate test suite. Such SDL-adequate tests were run against all muJava’s mu-

tants, achieving on average mutation score of 92% while generating 80% fewer mutants.

As pointed out by Deng et al., this is a huge savings at the expense of a slight loss in

effectiveness.

3.3.1.2 Mutant Sampling

Mutant sampling concerns randomly selecting a subset of mutants from the whole set (Jia

and Harman, 2011). Acree (1980) and Budd (1980) pioneered research into mutant sam-

pling. In this approach, after mutant generation, x% of the mutants are selected randomly,

and the others are discarded. The focus has been on the choice of the random selection

rate (e.g., x% ) (Jia and Harman, 2011).

Wong (1993) carried out an experiment using a random selection rate x% that ranged

from 10% to 40% in increments of 5%. He found that by using only 10% of the mutants

there is a decrease of 16% in terms of the mutation score that can be achieved in comparison

with the entire set of mutants. This result implies that mutant sampling is effective with

a x% higher than 10%. This is in line with the findings of DeMillo et al. (1988) and King

and Offutt (1991).

Rather than trying to fine-tune the sample rate using increments of a-priori fixed size,

Sahinoglu and Spafford (1990) devised a sampling approach that is based on the Bayesian

sequential probability ratio test (SPRT) (Wald, 1945). Their approach consists in randomly

selecting mutants until a statistically appropriate sample has been reached. The results

reveal that their approach is more sensitive than the ones based on plain random selection

due to the fact that their approach self-adjusts to the test set.

3.3.1.3 Higher Order Mutation

Higher order mutation is a relatively new form of mutation testing introduced by Jia

and Harman (2009). As mentioned in Section 3.1, mutants created through traditional

mutation testing differ from the program under test in only one way: they contain a single

fault. According to Jia and Harman (2009), often these faulty versions are quite trivial, and

as such they end up being killed easily. In contrast, mutants created through higher order

mutation contain two or more faults. The fundamental idea is to generate mutants that

are harder to kill than the ones containing a single fault. Within such context, mutants

can fall into two categories: (i) mutants created by the injection of a single fault are called

first order mutants, whereas (ii) mutants containing at least two faults are referred to as

higher order mutants.
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The concept of subsuming higher order mutants posits that since a subsuming higher

order mutant denotes a subtle fault, it is harder to kill than its first order mutants from

which it was created from (Jia and Harman, 2009). Consequently, first order mutants can

be replaced by higher order mutants to reduce the number of mutants that need to be

taken into consideration.

The savings that can be achieved by higher order mutation have been to a certain extent

borne out by the results of Usaola et al. (2009). In their experiment, they emphasized a

specific order of higher order mutant: the second order mutants (i.e., mutants containing

two faults). Usaola et al. devised algorithms to consolidate first order mutants into second

order ones. Their results indicate that second order mutants reduce the cost of mutant

testing by approximately 50% while retaining much of the test effectiveness.

Langdon et al. (2009, 2010) employed multi-objective genetic programming to generate

higher order mutants. According to them, the resulting higher order mutants are harder

to kill than any first order mutant.

3.3.1.4 Mutant Clustering

Mutant clustering was first proposed by Hussain (2008). The idea involves selecting a

subset of mutants using clustering algorithms (Xu and Wunsch, 2005). When using mutant

clustering, after generating all first order mutants, a clustering algorithm is applied to

classify the mutants into different clusters. The classification is as the following: the

clustering algorithm assures that every mutant in a certain cluster is killed by a similar set

of test cases. Therefore, aimed at reducing the computational cost associated with running

mutants, only a small number of mutants is chosen from each cluster to compose the set

of mutants that needs to be executed. The mutants that were not chosen are discarded.

Hussain examined two clustering algorithms: (i) k-means and (ii) agglomerative cluster-

ing. In his experiment, these algorithms were compared with greedy and random reduction

strategies. The results indicate that mutant clustering selects fewer mutants without neg-

atively affecting the mutation score. Ji et al. (2009) took mutant clustering a step further

by using a domain reduction technique that obviates the need to execute all mutants.

3.3.2 Reduction of the Execution Cost

Even with automated tool support, one of the hurdles that have been hindering mutation

testing from becoming a practical testing technique is the elevated computational cost

associated with running the large number of mutants against a test set. Thus, aimed at

dealing with this high computational cost, a research thrust in the area involves optimizing

the execution process. The next subsections give an overview of the three approaches that
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have been used to boost the execution of mutants and mention several studies that explore

each of these approaches.

3.3.2.1 The Spectrum of Mutation Testing Techniques: Strong, Firm, and Weak

Mutation Testing

Mutation testing techniques can be classified according to when they evaluate the outcome

to determine whether a mutant was killed (Jia and Harman, 2011). In the original technique,

proposed by DeMillo et al. (1978), a mutant is said to be killed when it produces an

outcome that is different from the one produced by the original program. When applying

this technique, the outcomes are compared in the end of the execution process. Aimed at

optimizing the execution of the original technique (hereafter referred to as strong mutation),

a less computationally expensive as well as less stringent type of mutation testing, called

weak mutation, was introduced by Howden (1982).

In weak mutation, the emphasis is shifted from entire programs to elementary com-

ponents. It is assumed that a program P is comprised of a set of components C = {c1,

. . . , cn}. Such components can be of the following five types: variable assignment, variable

reference, arithmetic expression, relational expression, and boolean expression (Howden,

1982). In essence, the idea is to create mutants by modifying these components: given a

component cm, a mutant m is created by changing cm. Similarly, m is said to be killed

if on at least one execution it yields an outcome different from cm. Consequently, rather

than checking mutants after the execution of the entire program, as is the case with strong

mutation, they are checked immediately after the execution point of the mutated compo-

nent (Jia and Harman, 2011). Actually, in weak mutation, execution is stopped after the

mutation and if infection has occurred, the mutant is marked dead.

The definition of weakly killing a mutant encompasses only reachability and infec-

tion (Section 3.2). That is, the infected state does not need to propagate to the output.

A mutant is killed when it produces a different intermediate state. Thus, it is possible

to distinguish more than one mutant component in a single program execution; which

is in stark contrast to strong mutation where, usually, after executing each program to

completion only one mutant may be killed.

Offutt and Lee (1991, 1994) improved Howden’s definition of components. They also

refined how one should go about executing these components. The four types of execution

that they came up with are the following: evaluation after the first execution of an expres-

sion (i.e., Ex-Weak/1), evaluation after the first execution of a statement (St-Weak/1),

evaluation after executing a basic block (BB-Weak/1), and after n iterations of a basic

block within a loop (BB-Weak/N).
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As Woodward (1990) remarks, the main drawback of weak mutation is that distinct

components can yield outcomes different from the original program on different executions

and yet events can combine to either result in an overall correct outcome to the mutated

component or to the entire program execution. Since Howden’s initial study, several em-

pirical studies were carried out to evaluate the pros and cons of weak mutation (Jia and

Harman, 2011).

Girgis and Woodward (1985) developed a weak mutation tool for Fortran 77 programs.

They implemented an analytical weak mutation tool in which the mutants are killed

by probing the internal state of the program under test. In their experiment, they took

into account four of the Howden’s five elementary program components. Their results

indicate that weak mutation is less computationally expensive than strong mutation.

Similar conclusions were drawn from the results of the experiments conducted by Marick

(1991).

Horgan and Mathur (1990) presented a theoretical proof of weak mutation. According

to them, a test suite generated through the application of weak mutation can also be

expected to be as effective as one created via strong mutation.

Offutt and Lee (1991, 1994) implemented a weak mutation system named Leonardo

(Looking at Expected Output Not After Return but During Operation) that uses the 22

Mothra mutation operators rather than Howden’s five elementary program components.

Similarly to the results of Girgis and Woodward (1985), Horgan and Mathur (1990),

and Marick (1991), the experimental results of Offutt and Lee suggest that weak mutation

is an effective alternative to strong mutation.

Woodward and Halewood (1988) introduced firm mutation as a mutation testing

strategy that falls somewhere in the middle of the two extreme ends of a spectrum of

mutation techniques, namely, strong and weak mutation testing. Firm mutation has to do

with performing mutation testing on partial executions of fragments of the program under

test. For instance, given a statement within a loop that might be executed more than

once in a certain execution, applying firm mutation entails changing such a statement on

at least one execution of the loop. Therefore, a mutation is introduced into the program

and persists for one or more executions but not for the entire execution. Figure 3.2 gives

an overview of firm mutation. In Figure 3.2, tchange and tundo represent the duration of

the change, which is at least as long as the execution of a single statement. Figure 3.2

can also be used to put weak and strong mutation into perspective (Woodward, 1993). In

weak mutation, tchange and tundo take place immediately before and after the execution of a

component. Strong mutation is when tchange and tundo occur before and after the execution

of the entire program.
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Figure 3.2: Firm mutation. The moment at which the fault is introduced into the program
under test is denoted by tchange, and tundo represents the moment when the
change is reversed and the outcome is compared. This figure is adapted
from Woodward (1993).

The advantages and disadvantages of firm mutation have yet be gauged (Woodward,

1993). According to Halewood and Woodward (1993), since firm mutation demands a

greater degree of control over the mutation process and the execution environment itself, it

will fit in well as a feature of an interpretive, interactive debugging environment. However,

as of the time of this writing, there are no available implementation of such mutation

testing strategy.

3.3.2.2 Run-time Optimization Techniques

Early implementations of mutation testing systems relied on interpretation (Offutt and

King, 1987; King and Offutt, 1991). Due to the fact that the interpreter is the locus

of control within such systems (Scott, 2009), Jia and Harman (2011) classified them as

interpreter-based optimization techniques. Likewise, as stated by Jia and Harman, one of

the main costs of interpreter-based techniques stems from interpretation. Based on the

fact that the performance of interpretive systems depends heavily on the chosen HLR

or DIR (Section 2.3.4.2) (Piumarta and Riccardi, 1998), several studies have tried to

optimize the interpreter-based technique by translating the program source code into an

intermediate form (Offutt and King, 1987; King and Offutt, 1991). However, even when

translating the source code into an internal representation and performing mutation and

interpretation at this intermediate level, interpretation itself does not scale well for large

programs. Alternative run-time optimization techniques have therefore been sought.

As discussed in Chapter 2, compilation is a faster approach to implementing program-

ming languages because it is devoid of the inefficiencies inherent to interpretation (Wilhelm

and Seidl, 2011). Owing to this fact, researchers have been capitalizing on compilers to

boost mutation testing. According to Jia and Harman (2011), the compiler-based technique

is one of the most common ways of implementing mutation testing. A notable example of

tool that builds on a compiler to implement an integrated mutation testing environment

is Proteum (Delamaro and Maldonado, 1996). Proteum creates each mutant by modifying

the source of the original program. Then, it proceeds to compile, link, and run mutants.

Another similar example of compiler-based tool is Proteum/AJ (Ferrari et al., 2011), which

supports the application of mutation testing to AspectJ programs. However, differently

52



Chapter 3 — Mutation Testing

from Proteum, Proteum/AJ performs two compile-time steps for each mutant: compilation

and weaving. As pointed out by Ammann and Offutt (2008), this approach is not well

suited to small programs because the time spent compiling and linking or weaving them

might greatly exceed the time they take to execute. Furthermore, very large programs can

render this approach impractical because they result in compilation bottlenecks (Byoungju

and Mathur, 1993).

As mentioned in Section 3.2, mutants differ from the original program only by a

single minor syntactic modification. Hence, the compiler-based technique entails redundant

compilation cost, as each mutant is compiled individually. To circumvent this drawback,

Demillo et al. (1991) proposed the compiler-integrated technique. This technique involves

modifying a compiler so that its output from the original program contains the following:

(i) executable code for the original program and (ii) a set of patches for mutants. These

patches have information on how to convert the initial executable code into an executable

code that includes every mutant. By adding the mutants to the original program on the fly,

this technique reduces the redundant cost stemmed from compiling each mutant separately.

The mutant schema generation technique (Untch, 1992; Untch et al., 1993) is also

geared towards reducing the cost of compiling mutants individually. This technique is

based on the program schema technique, which was proposed by Baruch and Katz (1988).

Using the mutant schema generation, the underlying compiler is modified to encode all

mutants into one program, called metamutant. The same compiler then is used to translate

the metamutant (Ammann and Offutt, 2008). Given that all programs are included in

a single file, a mechanism to drive the execution of the program and its mutants is also

incorporated into the schema. Compiling all mutants in one compilation operation results

in up-front savings, but the compiled metamutant runs slightly slower than a regular

mutant. Several tools implement mutant schema for mutants generation: muJava (Ma

et al., 2005), Javalanche (Schuler and Zeller, 2009), and Bacterio (Mateo et al., 2010).

Mateo and Usaola (2012) propose an improvement over mutation schema. Their im-

provement, called MUSIC (mutant schema improved with extra code), is able to determine

when a given mutant must not be executed, thereby reducing the number of executions

required. Results from an empirical evaluation show that the number of executions can

be reduced by around 77%. However, the execution time spent by the original program

increases around 56%. Moreover, according to Mateo and Usaola, their improvement is

able to identify infinite loops more effectively then other techniques based on timeout.

Ma et al. (2005) came up with the bytecode translation technique. In this technique,

mutants are not generated from the source code of the original program. Rather, mutants

are created from the intermediate representation of the original program. Therefore, simi-

larly to the aforementioned techniques, the compilation step is skipped for each mutant.
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The execution environment simply fetches and executes the mutants in their intermediate

representation. An advantage of this technique is that it can handle off-the-shelf programs

whose source code is not available (Ammann and Offutt, 2008; Jia and Harman, 2011).

This technique has been successfully implemented in Java (Offutt et al., 2004; Ma et al.,

2005, 2006; Schuler et al., 2009). Nevertheless, not all programming languages support the

manipulation of their intermediate representation.

Bogacki and Walter (2006, 2007) devised an alternative approach aimed to reduce

compilation cost, called aspect-oriented mutation. Their approach consists in introducing

aspect patches whose purpose is to capture the output of methods on the fly. Due to

the introduction of these aspect patches, each method is executed twice. During the first

execution, the aspect patch wrapping that method invocation obtains the result and context

of the original method. Afterwards, in the second execution, mutants are generated and

run. This obviates the need for compiling each mutant. Bogacki and Walter also compared

their prototype tool with Jester (Moore, 2013), which is a strong mutation testing tool for

Java.

3.4 Mutation Testing Tools

The reliance of mutation testing on automation was evident since the technique was

proposed. Given that, many tools have been developed since the late 70’s. Some of the

most widely used tools have already been mentioned in this chapter, e.g., Proteum and

muJava. According to Jia and Harman (2011), Mothra and Proteum were the first academic

tools able to handle small, real-world programs not just toy programs. Consequently, both

tools were widely studied. Many advances in mutation testing were initially experimented

using these two tools. Jia and Harman also point out that after the first mutation workshop

was held, there has been an increase in the number of academic mutation tools. Since

then, much of the research described in this chapter has been translated into tools. A

non-comprehensive list of academic tools is shown in Table 3.1. As shown in Table 3.1,

the languages that have received the most attention so far are C and Java. Almost all

tools listed in Table 3.1 automate strong mutation. Interestingly, the only tool designed

for a dynamically typed language is SMutant. Further, the only four tools that implement

concurrency-related mutation operators are ExMAn (EXperimental Mutation ANalysis),

Javalanche, MuTMuT (MUtation Testing of MUltiThreaded code), and Paraµ (which are

further described in Chapter 5).
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Table 3.1: A non-comprehensive list of academic mutation testing tools. The implemen-
tations are listed in alphabetical order.

Name Language Mutation Type Reference
AjMutator AspectJ Strong (Delamare et al., 2009)

Bacterio Java System-level (Weak/Strong) (Mateo et al., 2013)

CREAM C# Strong (Derezinska and Szustek, 2008)

ExMAn C and Java Strong (Bradbury et al., 2006a)

JavaMut Java Strong (Chevalley and Thévenod-Fosse, 2003)

Javalanche Java Strong (Schuler and Zeller, 2009)

Jester Java Strong (Moore, 2013)

Judy Java Strong (Madeyski and Radyk, 2010)

Jumble Java Strong (Irvine et al., 2007)

MILU C Strong (Higher Order) (Jia and Harman, 2008)

Mothra Fortran Weak/Strong (DeMillo et al., 1988)

muJava Java Strong (Ma et al., 2005)

MuTMuT Java Strong (Gligoric et al., 2013a)

Paraµ Java Strong (Higher Order) (Madiraju and Namin, 2011)

PIMS Fortran Strong (Budd et al., 1978)

Proteum C Strong (Delamaro and Maldonado, 1996)

Proteum/AJ AspectJ Strong (Ferrari et al., 2011)

SMutant Smalltalk Strong (Gligoric et al., 2011)

Testooj Java Strong (Usaola et al., 2007)

3.5 Concluding Remarks

This chapter provided an introduction to mutation testing. Since the origin of the technique,

research into mutation testing has come a long way, spawning several research thrusts. In

particular, ways to optimize mutation testing have spurred a growing interest. A recent

survey, carried out by Jia and Harman (2011), points out that research in reducing the

cost of the mutation testing process has been drawing considerable attention. As this

chapter forms the conceptual basis for the next chapter (which presents our approach to

cost reduction and its implementation), special emphasis was given to approximation and

cost reduction techniques. Moreover, some tools were highlighted.

As outlined in this chapter, there has been some overlap between the research com-

munities working on designing programming languages and those interested in speeding

up mutation testing. The Fortran interpreter developed by Offutt and King (1987) rep-

resents one of the first forays into taking advantage of execution environments to enable

mutation testing. Since then, interpreters and compilers have been augmented in order to

enhance the performance of mutant generation and execution. A quintessential example of

language design idea that was adapted to boost mutation testing is the program schema

technique (Baruch and Katz, 1988), which in the parlance of mutation testing is called
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mutant schema generation. However, to the best of our knowledge, the proof-of-concept

implementation described in the following chapter is the first to take advantage of the

benefits provided by a modern execution environment (e.g., JIT compilation and GC) to

boost mutation testing.
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4

Speeding Up Weak Mutation Testing

Through Harnessing HLL VMs

As mentioned in the previous chapter, one of the hurdles that have been preventing

mutation testing from becoming more widespread is its elevated computational cost. To

overcome the high cost of executing mutants, many approaches have been devised. As

discussed in Section 3.3.2.2, several techniques have tried to boost mutation testing mainly

by extending interpretive execution environments or modifying compilers. Similarly to

the approaches mentioned in Section 3.3.2.2, the novel approach presented in this chapter

can be seen as a run-time optimization technique specialized for mutation testing. The

research herein described suggests that mutation analysis can be further sped up by being

implemented within a modern HLL VM.

To evaluate this idea, we augmented a managed execution environment by adding

support for mutation testing activities. We used the HLL VM that is by far the most

widely used within academic settings (Durelli et al., 2010), the JVM. The implementation

used is Maxine VM, which was discussed in-depth in Section 2.6. Instead of the more

expensive strong variant of mutation, we use the cheaper approximation, weak mutation.

This chapter presents our proof-of-concept, VM-integrated mutation testing environ-

ment. The novelty of this approach is not the supporting technologies and tools, but rather

their integration into a cutting-edge execution environment. Moreover, it also uses a novel

way to implement weak mutation testing.
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The remainder of this chapter is organized as follows. Section 4.1 outlines the HLL

VM-based mutation analysis implementation and Section 4.2 summarizes the experimental

results, which give some insight into possible performance improvements. Section 4.3

discusses the shortcomings of our implementation. In Section 4.4 some related work is

discussed and Section 4.5 suggests future work and makes concluding remarks.

4.1 Proof-of-concept Implementation: Harnessing an HLL

VM to Support Weak Mutation Testing

We extended Maxine VM (Section 2.6) to demonstrate the feasibility of developing a

mutation-aware JVM. Our proof-of-concept implementation automates three key steps

of mutation: execution of the original program, mutant execution, and mutant results

comparison. Our mutation-aware HLL VM implements weak mutation testing (Subsec-

tion 3.3.2.1) and emphasizes individual methods. Java methods are the fundamental unit

for encapsulating behavior and most JVMs are built to optimize their execution. Through-

out this chapter we call methods in the program under test originals, and methods that

have been modified for mutation mutants.

When the implementation reaches an original method invocation it prepares to execute

all mutant methods related to the underlying original method. The program state is first

saved, then the original method is executed. Then, each mutant method is called as a

separate thread with a copy of the program state. The main program thread is held until

all mutants are run. After finishing, the results of the mutant methods are compared

with the results of the original method. As mentioned before, our implementation focuses

on unit testing, so the results of method execution are defined to be the return value,

which return location was used, instance variables of the class that the method referenced,

and other local variables in the method. Details about saving the state are given in the

following subsection.

When an original method is first invoked, it is pre-processed before being compiled and

run by the JIT compiler. The pre-processing instruments the method to obtain a snapshot

of the context before and after invocation. As broadly summarized in Figure 4.1, the

instrumentation also transfers control to the entity responsible for triggering the execution,

handling unexpected behavior, and analyzing mutant methods (i.e., controller). Original

methods are instrumented at the beginning and at each of their return locations. Figure 4.1

outlines the pre-processing that takes place before an original method is JIT-compiled:

the instrumented sections and code that is invoked from within the inserted instrumented

58



Chapter 4 — Speeding Up Weak Mutation Testing Through Harnessing HLL VMs

code are shown in gray shade. After the pre-processing, the modified original method is

JIT-compiled and executed.

 Execution Flow

Instrumentation
      Method      

Body

Original Method

Prologue

Body

Epilogue

      Method      

Body

Initial Context 

Resulting Context

Mutant Method 1

Body

Epilogue

  Controller  

Mutant Method 2

Body

Epilogue

Figure 4.1: Overview of the pre-processing through which original methods undergo
before being JIT-compiled.

As can be seen in Figure 4.1, in the presence of an already instrumented original

method, the program’s calling sequence (i.e., code executed immediately before and after

a method call) is modified to invoke all mutant versions of the original method. Mutant

methods are only instrumented at return locations, as shown in Figure 4.1, to capture the

result of running the mutant.

Mutant methods are run in separate threads and results are compared with results

from the original method immediately. If the mutant method has results that are different

from the original method, the mutant is marked dead. The program under test resumes

execution (i.e., the thread executing the original method) after all the mutant methods

finish. Comparing results at the end of the methods makes this a weak mutation approach.

A benefit of forking new threads is that the program up until a method call does

not need to be repeated for every mutant. This implements the split-stream execution

proposed by King and Offutt (1991). This is a significant execution savings. As with

all other mutation systems, dead mutants are not re-executed. Also, the mutant method

look-up is performed only once for each method. The look-up takes place just after the
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first execution of the original method. After this, the controller keeps track of the mutant

methods, invoking the ones that are still alive at the end of executions of their respective

original methods.

4.1.1 Prologues

As described in the previous section, original methods undergo pre-processing before being

invoked for the first time. The pre-processing instruments methods’ prologues, which are

located before their bodies. The instrumentation extracts a copy of the initial context

as illustrated in Figure 4.1. What specifically is saved depends on the method. A class

method’s context is just the parameters passed to it, if any. An instance method always

has at least one parameter since the index 0 is reserved for the this pseudo variable. Thus,

the contexts of instance methods contain the receiver and all parameters.

Algorithm 4.1 gives a high-level overview of the instrumentation code for copying

the initial context. Line 2 gathers the initial context into an array with a conservative

approach: instead of computing the minimal depth required for the method’s operand

stack, we increase its size by 5. Additionally, an internal representation for the original

method, a string, is generated and added to the runtime constant pool as shown in line 3.

Next, if the method is an instance one, the underlying object is deep copied into the initial

context array (lines 5–9).

Next, an array is initialized with information on the method’s parameters (line 10).

Since each Java primitive type has specific instructions that operate on them, parameter

information is used to decide which load opcode needs to be instrumented to copy each

parameter in the context array. Although not shown in Algorithm 4.1, primitive types are

converted to object wrapper classes before being added to the initial context array. In

addition, type information is used to find the index of the next variable to be included

in the initial context array. This is needed because, as mentioned in Section 2.4, some

primitive types take up two slots, and attempts to load double types using inappropriate

opcodes would lead to type checking problems. Reference types are deep copied as shown

in line 15 before being added to the array.

Finally, in line 29, after collecting the initial context into an array, the instrumentation

code transfers both the method’s internal representation and the context array to the

controller. The controller uses copies of the information to invoke each mutant method.

Thus, mutant methods are invoked with the same context that was passed to the original

method.

It is worth mentioning that copying only a method’s parameters at times does not

encompass all the context needed to execute mutant methods. However, by not copying a
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large portion of the heap for every mutated method, our approach decreases the amount

of storage space required to implement weak mutation.

Algorithm 4.1 Prologue instrumentation.

1: procedure prologue(method)
2: method.opStack.size←method.opStack.size + 5
3: add method.ID to runtimeConstantPool

4: i← 0
5: if method.isInstance? then
6: load deep copy of method.receiver

7: add copy to context[i]
8: i← i + 1
9: end if

10: parameters←method.parameters

11: if parameters.length /= 0 then
12: for each p in parameters do
13: if parameters[i] is category 1 then
14: if parameters[i] is reference then
15: load deep copy of parameters[i]
16: add copy to context[i]
17: else
18: load parameters[i]
19: add value to context[i]
20: end if
21: i← i + 1
22: else
23: load parameters[i], parameters[i + 1]
24: add value to context[i], context[i + 1]
25: i← i + 2
26: end if
27: end for
28: end if
29: transferToController (method.ID, context)
30: end procedure

4.1.2 Epilogues

Inserting epilogue instrumentation code is more complex than inserting prologues. It entails

obtaining information on both the types of variables and their liveness. Each method has

only one prologue, but can have multiple epilogues; one at each return site. For example,

the method shown in Listing 4.1 has three return locations (i.e., ➊, ➋, and ➌), thus three

epilogues are needed. Although void methods might not have explicit return statements,
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when they are rendered into bytecodes, opcodes of the family xreturn are inserted at their

return locations. We use this to implement epilogues.

Our implementation discovers return locations by overriding all xreturn methods in

Maxine VM bytecode pre-processor. These methods are invoked whenever a return opcode

is found in the bytecode stream. Another technical hurdle was that while it is possible to

know how large the local variable array is at a return location, knowing which variables

are live and what their types are required further analysis.1 We coped with this issue by

modifying Maxine VM bytecode verifier to capture the state at return locations.

Listing 4.1: Example method with multiple return locations.✞

1 public stat ic double charge ( int seasonCode , double amount ) {
2 i f ( seasonCode == SUMMER) {
3 double summerRate = getSummerRate ( ) −10 . 9 ;
4 return amount + summerRate ; ➊

5 } else i f ( seasonCode == NEW YEARS DAY) {
6 int multiplyBy = 2 ;
7 return amount ∗ multiplyBy ; ➋

8 } else {
9 return amount ; ➌

10 }
11 }

✡✝ ✆

To illustrate the dataflow analysis used to uncover which variables make up the resulting

context, consider the example method shown in Listing 4.1. Before line 2 is executed, the

set of local variables comprises just the method’s parameters as shown in Figure 4.2(a).

If the condition in line 2 evaluates to true, the statements in lines 3 and 4 are executed.

During their execution, a variable of type double is created and stored in the local variables

set, using two slots as depicted in Figure 4.2(b). Therefore, this variable is live at the return

location ➊. If the condition in line 2 evaluates to false and the one in line 5 evaluates to

true, an int is created and stored in the local variables set. As a result, the array of local

variable would be as depicted in Figure 4.2(c) at return location ➋. Finally, if neither of

the previous conditions is true, the else in line 9 (return location ➌) is executed and none

of the previously mentioned variables are created. In such case, the set of local variables

would be as depicted in Figure 4.2(a); the context has only two variables, seasonCode

and amount. If charge were an instance method rather than static, the resulting context

would also contain a reference to the instance upon which the method operates.

An additional ability is that when a mutant method makes an abnormal return by

throwing an exception that is not handled in its body nor indicated in its signature, the

1Java files compiled with the -g option have debug data that could have been used to determine the
liveness and type of variables. For flexibility, we decided not to impose such a constraint.
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exception is handled by the controller. Since in this case the exception is thrown by a

method inside a different thread, the thread running the controller has no access to the

stack associated with the terminated thread. Therefore, our implementation performs

no “postmortem examination” of the contents of the terminated thread and the resulting

context is the exception in question.

(a) (b) (c)

Figure 4.2: The three possible layouts of the array of local variables at each return
location. Initially, only three slots are taken up by the method’s parameters
as depicted in (a). Afterwards, depending on which condition evaluates to
true, the array of local variables may be either completely (b) or partially
taken up as shown in (c) and (a).

4.2 Experiment Setup

This section describes the experiment setup used to gauge the performance of the VM-

integrated mutation testing system. Specifically, we investigated the following research

question:

RQ1: How much of the computational cost of mutation testing can be reduced

by implementing it as an integral part of a managed execution environment and

weakly killing mutants?

To evaluate this question, we compared our implementation with a conventional muta-

tion testing tool for Java, muJava (Ma et al., 2005). A difference is that muJava implements

strong mutation testing, but it is an easy to use Java mutation tool that has been widely

used (Hu et al., 2011).

4.2.1 Goal Definition

We use the organization proposed by the Goal/Question/Metric (GQM) paradigm (Wohlin

et al., 1999). GQM presents experimental goals in five parts: object of study, purpose,

perspective, quality focus, and context.
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• Object of study: The objects of study are our VM-integrated mutation testing

implementation and muJava.

• Purpose: the purpose of this experiment is to characterize two approaches to au-

tomating mutation testing with respect to their computational costs. Specifically,

we investigate whether VM-integrated mutation testing results in a marked improve-

ment over the conventional approach (muJava). The experiment provides insight

into how much speedup can be obtained by implementing mutation analysis within

the managed runtime environment. It is also expected that the experimental results

can be used to evaluate the impact of forking the execution of mutant methods in

their own threads and weakly killing them have on the performance.

• Perspective: this experiment is run from the standpoint of a researcher.

• Quality focus: the primary effect under investigation is the computational cost as

measured by execution time. The execution time of a program under test is defined

as the time spent by the mutation testing system executing the program and all of

its mutants against a test case.

• Context: this experiment was carried out using Maxine VM on a 2.1GHz Intel Core

2 Duo with 4GB of physical memory running Mac OS X 10.6.6. To reduce potential

confounding variables, muJava was run within our modified version of Maxine VM.

Since the current implementation is an academic prototype and the subject programs

are not of industrial significance, this experiment is intended to give evidence of the

efficiency and applicability of the technique solely in academic settings.

Our experiment can be summarized using the following template (Wohlin et al., 1999):

Analyze our VM-integrated implementation and muJava

for the purpose of characterizing

with respect to their computational cost

from the point of view of the researcher

in the context of heterogeneous subject programs ranging from 11 to 103 lines of

code.

4.2.2 Hypothesis Formulation

Our research question (RQ1) was formalized into hypotheses so that statistical tests can

be carried out:
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Null hypothesis, H0: there is no difference in efficiency between the two implemen-

tations (measured in terms of execution time) which can be formalized as:

H0: µmuJava = µVM-integrated implementation

Alternative hypothesis, H1: there is a significant difference in efficiency between

the two implementations (measured in terms of execution time):

H1: µmuJava ≠ µVM-integrated implementation

4.2.3 Experiment Design

To verify our conjecture, we applied a standard design with one factor and two treat-

ments (Wohlin et al., 1999). The main factor of the underlying experiment, an independent

variable, is mutation testing. The treatments or levels of this factor are the two approaches

to automating mutation testing: muJava and our VM-integrated implementation.

Before describing the particulars of this experiment, it is worth detailing the two

treatments. We are comparing two different implementations of mutation testing. As men-

tioned, our mutation-aware HLL VM implements weak mutation testing and emphasizes

individual methods. That is, instead of executing each mutant in a separated instance of

the HLL VM and running each of them from the very beginning, during a single execu-

tion several mutant methods might be killed, depending on the result of their execution.

This is possible because our implementation, upon reaching an original method that still

has live mutant methods, saves the intermediate state of the execution. In addition, the

VM-integrated implementation tries to further speed up the execution of such mutants by

forking new threads to execute each of them. Thus, our mutation-aware HLL VM imple-

ments an improved split-stream execution (King and Offutt, 1991) wherein mutants are

executed concurrently. By contrast, muJava implements strong mutation testing, executing

mutants in the traditional way as presented in Section 3.2. Figure 4.3 graphically sums up

these two different execution strategies.

In this experiment setup, the main dependent variable is execution time, which is

defined as the time spent by a treatment to run a program and all of its mutants against a

test case. We used six subject Java programs ranging from 11 to 103 lines of code. During

the selection of these programs we focused on covering a broad class of applications, rather

than placing too much emphasis on their complexity and size. Also, several of the subject

programs have been studied elsewhere, making this study comparable with earlier studies.

For example, Triangle implements the triangle classification algorithm, which has been

broadly used as an example in the software testing literature (Ammann and Offutt, 2008).
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Table 4.1 gives the number of executable Java statements and the number of mutants

generated from each subject program.

(a) (b)

Figure 4.3: Execution strategies employed by the (a) VM-integrated implementation and
(b) muJava. The gray rounded-edge squares represent parts of the original
program (i.e., O1) and the black circles represent mutants (i.e., M1. . .Mn).
As shown in (a), our VM-integrated implementation uses an improved
split-stream execution strategy. By using this strategy, only one execution
per test case is required. Such an execution evaluates all mutants in their
own threads. In contrast, muJava’s execution strategy, shown in (b), entails
more than one execution to evaluate all mutants.

Table 4.1: Subject programs used in the experiment.

Sub ject Program Name
Experimental Sub ject Programs
Lines of Code∗ Number of Mutants

Fibonacci 11 49
ArrayMean 13 38
InsertionSort 14 63
ArrayIterator 35 46
KMP 53 140
Triangle 103 316
∗Physical lines of code (non-comment and non-blank lines).

All mutants were generated using muJava, which implements class and method-level

(i.e., traditional) mutation operators. Because our interest is on testing methods, and the

class-level mutation operators focus on the integration of classes, this experiment only

used the method-level operators. The method-level operators are selective (Offutt et al.,

1996a), that is, only the mutation operators that are most effective. The mutants were

run on both treatments, which required minor modifications since muJava generates new

.class (bytecode) and Java files for each mutant, whereas our implementation requires

that all faulty versions of a method be placed in the same file as their original method. To
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adapt muJava mutants to the VM-integrated implementation, we collected all mutants of a

method into the same class file, and gave them unique names corresponding to the mutant

type (i.e., operator name) and a number. For example, ROR mutants for method mean()

were named mean$ROR_1(), mean$ROR_2(), etc. These operations were mostly performed

by a Ruby script.

For each program, we randomly generated 100 test cases. These tests were then executed

against the mutants under both treatments. ArrayMean and InsertionSort, for instance,

were executed using tests containing arrays of randomly-varying sizes (ranging from 0 to

1000) filled with random double values. Since we were interested solely in investigating

the run-time of the two execution models, we did not try to generate mutation-adequate

test sets. The execution time of each test case was calculated based on the mean of three

executions. To deal with mutants that go into infinite loops, we set both treatments with

a three-second timeout interval.

4.2.4 Analysis of Data

This section sets out the experimental findings. The analysis is divided into two subsections:

(i) descriptive statistics and (ii) hypothesis testing.

4.2.4.1 Descriptive Statistics

This subsection provides descriptive statistics of the experimental data. Figure 4.4 charts

the mean execution times for the subjects against the test sets. From Figure 4.4, it can

be seen that the Maxine VM implementation outperforms muJava on all subjects, and

significantly so for some. The speedup is less for some subjects, and it seems that the larger

differences are when the subject program uses more computation (e.g., InsertionSort

and KMP) and when the tests make several method calls (for example, Triangle, whose test

cases comprise method calls to classify the underlying triangle and compute its perimeter

and area).

Since the execution times diverge so much, particularly with muJava, we consider the

median to be more a useful measure of central tendency than the mean. The median

execution times are in Table 4.2, which shows a maximum difference of 95% for Triangle.

The data dispersion is shown in Table 4.3, which shows the standard deviations. These

data show that muJava had larger standard deviation values than Maxine VM, which

suggests that using muJava results in a high variability in execution times. Presumably,

the VM-integrated implementation is more consistent because it requires only one execution

per test case to evaluate all mutants (the forking, or split-stream approach). muJava, on

the other hand, separately executes the original program and each live mutant for each test.
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That is, in addition to the overhead of repeatedly loading new versions of the program,

muJava also has to execute chunks of code that have already been executed until it reaches

mutation points. Another advantage of the VM-integrated implementation is that its

performance is not adversely affected when most of the mutants are killed due to timeout:

each mutant executes in its own thread, thus mutants that end up in an endless loop do

not affect the execution of other mutants. They are eventually preempted and killed by

the controller. This feature resulted in significant savings for InsertionSort.
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Figure 4.4: Execution time mean values for each subject program under each of the two
treatments.

Table 4.2: Median of the execution times for each subject program under both treatments.

Median

Sub ject Program Name
Treatment

muJava Maxine % Diff

Fibonacci 63.49s 13.77s 78.31%
ArrayMean 7.48s 4.16s 44.39%
InsertionSort 225.90s 23.97s 89.39%
ArrayIterator 10.94s 1.56s 85.74%
KMP 58.85s 6.77s 88.50%
Triangle 162.90s 7.35s 95.49%
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Table 4.3: Standard deviations of the execution time for each subject program under
each of the two treatments.

Standard Deviation

Sub ject Program Name
Treatment

muJava Maxine

Fibonacci 34.26s 0.50s
ArrayMean 3.36s 0.24s
InsertionSort 124.67s 0.48s
ArrayIterator 1.66s 0.31s
KMP 62.82s 0.42s
Triangle 105.62s 1.29s

Figure 4.5 summarizes the sampled run-time data, providing an overview of the sig-

nificant savings in execution that can be achieved by our VM-integrated implementation.

Besides achieving significant savings, it can be seen from observing Figure 4.5 that our

implementation also performs more consistently.

muJava Maxine

5
0

1
0
0

1
5
0

Fibonacci

S
e
c
o
n
d
s

muJava Maxine

5
1
0

1
5

2
0

ArrayMean

S
e
c
o
n
d
s

muJava Maxine

0
2
0
0

4
0
0

6
0
0

InsertionSort

S
e
c
o
n
d
s

muJava Maxine

5
1
0

1
5

ArrayIterator

S
e
c
o
n
d
s

muJava Maxine

0
5
0

1
5
0

2
5
0

KMP

S
e
c
o
n
d
s

muJava Maxine

0
1
0
0

2
0
0

3
0
0

4
0
0 Triangle

S
e
c
o
n
d
s

Figure 4.5: Boxplots of the execution times for each subject program under each treat-
ment. muJava shows significant execution time variability.
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4.2.4.2 Hypothesis Testing

Since some statistical tests only apply if the population follows a normal distribution,

before choosing a statistical test we examined whether our sample data departs from

linearity. We used Quantile to Quantile (Q-Q) plots (Dodge, 2009) as shown in Figure 4.6,

which show that most sets of data depart from linearity, indicating the non-normality of

the samples. These plots also show the presence of outliers. Instead of depending solely

upon these plots, all distributions were assessed for normality using the Shapiro–Wilk

test (Johnson and Bhattacharyya, 2009; Teetor, 2011). According to this test, p < 0.05

suggests that the population is likely not normally distributed, whereas p > 0.05 indicates

that there is no such evidence. The results in Table 4.4 suggest that it is unlikely that

these samples came from a normal population. Thus, we used a non-parametric test, the

Wilcoxon signed-rank test (Johnson and Bhattacharyya, 2009).

Table 4.4: The significance of the p-value of the Shapiro–Wilk test for departures from
normality.

Shapiro–Wilk test of normality (p-value)

Sub ject Program Name
Treatment

muJava Maxine

Fibonacci *** (3.563e-05) *** (2.185e-14)
ArrayMean *** (4.749e-06) *** (6.817e-07)
InsertionSort *** (0.00041) *** (1.247e-06)
ArrayIterator *** (1.464e-05) *** (9.831e-05)
KMP *** (1.877e-10) *** (1.608e-07)
Triangle *** (2.114e-07) *** (8.952e-15)

* p < 0.05; ** p < 0.01; *** p < 0.001.

Table 4.5 shows the results of hypothesis testing with a significance level of 1%. Based

on these data, we conclude there is considerable difference between the means of the

two treatments. We were able to reject H0 at 1% significance level in all cases. All the

p-values are very close to zero, as shown in Table 4.5, which further emphasizes that the

VM-integrated implementation performs significantly better than muJava.

From observing the confidence intervals shown in Table 4.5 it can be seen that the

VM-integrated implementation led to substantial savings in execution time in most cases.

For instance, savings of approximately 187.53 seconds for InsertionSort and 134.14

seconds for Triangle were achieved. The worst-case was ArrayMean, for which speedups

of only about 2.74 seconds were achieved.
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4.2.5 Threats to Validity

The lack of representativeness of the subject programs may pose a threat to external

validity. Unfortunately, this is a problem with virtually all software engineering research,

since we have no theory to tell us how to form a representative sample of software. Apart

from not being of industrial significance, another potential threat to the external validity

is that the investigated programs do not differ considerably in size and complexity. To

partially ameliorate that potential threat, the subjects were chosen to cover a broad class

of applications. Also, this experiment is intended to give some evidence of the efficiency

and applicability of our implementation solely in academic settings.

The fact that the VM-integrated approach achieved more speedup with programs

that had more computation and more method calls indicates any bias could be against

the VM-integrated approach. That is, it may perform even better in industrial practice.

Furthermore, since our study focuses on evaluating strategies mostly used for unit testing,

the size of the subject programs should not invalidate the results.

A threat to construct validity stems from possible faults in both implementations.

With regard to our VM-integrated implementation, we mitigated this threat by running a

carefully designed test set against several small example programs. A factor that hindered

the use of such test set to perform corrective regression testing was the slow turnaround

time: changes to Maxine VM files required at least a five-minute wait for recompilation.

muJava, has been extensively used within academic circles, so we surmise that this threat

can be ruled out.

4.3 Known Limitations

Java programs can interoperate with non-Java programs through the Java Native Inter-

face (JNI) (Husaini, 1997; Liang, 1999). From Maxine VM’s perspective (as well as other

JVM implementations), a call to a native method is different from a regular method call.

The most striking difference is that the Java stack (described in Section 2.4.4) is not used.

Instead, native methods use their own stack, called C stack (Liang, 1999; Lindholm and

Yellin, 1999). As our implementation is build around Java stacks, it does not support Java

methods containing calls to native methods.

4.4 Related Work

The goal of this research is similar to other efforts that attempt to reduce the computational

cost of mutation analysis. Our approach differs from others because it embeds mutation
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analysis into the HLL VM execution engine and makes mutants first-class entities. Other

studies have extended HLL VMs to reduce the overhead of other testing activities: (i)

collecting coverage data and (ii) storing compiled code during test suite execution.

To address the former issue, Chilakamarri and Elbaum (2004) proposed to remove

coverage probes after they have been executed. They implemented two strategies, collec-

tively termed disposable coverage instrumentation, in the Kaffe JVM. The first strategy

removes coverage probes after execution. The second strategy improve the first one by

incorporating coverage data gathered from multiple instances of the modified JVM running

the application under test, thereby avoiding the execution of probes that have already

been covered by any of the concurrently running instances.

The second issue (storing seldom used native code during test suite execution) was

approached by Kapfhammer et al. (2005). They modified the Jikes RVM to adaptively

ascertain and unload rarely used native code from the heap.

4.5 Concluding Remarks

As discussed in Chapter 3, performance is still a major issue in mutation testing, which

makes the problem addressed by our proof-of-concept implementation highly relevant. Our

implementation capitalizes on features already present in a managed execution environ-

ment and its underlying virtual ISA to boost the performance of weak mutation analysis.

Although other researchers have retrofitted software testing features into interpretive ex-

ecution environments and a plethora of instrumenting systems have been implemented,

to the best of our knowledge this is the first effort to incorporate the ideas of mutation

testing into a full-fledged, JIT-enabled HLL VM.

In this chapter, we described the basic design and components of our proof-of-concept

implementation, which builds on a contemporary JVM implementation. Our current im-

plementation has been deliberately limited on first getting the concepts right, before any

additional performance optimizations are to be considered. Nevertheless, according to our

experiment results, it can be concluded that the VM-integrated approach to weak mutation

outperforms a conventional strong mutation testing tool by a large margin in terms of

execution time.

Given that each mutant method execution is fairly independent, the problem of speeding

up the execution of such mutants lends itself very well to concurrency. As far as we

know, our implementation is the first to exploit multithreading to boost weak mutation

performance. This novel characteristic of our implementation yields marked execution

savings by concurrently executing mutant methods. It proved to be particularly useful for

speeding up the execution of mutants whose executions end up in infinite loops. Since our
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implementation executes each mutant method in its own thread, the mutants that become

stuck in a loop do not affect the execution of others. This benefit offsets the overhead of

the parallel infrastructure, which usually has to keep track of the forked threads.

Spawning a new thread for each mutant might not be an optimal approach. Therefore,

our implementation allows for using a thread pool whose size can be specified via command

line. Using approaches to sizing the thread pool properly, as the one described by Goetz

et al. (2006), may yield better performance. For instance, the nature of the mutants (e.g.,

compute-intensive mutants) and the computing environment (e.g., number of available

cores) are data that can be used to tune the thread pool according to its workload. However,

more experiments need to be carried out to evince whether our fork-and-join model is

scalable, that is, whether execution speed increases when more processors are available.

Future work stemming from this first experiment needs to examine how much of the

achieved speed-up is due to multithreading and how much can be attributed to weak

mutation. Furthermore, the subject programs we used to evaluate our implementation

are not very representative: the largest subject program contains 103 lines of code. To

investigate further and show evidence of the scalability of our implementation, we intend

to carry out a follow-up experiment using more representative programs.

As mentioned in Chapter 2, Maxine VM features no interpreter. Rather, Maxine VM

compiles all methods prior to execution, which implies that considerable amounts of ma-

chine code are created in the course of executing a program and its mutants. Machine code

related to dead mutants become outdated: these methods will no longer be invoked through

the course of the program’s execution. Aimed at addressing the memory requirement issue,

Maxine VM supports code eviction (Oracle Corporation, 2012). However, eviction is a

“stop-the-world”operation, e.g., all threads are suspended during an eviction cycle. Hence, a

program containing many mutants might cause several stop-the-world operations, resulting

in potential performance loss.
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Chapter

5

Testing of Concurrent Programs

Early on, most computers had a single core. Multicore computers, which have at least two

cores, used to be quite expensive and only large data centers and scientific computing facil-

ities could afford this sort of computer (Goetz et al., 2006). Due to advances in technology

and decreasing hardware price, recently, multicore processors1 have gone mainstream. This

widespread adoption of multicore architectures has brought about significant changes from

the standpoint of program development (Sutter and Larus, 2005). To leverage the benefits

provided by these multicore architectures, software practitioners have been turning to the

use of concurrency abstractions available in most OSes and contemporary programming

languages (Adl-Tabatabai et al., 2006; Kim and Bond, 2009; Hand, 2012). Furthermore,

concurrency has been attracting a great deal of attention from researchers and practition-

ers. Among other things, researchers have been trying to harness the computing power of

multicore architectures by designing technologies that hide the complexity of these archi-

tectures, thereby allowing programmers to focus on algorithms rather than the intricacies

of such architectures (Kim and Bond, 2009).

Despite its benefits, concurrency poses several challenges to testing and debugging.

This chapter describes these challenges and how researchers have been trying to overcome

them. By elucidating these topics, this chapter motivates our HLL VM-based approach to

supporting the test of concurrent programs, which is described in Chapter 6. It is worth

noting that the emphasis in this chapter is on providing background that is pertinent

1Multicore processors are also know as chip multiprocessors (Sutter and Larus, 2005; Stallings, 2011).
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to understand our HLL VM-based approach, instead of giving a complete account of the

issues of concurrency.

The remainder of this chapter is organized as follows. Section 5.1 provides background

on multithreaded programs. The abstractions used to represent concurrency in the context

of HLL are described next. This is followed by a discussion of the challenges that concur-

rency poses to testing and debugging. In Section 5.2 we outline some problems that may

arise in concurrent programs. Section 5.3 focuses on techniques that have been used to

detect those concurrency-related problems. The discussion is divided into two parts: the

first covers static techniques and the second describes dynamic techniques. A discussion on

how researchers have been investigating the application of mutation testing to concurrent

programs is presented in Section 5.4. Concluding remarks are given in Section 5.5.

5.1 Background

The earliest computers had no OS and executed a single program at a time (Goetz et al.,

2006; Stallings, 2011). Over time, in order to improve computational resource utilization,

computers started to include OSes that allowed for the execution of more than one program

at once. This was an important development towards allowing the execution of multiple

programs in a concurrent fashion (Tanenbaum, 2007; Cantrill and Bonwick, 2008a,b). This

rudimentary category of concurrency is called logical concurrency (Sebesta, 2012) because

programs act as if there were multiple processors, when in reality programs are being run

in an interleaved fashion on a single processor. To make this possible, OSes switch the

available processor and its computational resources from program to program. When there

is more than one processor and they are able to run several programs simultaneously the

concurrency that takes place is called physical concurrency (Sebesta, 2012). In both cases,

executing programs are commonly referred to as processes (Tanenbaum, 2007; Stallings,

2011).

Given that programs can be designed for platforms that support only logical concurrency

as if there were multiple processors, the discussion in the remainder of this chapter applies

to both sorts of concurrency. Thus, for brevity’s sake, only the term concurrency will be

used.

Often, processes have a single thread of control. The single-threaded approach im-

plemented by some OSes is illustrated in Figure 5.1(a). Current OSes allow processes

to have more than one thread of control, sharing the same address space and other re-

sources (Tanenbaum, 2007). A process (or program) that has more than one thread of

control is said to be multithreaded (Stallings, 2011; Sebesta, 2012). Figure 5.1(b) depicts a

multithreaded approach. Naturally, OSes that implement such an approach can spawn any
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number of processes which, in turn, can have any number of threads assigned to them as

depicted in Figure 5.1(c). Although most resources are available to all threads sharing the

same address space, some resources are exclusively allocated to each thread. For example,

each thread has its own stack as shown in Figure 5.1(d).

(a) (b)

(c) (d)

Figure 5.1: Single-threaded (a) and multithreaded (b) approaches. Each process can have
multiple threads (c). Although global and some process-level resources are
shared by threads, threads also have local resources, e.g., stack (d). These
figures were adapted from Tanenbaum (2007).

The main benefit of having more than one thread of control is that multiple executions

can take place within the same process environment. In a way, as pointed out by Tanenbaum

(2007), this is similar to having multiple processes concurrently executing in a computer.

The distinction is that threads share the resources within the address space of their

respective process, while processes share the physical resources managed by the underlying

OS (Ben-Ari, 2006). Because of the similarity between threads and processes, threads are

sometimes referred to as lightweight processes (Tanenbaum, 2007; Stallings, 2011).

5.1.1 Concurrency in the Realm of Programming Languages

Ever since multithreaded OSes became available, language developers have been interested

in taking advantage of concurrency. The theoretical groundwork for exploring concurrency
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at language level has been laid since the 60s (Ryder et al., 2005; Scott, 2009). Even early

programming languages already included language-level support for concurrent program-

ming. As noted by Ryder et al. (2005), the characteristics of certain programs spurred

the introduction of concurrency in programming languages. Simula 67 (SIMple Universal

LAnguage 67) (Dahl et al., 1968; Fraser et al., 2007), for instance, introduced concurrency

to cope with the implementation of simulations. Coroutines were the construct used to

represent concurrency in Simula 67 (Scott, 2009), they allowed quasi-parallel execution.

Around the same time, Algol 68 (ALGOrithmic Language 1968) (Lindsey, 1993) was able

to achieve true concurrency (i.e., physical concurrency) through the par begin-end con-

struct. Ada (Sammet, 1986), which was designed in the mid 70s, was arguably the first

HLL designed with constructs for concurrency that achieved widespread adoption (Ryder

et al., 2005).

Along with abstractions to represent concurrency (e.g., coroutines and threads), lan-

guage implementors also had to address two important design issues: communication

and synchronization (Scott, 2009). Mechanisms of communication are needed because

threads use information produced by other threads. Usually, imperative programs use

shared memory for communication. Given that variables are easily accessible to threads

in a shared-memory model, threads communicate with each other by writing to and read-

ing from these shared variables. Synchronization is used to control the order in which

threads run and access shared data. There are two sorts of synchronization: cooperation

synchronization and competition synchronization (Sebesta, 2012).

Cooperation synchronization takes place when two threads, T1 and T2, are involved in

an operation, and T1 needs to wait for T2 to complete part of the operation before it can

start or resume its execution. Competition synchronization happens when two threads

share data that cannot be used at the same time. For instance, T1 needs to access shared

resource ρ while T2 is using it, T1 must wait for T2 to release the shared resource before

accessing it. In other words, competition synchronization prevents two or more threads

from accessing a shared resource at the same time, which could jeopardize the integrity

of such resource (Sebesta, 2012). Therefore, synchronization can be viewed as a set of

constraints on the ordering of events and access to shared data (Andrews and Schneider,

1983).

In an attempt to provide mutually exclusive access to shared data, Edsger Dijkstra

came up with the concept of semaphores in the late 60s (Dijkstra, 1965). Dijkstra (2002)

also showed how semaphores can be used to solve a number of competition synchronization

problems. According to Sebesta (2012), semaphores can also be used to provide cooperation

synchronization.
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Generally, a semaphore is implemented using a counter and two associated operations,

i.e., P and V (Reek, 2002). A semaphore plays the role of a lock: if the counter’s value

is non-negative, a thread is allowed to proceed by invoking P on the semaphore, which

decrements the counter’s value. Semantically, invoking P signals that the thread has been

granted permission to proceed with its execution. V is invoked when a thread wants to

signal that it is finished. Calling V increases the counter’s value, allowing the other threads

waiting on the semaphore to become eligible to resume. Semaphores whose counters

are restricted to assume only two values (0 and 1 or true and false) are called binary

semaphores (Sebesta, 2012), regular semaphores are sometimes referred to as counting

semaphores (Scott, 2009). Semaphore-based implementations of synchronization appear

in Algol-68 and Modula-3 (Scott, 2009).

Although widely used, semaphores are a low-level synchronization mechanism with

drawbacks that make them prone to programming mistakes. For example, the programmer

has to keep track of the calls to P and V, which appear scattered throughout programs.

Consequently, it is hard to track them down for maintenance purposes. Moreover, leaving

out a call to V can result in synchronization problems.

Dijkstra (1971) proposed monitors as a solution to these problems. The idea was

further developed by Hansen (1973) and formalized by Hoare (1974). Monitors improve

upon the concept of semaphores (Sebesta, 2012) by encapsulating shared data structures

and their respective operations into a single unit.

A monitor is implemented as a module or object. A distintive feature of a monitor is

that its methods are run in a mutually exclusive fashion: at any point in time at most one

thread is executing any of its methods. This characteristic relieves the programmer from

the burden of using P and V correctly (Scott, 2009). As pointed out by Ryder et al. (2005),

a monitor can be seen as an abstract data type that has undergone modifications to fit in

with the needs of a concurrent setting. The first HLL to include a monitor-based solution

to synchronization was Concurrent Pascal (Hansen, 1996). By the mid 90s, Java took the

monitor concept a step further by wrapping shared data into synchronized methods and

blocks (the Java implementation of monitors is discussed in-depth in Chapter 6).

Despite the fact that the advances in concurrent programming stretch back to the

1960s, the explosion of interest in concurrency by both academia and industry members

is a relatively recent occurrence. Apart from the availability of multicore computers, this

growing interest can be ascribed to the proliferation of graphical and web-based applica-

tions, whose implementations often make extensive use of concurrent abstractions (Goetz

et al., 2006; Scott, 2009). Currently, because of this surge in interest, most contemporary

languages provide some sort of support for concurrency. Therefore, abstractions for rep-
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resenting concurrency in HLL abound. Nevertheless, threads have been the most widely

used abstraction (Lee, 2006).

Even though great strides have been made on research and language-level support

for concurrency, designing concurrent programs using the current iteration of concurrent

technologies is still error-prone. To make matters worse, when it comes to concurrent

programs, conventional testing and debugging are not suited to uncover and replicate

problems. Next subsection summarizes the characteristics that make concurrent programs

challenging for testing and debugging.

5.1.2 The Challenges of Testing and Debugging Concurrent Pro-

grams

Although concurrent programs afford opportunities for performance optimizations, they

are also subject to problems that do not appear in their sequential counterparts. Nonde-

terministic behavior is one of the problems that make these programs notoriously complex

to test. As Carver and Tai (1991) remark, the conventional testing aims to find faults by

running programs against a test suite and then comparing the outcomes with the expected

results. If any outcome deviates from the intended one, usually the same test data is used

to reproduce the erroneous execution and gather debugging information. Such a debugging

information is used to diagnose and ultimately fix the fault. After fixing the program under

test, it is executed once again with the same test suite, making sure that the previously

detected problem was corrected and that no new faults were introduced.

Due to the characteristics of concurrent programs, the straightforward approach of

executing programs with a set of inputs in hopes of exposing faults is not adequate.

During execution, concurrent programs undergo a series of synchronization events called

synchronization sequence (Carver and Tai, 1991). Given the unpredictability of using

nondeterministic synchronization constructs, multiple executions of a concurrent program

are bound to exercise different synchronization sequences, which might lead to different

outputs. To apply the conventional testing approach to concurrent programs, several is-

sues that arise from the nondeterminism in concurrent programs need to be dealt with.

For example, this nondeterminism leads to a nontrivial issue for test automation: it is

complex to force a deterministic re-execution of a certain program statement or branch

because testing tools do no try to prune away nondeterminism by controlling synchro-

nization sequences (Long et al., 2003; Sen, 2007). Namely, by exerting no control over

the program under test, testing tools might execute the same synchronization sequence

many times (Edelstein et al., 2003). Because of this lack of control, conventional methods
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of debugging, such as using a debugging tool to set breakpoints and rerun the program

under test, do not work properly for concurrent programs (Sutter and Larus, 2005).

In the next section we give examples of some insidious problems that can arise in con-

current programs. Throughout the next section we refer to these problems as concurrency

hazards, or simply hazards (Goetz et al., 2006).

5.2 Concurrency Hazards

Unpredictability along with inadequate synchronization might cause the interleaving of

threads to yield undesirable results. A concurrency hazard that stems from insufficient

synchronization is a race condition (Netzer and Miller, 1992). Race conditions happen when

the correctness of a computation depends on the timing or interleaving of the threads

performing the computation (Goetz et al., 2006; Stallings, 2011). For example, a race

condition might happen when two threads try to modify shared data or when a thread

is modifying data and the other is trying to read the same data (Subramaniam, 2011).

Therefore, depending on which thread accesses the shared data first, the result can be

different (Gatlin, 2004).

Listing 5.1 illustrates a simple example of Java code that when accessed by multiple

threads might result in a race condition. UnsafeSequence is supposed to generate and

return a unique integer value each time getNext is invoked. However, depending on how

the threads interleave, it may yield erroneous results. As pointed out by Goetz et al.

(2006), the problem is that two threads could call getNext and receive the same value.

Figure 5.2 illustres an interleaving that can lead to this problem. As shown in Figure 5.2,

although value++ appears to be a single instruction (i.e., indivisible operation), in fact,

when compiled down to Java bytecodes such an instruction becomes three instructions:

fetch the current value of the variable, add one to this value, and write the new value to

the variable. During execution, if two threads read numValue almost at the same time,

both see the same value and add one to it.

Figure 5.2: An interleaving that leads to a race condition. In this figure, time runs from
left to right, and each line represents the instructions executed by each thread.
This figure was adapted from Goetz et al. (2006).
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Listing 5.1: Non-thread-safe sequence generator; this piece of code is taken from Goetz
et al. (2006).✞

1 public class UnsafeSequence {
2 private int numValue ;
3

4 public int getNext ( ) {
5 return numValue++;
6 }
7 }

✡✝ ✆

Another concurrency hazard that might arise when threads compete for resources is

a deadlock. More specifically, a deadlock is an impasse that happens when two or more

threads are waiting for shared resources that are owned by each other (Coffman et al.,

1971; Stallings, 2011). Given that locks are dispersed throughout multithreaded programs,

these programs are prone to deadlocks (Gatlin, 2004).

Given two threads T1 and T2. T1 owns lock L1 while T2 holds L2. If T1 attempts to

acquire L2 without releasing L1 and T2 tries to acquire L1 without releasing L2, both

threads will freeze indefinitely. In this situation, none of the threads can resume execution

nor release their resources (Tanenbaum, 2007). An example of how this can happen is

shown in Listing 5.2. The leftRight and rightLeft methods try to acquire the left and

right locks. Problem arises when one thread calls leftRight and another calls rightLeft

and the execution of these threads interleaves as shown in Figure 5.3. According to Goetz

et al. (2006), this sort of deadlock can be referred to as lock-ordering deadlock.

Another concurrency hazard similar to a deadlock, is a livelock. A livelock is a situation

in which two or more threads keep changing their states in response to changes in the

other threads (Stallings, 2011). This situation is similar to a deadlock because no progress

is made by the involved threads, however, the difference is that neither thread is blocked

nor waiting for shared resources.

5.3 Concurrent Testing Techniques

As stated by Al-Iadan (2001), Chen and MacDonald (2007), and Eytani et al. (2007),

there are basically two main techniques for revealing concurrency-related faults: static and

dynamic techniques. The next sections outline the characteristics of these techniques and

give a brief summary of the related literature.
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Listing 5.2: Example of lock-ordering deadlock; this piece of code is taken from Goetz
et al. (2006).✞

1 public class LeftRightDeadlock {
2 private f ina l Object l e f t = new Object ( ) ;
3 private f ina l Object r i g h t = new Object ( ) ;
4

5 private void l e f tR i g h t ( ) {
6 synchronized ( l e f t ) {
7 synchronized ( r i g h t ) {
8 doSomething ( ) ;
9 }

10 }
11 }
12

13 private void r i g h tL e f t ( ) {
14 synchronized ( r i g h t ) {
15 synchronized ( l e f t ) {
16 doSomething ( ) ;
17 }
18 }
19 }
20 }

✡✝ ✆

Figure 5.3: Example of lock-acquisition order that leads to a deadlock. This figure was
adapted from Goetz et al. (2006).

5.3.1 Static Techniques

Static techniques inspect the code of programs without running it (Al-Iadan, 2001). These

techniques circumvent non-determinism by applying different static methods to reveal

potential concurrency hazards. Static techniques are able to identify many concurrency

hazards, but emphasis is given to deadlocks and data races. Since static techniques do not

entail code execution, they are suited to programs containing hard-to-reach code (Raza,

2006). However, these techniques fall short of detecting hazards that call for feasibility

analysis (Netzer and Miller, 1992; Chen and MacDonald, 2007). Since static techniques

have to deal with NP-Complete and undecidable problems, many assumptions are made

during program analysis (e.g., it is assumed that all execution paths in a program are
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possible). As a result, static techniques are known to yield false positives and false negatives.

Another drawback is that they do not take different inputs into account. Next subsections

outline some static techniques.

5.3.1.1 Model Checking

Model checking (Clarke et al., 2009; Ben-Ari, 2010) is a static technique that has been

proven useful for the verification of concurrent programs. Briefly, given a finite-state model

and properties of the program under consideration, model checking traverses all states in

a brute-force fashion to check whether the given properties hold for that model (Baier and

Katoen, 2008). Typically, the properties validated through model checking are qualitative

(e.g., Does the program ever reach a deadlock situation?). In this context, properties are

expressed as formulas in temporal logic or invariants (predicates) (Eytani et al., 2007).

The main problem that model-checking algorithms have to cope with is the state space

explosion (Clarke et al., 2009). The state space of concurrent programs grows exponentially

with the number of threads (Malkis et al., 2007), thereby the number of states in a

concurrent program with many threads can be very large. It follows that model checking

takes a long time and requires high computational power. Thus, a major research thrust

is focused on creating effective data structures and algorithms able to deal with large

search spaces within a reasonable amount of time (Clarke and Wing, 1996). Much of this

knowledge has been translated into state-of-the art tools.

One of the leading model-checkers is Spin (SImple PROMELA INterpreter) (Holz-

mann, 1997), which was written in C and supports the verification of concurrent and

distributed programs. Models in Spin are written in PROMELA (PROcess or PROtocol

MEta LAnguage), which is a constrained yet efficient language. The syntax and seman-

tics of expressions and assignment statements in PROMELA are similar to those in C.

The basic data types are integers (whose sizes range from one to 32 bits), booleans, and

one-dimensional arrays. The other features of the language are used to represent concurrent

constructs and related concepts, e.g., processes, message channels, and atomic statements.

To speed up the verification of PROMELA models, Spin generates an optimized model

checking program in C for each model and prescribed property to be verified (Ben-Ari,

2010).

Manually generating models in languages as PROMELA is error-prone (Eytani et al.,

2007). In an attempt to circumvent this step, model-checkers that semi-automatically or

automatically generate models from programs written in HLL have been developed. A

notable example is Java PathFinder (Havelund and Pressburger, 2000). Java PathFinder

verifies programs written in Java, as opposed to Spin that uses a modeling language. As

a result, the verification is more realistic (Ben-Ari, 2010), however, the size of the models
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that can be taken into account is limited because Java programs are complex abstractions

with many states. Other contributions in this area include Bandera (Corbett et al., 2000)

and SLAM (Ball et al., 2001).

Being a systematic and exhaustive technique makes model checking less scalable. A

more scalable static technique concentrates on pruning away non-determinism from HLL,

making them more amenable to conventional testing techniques. These programming

languages are presented in the next subsection.

5.3.1.2 Deterministic HLLs

Several deterministic programming languages have been developed (Rinard and Lam, 1998;

Thies et al., 2002; Bocchino et al., 2009). Programs written in these languages are always

deterministic. Jade, which was designed and implemented by Rinard and Lam (1998), is

an imperative HLL that uses programmer-specified annotations to remove concurrency

while preserving the semantics of sequential code. Thies et al. (2002) developed StreamIt:

a language for streaming computations that ensures deterministic behavior by allowing

inter-process communication to occur only via FIFOs.2 Bocchino et al. (2009) augmented

the Java language with an effect system (Nielson and Nielson, 1999) that enforces deter-

ministic semantics via compile-time type checking.

5.3.2 Dynamic Techniques

In contrast with static techniques, dynamic techniques investigate run time informa-

tion (Al-Iadan, 2001). In general, these techniques capture run time information by stati-

cally or dynamically instrumenting programs. This instrumentation incurs high computa-

tional cost, but an advantage of dynamic techniques is that only the executed paths are

examined. However, as the size of a program grows, so does the number of feasible paths.

Next subsections describe dynamic techniques, special emphasis is given to tools.

5.3.2.1 Noise Makers

Traditional testing is not well-suited for concurrent programs as it fails to cover many

interleavings (Ball et al., 2011). When conventional testing is carried out with no additional

strategy to tamper with execution, only minor variations of the same thread interleaving

tend to be exercised (Wang et al., 2011). Aimed at exploring an increasing number of

interleavings during testing, researchers and practitioners often turn to noise makers. A

2 FIFO (also known as named pipe) is an inter-process communication mechanism used on Unix-like
systems.
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noise maker is a software testing tool that makes each execution of a concurrent program

to behave slightly different by seeding scheduling noise. Typically, these tools rely on

instrumenting programs with conditional synchronization primitives (e.g., yield, sleep,

and wait) to induce the execution of different interleavings (Eytani and Latvala, 2007).

Some noise makers also implement heuristics to decide (randomly or based on some

statistics) whether the seeded primitives should execute.

By algorithmically exploring the space of interleavings through the introduction of

scheduling noise, noise makers increase the amount of interleavings covered by each test (Ey-

tani et al., 2007). Thus, tests are more likely to uncover error-yielding interleavings, im-

proving the efficiency of testing. For this reason, a number of noise makers have been

developed (Edelstein et al., 2002; Stoller, 2002; Eytani et al., 2003).

A notable example is the testing framework Chess (Ball et al., 2011), which includes a

noise maker for C# programs. By instrumenting preemptions at synchronization points,

Chess progressively explores the space of interleavings aimed at finding failure-manifesting

schedules. Although the number of preemption combinations is exponential, Chess employs

heuristics to cope with the state-space explosion problem. Two tools similar to Chess are

CalFuzzer (Joshi et al., 2009) and CTrigger (Park et al., 2009). Likewise, both noise makers

instrument programs with preemptions to reveal erroneous schedules.

As noted by Eytani and Latvala (2007), a downside of this technology is that some noise

makers tend to seed too many synchronization primitives, making debugging activities

more difficult. This led researchers to look into strategies that indicate where scheduling

noise should be introduced (Ben-Asher et al., 2006).

5.3.2.2 Race Detection

A substantial amount of theoretical work has been carried out in the area of race detec-

tion (Adve et al., 1991; Netzer and Miller, 1991; Raza, 2006; Hafeez et al., 2012) and

many tools have been developed. Early implementations had severe limitations: some

were unable to examine programs containing more than one semaphore (Lu et al., 1993).

Nevertheless, the increasing interest in concurrency has prompted the development of more

sophisticated tools. As noted by Raza (2006), current tools detect races by keeping track

of either the order in which threads access shared data or the lock acquisition sequence.

Techniques for detecting race conditions can be based on static analysis, dynamic

analysis, or a combination of both. Thus, throughout this subsection, instead of limiting

our discussion to the type of analysis, race detection tools are further classified into one

of three categories: on-the-fly, ahead-of-time, and post-mortem. Each of these categories

has its own advantages and disadvantages. By nature, on-the-fly approaches tend to use
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dynamic analysis, whereas ahead-of-time approaches examine static artifacts as source

code. Post-mortem approaches combine static and dynamic analysis (Raza, 2006).

On-the-fly race detection techniques suffer from the same drawbacks as dynamic tech-

niques. The main disadvantage is that they impose a high computational overhead. Another

issue is that the non-deterministic nature of schedulers further complicates the detection of

race conditions by on-the-fly techniques. Finally, on-the-fly tools are not able to examine

all parts of programs, only executed paths are taken into account (Raza, 2006).

An example of on-the-fly race detector is Eraser (Savage et al., 1997). Such a tool

instruments binary programs to log every access to shared memory. The instrumentation

checks whether shared memory accesses are performed only after proper lock acquisition

operations. The central idea of Eraser is the Lockset algorithm. At run time, Eraser

infers which locks protect each shared variable, forming a lockset for each variable. As the

program runs, the candidate lockset for each variable is updated with the locks held by

every thread that accesses the shared variable in question.

For instance, when a given shared variable V is initialized, its candidate lockset includes

all possible locks. Whenever V is accessed, its set of locks is updated with the intersection

of its lockset and the accessing thread’s set of locks. That is, two locks, L1 and L2, are in

the lockset of a given shared variable V if all threads that accessed V were holding L1 and

L2. This process is named lockset refinement, and assures that locks that protect V are

in V ’s lockset. Figure 5.4 shows how potential data races are detected using the lockset

refinement. The left column represents the program instructions, which are executed from

top to bottom. The middle column represents the set of locks held by the running thread

and the right column is the lockset of the variable V after the execution of each statement.

Considering that this example has two locks, the lockset is initialized with both locks, i.e.,

L1 and L2 (as illustrated in ➊). Whenever V is accessed, its lockset is refined to contain

the set of locks held by the accessing thread. As shown in ➋, the lockset is updated as

follows: Locks Held ∩ Lockset = {L1}∩{L1, L2} = {L1}. Afterwards, V is accessed again,

but this time only L2 is held by the running thread. Thus, the intersection of the two

sets is empty (as highlighted in ➌), which indicates that no lock protects V for the entire

program. Savage et al. extended the lockset algorithm to deal with some special cases

and avoid issuing warnings when the resulting lockset is empty but the program is free

from data races, e.g., single-writer, multiple-reader locks. Subsequently, Choi et al. (2002)

developed a tool similar to Eraser for Java programs. Choi et al. improved upon Eraser

in that their tool incorporates static analysis to avoid unnecessary investigations at run

time.

The main shortcoming of Eraser is that it is targeted at mutex synchronization opera-

tions, so it is unable to work properly when other synchronization primitives are used on
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top of mutexes. Additionally, since it relies on instrumentation, modified programs show

some slowdown.

Many ahead-of-time techniques are based on strong-type checking. Boyapati and Rinard

(2001), for example, devised a static type system for multithreaded Java programs. Their

type system enables programmers to specify the locking discipline of programs. According

to them, their type system ensures that any well-typed program is free from data races.

Lockset Algorithm

Program Locks Held Lockset

↓ {} {L1, L2} ➊

lock(L1);

↓ {L1}

V += 1;

↓ {L1} ➋

unlock(L1);

↓ {}

lock(L2);

↓ {L2}

V += 1;

↓ {} ➌

unlock(L2);

↓ {}

Figure 5.4: Lockset refinement: when each access to a variable is protected by a lock,
no lock protects the underlying variable for the whole program. During
execution, when the accessing thread’s set and the lockset are disjoint, Eraser
issues a warning indicating that no lock protects V . This figure was adapted
from Savage et al. (1997).

Flanagan and Freund (2000) also developed an ahead-of-time tool for detecting race

conditions. Their tool, named rccjava, implements a type system whose goal is to check

if the locks that protect a given variable are acquired every time the variable is accessed.

The tool requires programmer-supplied information to verify the locking strategy. This

additional type information is declared in Java comments. Later on, Flanagan and Freund

(2001) improved rccjava, enabling it to be used on large, real-world programs.

Similarly to on-the-fly techniques, post-mortem techniques instrument programs to

record run time information. However, the analysis of the log is mostly done post-execution.

While the instrumentation overhead incurred by these techniques is lower than on-the-fly

techniques, the resulting log files can be very large. Given that, researchers strive to strike

a balance between the amount of information captured at run time and the precision and

size of log files. Due to the fact that a great deal of the analysis performed by post-mortem

techniques relies on logs, these techniques suffer from the same limitations as on-the-fly
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techniques: the analysis is limited to the executed paths (Raza, 2006). Most record and

playback tools, which are discussed in the next subsection, can be regarded as post-mortem

techniques.

5.3.2.3 Record and Playback

The non-determinism of concurrent programs has a number of important implications,

including some that pose challenges to testing and debugging. First, after finding an

error-manifesting interleaving, it is difficult to precisely reproduce such interleaving. Differ-

ently from deterministic programs, re-executing a concurrent program does not guarantee

that the erroneous behavior will happen again. The concurrency hazards that cannot be re-

produced with high probability because they occur only under some interleavings are called

Heisenbugs (Grötker et al., 2012). Second, when the interleaving can be easily reproduced,

trying to analyze the problem using a debugger or print statements may tamper with the

execution (i.e., probe effect), causing the erroneous behavior to disappear (McDowell and

Helmbold, 1989). In essence, both problems can be ascribed to the lack of control over

which interleavings execute each time a program runs (Ball et al., 2011). Such a lack of

repeatability stems mostly from the fact that the scheduler cannot be directly controlled.

To facilitate testing and debugging, researchers have looked at ways to replay executions.

Typically, replay mechanisms have two phases: record and playback (Eytani et al., 2007).

During the record phase, information concerning the scheduling is recorded, e.g., order in

which shared variables are accessed and synchronization events within the threads. In the

playback phase, sometimes referred to as replay phase, the information captured in the

record phrase is used by the replay mechanism to ensure that executions cover the same

thread schedule.

As Eytani et al. (2007) remarks, depending on the degree of control that the replay

engine has over the execution environment, replay mechanisms can be divided into two

groups: full replay and partial replay. Implementing full replay is complex and entails

recording a large amount of information. Partial replay, which makes programs execute as

if the scheduler were deterministic, is easier to implement and enough to support testing

and debugging.

DEJAVU (Deterministic Java Replay Utility) (Choi et al., 2001), which was imple-

mented as part of an early3 version of Jikes RVM, provides full replay. DEJAVU captures

wall-clock time4 values during execution in record mode. These recorded values are used

3Jikes RVM was formerly known as Jalapeño.
4Wall-clock time (or wall time) is the time taken by a computer to completely execute a program (Ray-

mond, 1996). Instead of taking into account only the time the processor spends executing the program,
wall-clock time also factors in the time spent in programmed delays or waiting for resources to become
available.
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during replay to deterministically reproduce timed thread events that depend on wall-clock

values such as timed waits. Differently from some partial replay mechanisms, DEJAVU

deterministically replays the entire execution, not only the order in which synchronization

events take place. When it replays a program up to a synchronization primitive (e.g., mon-

itorenter), it also replays the whole program and execution environment states. Thus,

DEJAVU keeps track of a large amount of information, including the state of each thread

(e.g., locks currently owned by each thread) and the dispatch queue. DEJAVU also deals

with another source of non-determinism: random values. In record mode, random values

read from external devices are recorded and then, in replay mode, these values are replayed

deterministically.

To implement full replay in an HLL VM, Choi et al. (2001) took advantage of the

fact that early incarnations of Jikes RVM used to rely on a green thread model. In a

green thread model, the scheduler is part of the execution environment, so all thread

management decisions are made by the HLL VM. Currently, only HLL VMs tailored to

resource-constrained devices use green threads (Joisha et al., 2002; Simon et al., 2006;

Aslam et al., 2008). The reason behind such a design decision is rooted in the architecture

of resource-constrained devices. In a green thread model all threads are run atop of a

single native thread. Thus, this model is a natural fit for the uniprocessor and single core

architecture of most resource-constrained devices. Modern HLL VMs use native threads to

take advantage of multiprocessors (Jikes RVM Project, 2013; Oracle Corporation, 2013b;

Wimmer et al., 2013), which delegates the management of threads to the OS and makes the

implementation of replay capabilities more difficult. As a result, to cope with the amount

of information that has to be recorded in the many software layers involved, researchers

have been implementing full replay at the OS level or in hardware. Most proposals hinge

on instrumentation or special hardware support.

The OS-based technique of Russinovich and Cogswell (1996) captures thread switches

on a uniprocessor. They modified the Mach OS so that it records each thread switch.

Since their technique does not replay the entire state of the OS nor the state of its thread

package, their replay engine enforces the desired thread schedule by notifying the scheduler

which thread it should execute next at each thread switch.

Holloman’s (1989) technique is similar to Russinovich’s and Cogswell’s. The main differ-

ence is that Holloman uses instrumentation to capture scheduling information. Specifically,

exception handlers are instrumented into programs. These handlers capture all exceptions,

including the ones related to scheduling, which are sent from the Unix OS to processes.

Olszewski et al. (2009) implemented Kendo, which is a deterministic, partial replay

system for race-free programs. Kendo achieves deterministic replay by logging the sequence

of synchronization operations in record mode. In replay mode, Kendo assigns deterministic
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identifiers for each thread and increases the logical clock of each thread deterministically.

Whenever a thread acquires a lock, its logical clock is incremented, which ensures that

locks are acquired in the same order as they were recorded. Kendo’s main shortcoming

is that it requires special hardware (i.e., deterministic performance counters) that is not

available on some platforms (Weaver and McKee, 2008).

Similarly to Choi et al. (2001), Bergan et al. (2010) tackle the non-determinism problem

in a platform-centric manner. Bergan et al. designed and implemented CoreDet, which

comprises a compiler and a runtime system for replaying C/C++ multithreaded programs.

A program compiled with their infrastructure always executes deterministically, yielding

the same result even in the presence of data races. Bergan et al. investigated two basic ways

to enforce determinism. The first one is based on tracking data ownership and serializing

execution whenever inter-thread communication is detected. The second is a buffering

approach based on versioned memory. A deterministic commit protocol is used to make

threads aware of any access to shared data. Results suggest that the second approach

tends to scale better, serializing execution less often. Calvin (Hower et al., 2011), which is

a hardware-based approach, uses a replay algorithm similar to CoreDet’s.

Dthreads (Liu et al., 2011) is a replacement for the POSIX threads application

programming interface (API) (Butenhof, 1996), also known as pthreads, that provides

deterministic multithreading for C/C++ programs. Dthreads supports all synchro-

nization primitives implemented by POSIX threads. According to Liu et al., Dthreads

can even outperform pthreads in some cases.

5.4 Mutation Testing for Concurrent Programs

As stated in Chapter 3, mutation testing has been used as a gold standard to gauge the

effectiveness of other testing techniques. Given that, it is understandable that some re-

searchers have been trying to apply mutation testing to concurrent programs. However,

besides having to cope with non-determinism, applying mutation testing entails an extra

step: devising mutation operators. Most conventional operators fall short of directly mu-

tating constructs associated with concurrency and synchronization. Hence, several sets of

mutation operators that mimic concurrency-related faults have been proposed.

Delamaro et al. (2001) proposed a set of 15 mutation operators for concurrent Java pro-

grams. Operators in this set are grouped in four categories: (i) operators that modify locks,

(ii) change methods related to wait set manipulation (e.g., wait and notify), (iii) change

the invocation of synchronized methods, and (iv) modify methods that implement thread

collaboration (e.g., sleep, yield, and join). Later, Bradbury et al. (2006b) created a set

of 24 mutation operators for concurrent Java programs. Differently from the operators
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created by Delamaro et al., these operators mutate the most recent concurrency constructs

in Java 5 and some built-in concurrent data structures, e.g., barriers, latches, hash maps,

queues, and thread pools. To design operators whose resulting mutants are representative

of real faults, Bradbury et al. based their operators on a taxonomy of concurrent fault

patterns (Farchi et al., 2003). The mutation operators proposed by Bradbury et al. are

divided into five categories: (i) operators that modify parameters of concurrent methods,

(ii) change concurrency-related method calls by removing or replacing them, (iii) modify

keywords by adding or deleting them, (iv) switch concurrent objects, and (v) make changes

to critical regions by shifting, expanding, shrinking, or splitting them.

Silva et al. (2012) came up with a set of mutation operators for MPI (Message Passing

Interface) programs. MPI is a message-passing API designed to support the implementation

of concurrent programs written in C or Fortran. According to Silva et al., their set of

mutation operators reflects typical mistakes that programmers make when implementing

concurrent programs. Silva et al.’s operators are based on the literature, mainly on the fault

taxonomy proposed by DeSouza et al. (2005). The operators are divided into three groups,

namely, collective, point-to-point, and all. Collective contains the operators that are applied

to collective-communication functions. Point-to-point includes operators concerned with

modifying point-to-point communication functions, this group is further split into three

subgroups: operators applied to send functions, operators that change receive functions, and

operators that modify other point-to-point functions. The last group comprises operators

that can be applied both to collective and point-to-point functions. These operators were

implemented in a tool called ValiMPI Mut (Silva, 2013).

Gligoric et al. (2013b) investigated selective mutation for concurrent mutation operators.

The mutation operators used in the study are the ones devised by Bradbury et al. and

three new operators proposed by Gligoric et al. themselves. Their results indicate that

operator-based selection is better than random mutant selection. More importantly, their

results would seem to suggest that sequential and concurrent mutation operators are

independent, which reflects the importance of examining concurrent mutation operators.

According to Gligoric et al., selective mutation for concurrent code yields lower savings

than for sequential code and selecting operators based on either the number of mutants

or categories of operators does not seem to be effective. Differently from previous studies

that provided one selective set of mutation operators, Gligoric et al. provide several sets

of concurrent mutation operators so that one can choose a selective set that yields marked

savings but with reduced effectiveness or a set that is highly effective, but costly.

Of the mutation tools in Table 3.1, only Paraµ (Madiraju and Namin, 2011), Ex-

MAn (Bradbury et al., 2006a), and MuTMuT (Gligoric et al., 2013a) implement concurrent

mutation operators. Given that Paraµ generates mutants through bytecode instrumenta-
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tion, it implements only operators that entail straightforward changes. The three operators

are listed in Table 5.1. As future work, Madiraju and Namin intend to implement Bradbury

et al.’s entire set of mutation operators. ExMAn implements more operators than Paraµ.

More precisely, as reported by Bradbury et al. (2007), ExMAn implements a subset of

the operators that Bradbury et al. themselves came up with in previous work (Bradbury

et al., 2006b). The concurrent mutation operators implemented in ExMAn are shown in

Table 5.2. MuTMuT implements all mutation operators defined by Bradbury et al. and

three new operators proposed by Gligoric et al. (2013b), which totals 27 concurrent muta-

tion operators. Instead of implementing a mutation generation engine from scratch, the

authors of MuTMuT extended Javalanche to mutate programs. Initially, Javalanche did

not support any concurrent mutation operators. According to Gligoric et al., the authors

of Javalanche included their extension in the publicly available Javalanche distribution.

Table 5.1: The concurrent mutation operators implemented in Paraµ.

Operator Acronym Description

ASTK Add static keyword to method.
RSTK Remove static keyword from method.
RSK Remove synchronized keyword from method.

However, the main drawback of Paraµ, ExMAn, and MuTMuT is that they do not allow

for deterministically re-executing mutants. Applying mutation testing to deterministic

programs is rather straightforward in that the correctness of a given output can be easily

determined: it comes down to comparing the output under consideration with the output

of the original program using the same test input. Nevertheless, the same does not hold

for concurrent programs because of their non-deterministic nature. Given a certain input,

a concurrent mutant is killed if the set of outputs of this mutant for all possible schedules

differs from the set of outputs of the original program for all possible schedules. Thus, the

cost of applying mutation testing to concurrent programs is even greater in comparison to

sequential programs: apart from having to execute the test inputs on many mutants, each

test input has to be executed for multiple possible thread schedules. This, taken together

with the fact that even a small program with a few dozen lines of code and a couple of

threads can result in a large number of schedules, makes mutation testing unwieldy for

concurrent programs.

Therefore, without the possibility of enforcing deterministic re-executions, the notion

of correctness has to be reconsidered. In an attempt to circumvent this limitation, Offutt

et al. (1996b) suggested a modified definition of correctness for concurrent programs. The

proposed approximation consists in executing the original program n times with the same

input to create n outputs oi 1 ≤ i ≤ n. The resulting set, Ω = {o1, o2, . . . , on}, is an approxi-
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mation of the feasible output set. Using such an approximation, a mutant is considered

dead whenever its output (om) does not appear in Ω (i.e., om ∉ Ω). Naturally, how well

Ω represents the true feasible output set of the program hinges on the value of n. This

approximation is a good idea provided that it is possible to enforce a considerable amount

of distinct executions, each exploring a different synchronization sequence. Nevertheless,

when a concurrent program is run with no additional strategy to tamper with its exe-

cution, only slight variations of the same synchronization sequence tend to be executed

repeatedly (Wang et al., 2011).

Table 5.2: The concurrent mutation operators implemented in ExMAn. This table was
taken from Bradbury et al. (2007).

Operator Acronym Description

MXT Modify method-X time (wait, sleep, and join).
MSP Modify synchronized block parameter.

RTXC

Remove thread method-x call (wait, sleep, join, yield,
notify, and notifyAll).

RNA Replace notifyAll with notify.
RJS Replace join with sleep.
ASTK Add static keyword to method.
RSTK Remove static keyword from method.

ASK

Add synchronized keyword to method that contains a
synchronized block.

RSK Remove synchronized keyword from method.
RSB Remove synchronized block.
RVK Remove volatile keyword.
SHCR Shift critical region (up and down).
SKCR Shrink critical region.
EXCR Expand critical region.
SPCR Split critical region.

5.5 Concluding Remarks

In this chapter some key concepts related to concurrency were discussed. Initially, the

discussion focused on the implications that the non-determinism of concurrent programs

have for testing and debugging. As mentioned, the problem is twofold. Firstly, it turns

out that traditional testing fails to cover many interleavings. Secondly, due to the unpre-

dictability of concurrent programs, re-executing these programs does not always yield the

same output, which complicates testing and debugging.

Despite the efforts of language developers to create more concurrency-friendly HLLs,

reasoning about, implementing, testing, and debugging concurrent programs are still rather
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complex activities. To keep the collaboration among threads in check, several abstractions

have been devised and included into programming languages as, for example, semaphores

and monitors. However, even using these basic synchronization constructs, implement-

ing concurrent programs is error-prone. Two common concurrency-related hazards are

deadlocks and race conditions, which were briefly described in this chapter.

To provide background for the next chapter, we outlined some of the techniques to

uncover and reproduce concurrency-related hazards. The presentation of these techniques

was divided into two main sections, the first described static techniques and the second

covered dynamic techniques. In these sections, particular emphasis was given to the de-

scription of tools. Some dynamic techniques were sub-classified into three subgroups, one

of which is post-mortem. Record and replay tools fall into the post-mortem subgroup. In

addition, some efforts to apply mutation testing to concurrent programs were discussed.

These studies indicate that there has been some interest in overcoming the problems

that stem from non-determinism in order to make mutation testing more practical. Next

chapter presents our record-and-playback implementation, which is built around Java’s

built-in locking mechanism.
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Chapter

6

Recording and Replaying Multithreaded

Java Programs and Progressively

Exploring Interleavings

Many software practitioners have been exposed to concurrent programming in order to

reap the performance benefits of multicore computers. This has brought concurrent HLLs,

such as Java, to the fore. However, as mentioned in the previous chapter, the potential

benefits provided by concurrency do not come without costs: writing concurrent programs

is error-prone and testing and debugging such programs is notoriously complex.

Concurrent programs are hard to test and debug mainly because of their inherent

nondeterministic behavior. No mainstream HLL provides a way to deterministically con-

trol which schedules will take place each time a program executes. During execution,

thread-management decisions are made by the underlying scheduler, which makes it diffi-

cult to test whether a program executes correctly on every possible thread schedule.

In general, when conventional testing is employed without any additional strategy

to either control or tamper with execution, only minor variations of the same thread

interleaving tend to be exercised (Wang et al., 2011). Thus, many error-inducing thread

interleavings manifest themselves only when the programs are already in production.

In fact, even a common practice such as stress testing is not effective to uncover these
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hard-to-diagnose problems. Simply put, executing the same test multiple times does not

ensure that an erroneous interleaving will turn up.

Record and playback tools are an approach to cope with the unpredictability of con-

current programs during testing and debugging. These tools make it possible to capture

information about a given execution and then, in a later stage, use the acquired informa-

tion to deterministically re-run the previous execution. Due to the technology-centered

nature of this problem, most realizations of the aforementioned approach deal with it in an

implementation-based way. Taking Java as an example, which uses an HLL VM, several

approaches can be used to enforce a certain program P to be deterministically re-executed.

Some possible approaches are the following:

(i) Modifying the HLL VM thread scheduler in such a way that the scheduling of threads

follows a pre-established thread schedule;

(ii) Usually, modern HLL VMs provide APIs that make it possible for end-users to access

internal runtime information, e.g., the Java Platform Debugger Architecture (JPDA).1

By accessing the running state of an HLL VM through its debugging API, for instance,

it is possible to monitor the thread scheduling sequence during the first execution

of P. The gathered scheduling information can then be used to force the preceding

scheduling sequence in later executions.

(iii) Instrumenting P in an ahead-of-time fashion so that it keeps an encoding of the

schedules explored during the first execution. Afterwards, P can be re-instrumented

in order to enforce the previous scheduling sequence.

Each approach has its advantages and limitations. A significant limitation of the first

approach is that mainstream HLL VMs no longer use non-native threads (i.e., green

threads). In other words, their threading model does not manage threads through internal

schedulers. Rather, the implementation of threads in these HLL VMs relies on native

OS capabilities. Most JVM implementations that are tuned for performance implement

threads natively, e.g., Maxine VM, Jikes RVM, and HotSpot. Typically, the green-thread

model has been employed by HLL VMs tailored to low-end devices, which are a mixture

of OS and HLL VM, e.g., Squawk.

As for the second approach, it could be implemented by piggybacking on the JPDA

API. Considering such an implementation, the monitoring program can set breakpoints

in certain locations of P to record the synchronization sequence. Upon re-executing P,

the monitoring program uses the breakpoints to exert control over the execution. The

1http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/.
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monitoring program acts as a specialized scheduler that is triggered when breakpoints

are reached, taking over the execution by pausing and resuming threads according to the

pre-recorded synchronization sequence. However, a potential limitation of this approach

is that breakpoints are likely to incur in substantial overhead; resulting in re-executions

that are much slower than the original execution. Another limitation is that the number

of breakpoints required to enforce re-executions can quickly become unwieldy (Delamaro,

2004).

The third approach basically entails transforming the original program so that it

captures the synchronization sequence that took place during its execution. Addition-

ally, before subsequent executions, the original program is transformed to enforce the

pre-recorded synchronization sequence. Essentially, the main practical limitation of this

approach is the overhead caused by the instrumentation code.

The main advantage of the first approach is its simplicity. In such an approach all

changes are local to the scheduler. As a workaround to the lack of a scheduler, the second

and the third approach use alternative ways to overcome this limitation. The performance

of these alternative solutions is, however, subpar in comparison to the first approach.

In this chapter, we present how we retrofitted record-and-playback and interleaving

exploration capabilities into Maxine VM. Given that Maxine VM does not have an internal

scheduler, the approach we adopted to implement the aforementioned features relies on

run-time code transformations and builds on the pre-processor and bytecode transformation

facilities of the chosen JVM. Also, our HLL VM-based approach is built around Java’s

built-in locking mechanism, taking advantage of how this mechanism is realized by JVMs

and their intermediate language (i.e., Java bytecodes). In view of the fact that our solution

is heavily based on how Java implements concurrency through its intermediate language,

we surmise that the key elements of our solution can be easily adapted to other JVM

implementations that support bytecode transformation at load or run time.

The contributions of our HLL VM-based approach are threefold. First, by using a

lightweight record instrumentation, our implementation is able to capture debugging infor-

mation about the behavior of the running threads, e.g., the order in which threads execute

synchronized code and when they enter and exit the waiting set of shared objects. Second,

using such an information, our HLL VM-based approach is able to deterministic replay the

execution of Java programs. Third, our implementation can automatically and progressively

explore new interleavings based on a previously recorded synchronization sequence. Given

that synchronization sequences are expressed in a compact and user-friendly textual rep-

resentation, testers can drive the exploration of new schedules by editing synchronization

sequence files.
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The remainder of this chapter is organized as follows. Section 6.1 gives background on

Java’s synchronization mechanism, describing synchronized methods and blocks, which are

the basic constructs upon which our implementation builds. Using synchronized regions as

checkpoints that can trace and control thread behavior is the central idea of our approach,

and is outlined in Section 6.2. Section 6.3 describes how this idea was implemented in

MaxineVM. An usage example is presented in Section 6.4. Section 6.5 discusses the

interplay between each of the three execution modes in which our implementation can

be run and the outcomes produced by each mode. Section 6.6 describes the results of

an evaluation of our implementation. Limitations of our implementation are discussed in

Section 6.7. We outline related work in Section 6.8 and Section 6.9 presents concluding

remarks and future work.

6.1 The Java Synchronization Mechanism: An Overview

In Java, every object has a built-in lock (Sandén, 2004; Arnold et al., 2005a). These

locks, used for synchronization purposes, are referred to as intrinsic locks, monitor locks,

or monitors (Goetz et al., 2006). Two basic synchronization idioms rely on this built-in

locking mechanism: synchronized methods and synchronized blocks. Listing 6.1 shows an

example of synchronized method.

Listing 6.1: Example of synchronized method; code excerpt from The Java Language
Specification (Arnold et al., 2005a). Once a thread invokes the method
getBalance on an instance of BankAccount, it has to try to acquire the lock
on the instance in question. Successfully acquiring the lock means that the
thread can proceed to execute the method. If the thread holding the lock is
preempted while executing the method body, other threads trying to invoke
getBalance will wait until the lock is released.✞

public class BankAccount {
private long balance ;
. . .
public synchronized long getBalance ( ) {

return balance ;
}
. . .

}
✡✝ ✆

Whenever a synchronized method is invoked, the calling thread attempts to acquire

the lock of the underlying object. If the thread successfully acquires the lock, it proceeds

to execute the method. Eventually, after executing the method, the lock is released. An-

other running thread trying to execute that synchronized method will block (i.e., suspend
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execution) until the lock is released. This means that intrinsic locks in Java are similar to

mutexes (or mutual exclusion locks), allowing at most one thread to hold the lock (Arnold

et al., 2005a; Goetz et al., 2006). Given that only one thread at a time can hold a given

lock, it is impossible for two or more invocations of the same synchronized method to

interleave. Static methods can also be synchronized. In this case, the executing thread

locks on the java.lang.Class object associated with the object’s class.

As long as a thread holds a lock on a particular object, it can call other synchronized

methods on that object (Evans and Verburg, 2012; Javier, 2012). The thread will release

the lock when control returns from the outermost synchronized method. Such a reentrant

locking scheme keeps threads from stalling in acquiring locks that they already have,

allowing recursive method calls and invocations of inherited methods (Arnold et al., 2005a).

Synchronized blocks implement the same mechanism that synchronized methods do.

The syntax of a synchronized block is a little bit more verbose, being made up of two

parts: (i) a reference to the object that will act as the lock and (ii) the block of code to

be guarded by that lock. Rather than declaring getBalance synchronized, as shown in

in Listing 6.1, the same behavior can be achieved by turning getBalance’s body into a

synchronized block as shown in Listing 6.2.

Listing 6.2: Example of synchronized block.✞

. . .
public long getBalance ( ) {

synchronized ( this ) {
return balance ;

}
}
. . .

✡✝ ✆

In older JVM implementations, acquiring locks was a costly operation (Niemeyer

and Knudsen, 2005). Therefore, short synchronized methods or blocks would result in

invocation times significantly larger than the time for actually executing these snippets

of code. Currently, Goetz et al. (2006) point out that advances in JVM implementations,

mainly with respect to the implementation of the built-in locking mechanism, have made

the cost of acquiring locks almost negligible.

Apart from acting as locks, Java objects are also able to act as intrinsic condition

queues (Goetz et al., 2006). The methods wait, notify, and notifyAll make up the
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API for intrinsic condition queues.2 These methods, implemented in the Object class, are

fundamental to allow the collaboration between threads.

An object’s intrinsic lock and its intrinsic condition queue are closely related. In order

to invoke any of the aforementioned methods on a given object, the thread must hold the

lock on the object in question. The method wait causes the current thread to wait until

another thread performs a notification. Shortly after invoking wait, the current thread

no longer owns the lock and it is added to the object’s wait set. The wait set is a pool of

threads waiting for a notification concerning a certain lock (Smith and Nair, 2005b). The

wait method should be used as shown in Listing 6.3 (Bloch, 2001; Arnold et al., 2005a).

Listing 6.3: The standard way of using the wait method; code excerpt extracted
from Arnold et al. (2005a).✞

. . .
synchronized void doWhenCondition ( ) {

while ( ! c ond i t i on )
wait ( ) ;

//do what must be done when the cond i t i on i s t rue . . .
}
. . .

✡✝ ✆

Notifications are performed by invoking either notify or notifyAll. Calling notify

on a given object removes a single waiting thread from the object’s wait set.3 When many

threads are waiting on the same object, there is no guarantee regarding the thread that

will be chosen to be removed from the wait set. After being removed from the wait set,

the chosen thread will not be able to resume its execution until the current thread releases

the lock on the underlying object. Further, it is worth stressing that the chosen thread

has to compete with other threads that might be trying to acquire the same lock. In other

words, upon leaving the wait set, there is no guarantee that the chosen thread will be the

one to acquire the lock on the object. Rather than picking only one thread, notifyAll

removes all waiting threads from the wait set. In general, notification code is similar to

Listing 6.4.

At bytecode level, synchronized blocks are supported by two opcodes: monitorenter

and monitorexit (Diehl, 1998; Engel, 1999; Craig, 2005; Lindholm et al., 2012). Lock

2Actually, there are three wait methods. Throughout this document, only the version that takes no
arguments is covered. Arnold et al. (2005a) presents an in-depth description of all versions of wait.

3On several platforms, there is a third way to leave wait sets: spurious wake-up. A spurious wake-up
means that a thread may prematurely leave a wait set without being prompted by a notify or notifyAll
invocation. This happens in platforms in which implementing pthreads is not straightforward (Eckel, 2006,
p. 859).
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acquisition operations are implemented by monitorenter. When a thread executes a mon-

itorenter opcode, it tries to acquire the lock for the object pointed to by the reference on

the top of the operand stack (Smith and Nair, 2005b). Given that locks operate as counters

at bytecode level, once a lock is successfully acquired by a thread, the counter associated

with the lock is incremented and the acquiring thread continues execution. When a thread

tries to acquire a lock that it already owns, the lock count is incremented and execution

continues. Lock-release operations are performed by monitorexit. This opcode does that

by decrementing the lock count for the object referenced on top of the operand stack. If a

lock count becomes zero, then the lock can be acquired by other threads (Smith and Nair,

2005b).

Listing 6.4: The standard way of using the notify and notifyAll methods; code excerpt
extracted from Arnold et al. (2005a).✞

. . .
synchronized void changeCondit ion ( ) {

// change some value used in a cond i t i on t e s t . . .
n o t i f yA l l ( ) ; // or no t i f y ( )

}
. . .

✡✝ ✆

Listing 6.5 illustrates how a synchronized block is compiled to bytecodes. The bytecodes

shown in Listing 6.5 are generated from the getBalance method shown in Listing 6.2. As

can be seen in Listing 6.5, the code that retrieves the value of the variable balance is

wrapped by monitorenter (line 4, ➊) and monitorexit (line 8, ➋) opcodes. Moreover,

as shown in lines 10 through 14, in case an exception is thrown by the code wrapped by

➊ and ➋, an extra monitorexit opcode (line 12, ➌) ensures that the underlying lock is

released.

Typically, synchronized methods are not implemented through monitorenter and

monitorexit instructions. Rather, the access flag ACC_SYNCHRONIZED (which is an entry

in the runtime constant pool) is set for these methods. ACC_SYNCHRONIZED indicates that

invocations of the method in question must be wrapped in synchronization code. In other

words, it is up to the invoking thread to perform the following operations: (i) acquiring

the lock, (ii) invoking the method’s body, and (iii) releasing the lock whether the method

invocation completes normally or abruptly (Lindholm et al., 2012).
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Listing 6.5: Bytecodes generated from the getBalance method in Listing 6.2. Several
attributes as, for instance, the exception table, were omitted from this listing
for brevity.✞

1 ldc w //push the Class ob j e c t corre spond ing to BankAccount
2 dup // dup l i c a t e the r e f e r e n c e on the top o f the s tack
3 astore 1 // s t o r e i t in l o c a l var . 1
4 monitorenter ➊// lock on the Class ob j e c t on top o f the s tack
5 aload 0 //push the under ly ing in s t anc e o f BankAccount
6 getf ie ld // r e t r i e v e the value o f ba lance
7 aload 1 //push the Class ob j e c t corre spond ing to BankAccount
8 monitorexit ➋// r e l e a s e the p r ev i ou s l y acqu i red lock
9 lreturn // return normally

10 astore 2 //when an except ion i s thrown , s t o r e i t in l o c a l var . 2
11 aload 1 //push the Class ob j e c t again
12 monitorexit ➌// guarantee that the code r e l e a s e s the lock
13 aload 2 //push the p r ev i ou s l y thrown except ion onto the s tack
14 athrow // rethrow the except ion out o f the synchronized block

✡✝ ✆

6.2 A Lock-oriented Solution to Record-and-Replay

Our solution capitalizes on the way that Java implements synchronization methods and

blocks (i.e., synchronized regions). Essentially, it augments the mutual exclusion mecha-

nisms that wraps these synchronized constructs so that they serve two additional purposes:

(i) logging the order in which threads access synchronized code; and

(ii) controlling the order in which access is granted to synchronized regions.

These two features lay the foundation for deterministically replaying past executions

of multithreaded Java programs. With these ancillary features in place, the problem of

deterministically re-executing a given program is broken down into two main steps. In

the first step, the program is run to record the order in which synchronized regions are

accessed. For example, consider Figure 6.1 where two threads (i.e., T1 and T2) content for

a lock (i.e., L1) which grants access to a given synchronized region. If during execution

these threads interleaved as shown in Figure 6.1(a), the execution log would indicate that

T1 was able to acquire L1 before T2. During subsequent executions, the feature described

in item (ii) uses the information gathered in the previous step to ensure that synchronized

regions are accessed in the same order that they were accessed during the first execution.

For instance, as shown in Figure 6.1(b), when T2 reaches the code that tries to acquire L1

before T1, our solution enforces the sequence that took place in a previous execution, i.e.,
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Figure 6.1(a). As a result, T2 is prevented from acquiring the lock, so it has to wait until

T1 is done with L1.

Put simply, the mechanisms that protect synchronized regions are used as checkpoints

by our solution. Upon reaching these checkpoints, instead of simply checking whether the

current thread may enter the synchronized region, the actions described in items (i) and

(ii) are also performed.

Our solution differs from full replay mechanisms in that it does not try to enforce a

deterministic behavior outside of synchronized blocks. In other words, our solution does

not govern the order in which threads reach checkpoints. Instead, it enforces the sequence

in which the code wrapped by these checkpoints is executed by the threads. To clarify

this point, consider Figure 6.1(b) again, which illustrates that no control is exerted over

threads up to the point where they reach synchronized regions.

Figure 6.1: Overview of our lock-oriented solution to record and replay.

In addition, our solution capitalizes on the features described in items (i) and (ii)

to explore new interleavings. This exploration is achieved by enforcing that threads run

synchronized regions in a different order than the previously recorded execution. In this

context, the checkpoint mechanism around locks verifies the order in which the locks were

held previously, and tries to explore a new sequence. Given that the interleaving in (a)

took place during a first execution, a new interleaving can be explored by ensuring that

T2 acquires L1 before T1 as illustrated in Figure 6.1(c). Due to the generic nature of this

lock-based approach to record-and-replay, we believe that this idea can be extrapolated
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to other programming languages whose concurrent constructs are similar to Java. Next

section describes how this idea was retrofitted into Maxine VM.

6.3 Proof-of-concept Implementation: Harnessing an HLL

VM to Support the Testing of Multithreaded Pro-

grams

We extended Maxine VM (Section 2.6) in order to demonstrate the feasibility of retrofitting

record-and-playback and interleaving exploration capabilities into an HLL VM. Given that

Maxine VM is a native threaded JVM, which means the absence of an internal scheduler,

the approach we adopted to implement these features relies on Maxine VM’s bytecode

pre-processor and bytecode transformation capabilities.

As most post-mortem techniques, our solution breaks down the problem of reproducing

a given execution into two phases: record and replay. In our solution, the record phase

logs the order in which locks are acquired during execution. The replay phase then uses

such an information to ensure that subsequent executions behave in a predictable fashion,

following the pre-recorded lock acquisition order. In our proof-of-concept implementation

each of these two phases is implemented by an execution mode with the same name.

Both execution modes are geared towards multithreaded Java programs in which

non-determinism stems from the sequence in which threads attempt to execute blocks

of code guarded by locks. It is assumed that any access to shared data is wrapped in

a synchronized block or method, thereby any thread has a deterministic behavior when

considered in isolation from others.

In record mode, the program is dynamically transformed at run time. Prior to being

executed, each synchronized method or block is transformed in order to monitor lock

contention and other synchronization events. In this context, synchronization events are

operations that characterize the evolution of threads during execution. An example of

synchronization event is lock acquisition. As mentioned in Chapter 5, a sequence of synchro-

nization events is referred to as synchronization sequence. Proceeding from the assumption

that every access to shared data is performed inside a synchronized method or block, the

goal of executing a program in record mode is to register the order in which synchronization

events take place. Given that, a synchronization sequence can be determined by the order

in which the threads execute the synchronized code (Delamaro, 2004).

As previously mentioned, unlike synchronized blocks, synchronized methods do not

explicitly use monitorenter and monitorexit instructions, which makes it difficult to

trace where the instrumentation code should be inserted. The workings of synchronized
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blocks make them more convenient for our dynamic instrumentation approach (more on

this is discussed later in this section when describing the instrumentation for the replay

execution mode). Therefore, prior to inserting the instrumentation code for both execution

modes, synchronized methods are rendered into synchronized blocks that span the entire

method body. As mentioned, these transformations occur at bytecode level, however, for

clarity’s sake, in the following listings all instrumentation code is shown as Java source code.

Examples of how static and instance methods are modified are presented in Listing 6.6.

As can be seen in Listing 6.6, the object acting as lock depends on the type of the method.

Instance methods use a reference to the current object (i.e., this), whereas static methods

use the Class object for lock. Methods that already serialize access to their body through

synchronized blocks are not modified.

Listing 6.6: Synchronized methods are turned into synchronized blocks. As shown in ➊,
instance methods are turned into non-synchronized methods containing syn-
chronized blocks. These blocks span the entire method body. The object
upon which the method is invoked is used as lock. Static methods undergo
a similar transformation, however, they lock on the Class object associated
with the object’s class (as illustrated in ➋).✞

public class AClass {
public synchronized void f oo ( ) {−−−−−−−−−→public ↓ ➊ void f oo ( ) {

synchronized ( this ) {
//method body //method body

}
} }

. . . . . .
stat ic synchronized void bar ( ) {−−−−−−−−−→stat ic ↓ ➋ void bar ( ) {

synchronized ( AClass . class ){
//method body //method body

}
} }

}
✡✝ ✆

After being transformed as shown in Listing 6.6, the resulting methods are further

instrumented as follows. The instrumentation for the record execution mode was designed

mainly to log when threads acquire locks. Towards this end, the program under test is

instrumented by placing probe methods at key locations. First, our implementation inserts

opcodes related to a method call before the first line of method bodies (as shown in

Listing 6.7, ➋). The call to afterEnteringSyncBlock registers that the current thread

is the owner of the lock of the object upon which the method was called (i.e., this).

One of the arguments to afterEnteringSyncBlock (i.e., LockType) indicates the type of

lock that has been acquired (i.e., instance or static). Given that all method bodies were
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previously wrapped in a synchronized block, this probe logs when the executing thread

successfully acquired the underlying lock and is about to run the method in question.

Listing 6.7: Code transformations concerned with the record mode.✞

public void f oo ( ) {
➊ synchronized ( this ) {

➋ RecordAndPlayback . a f te rEnter ingSyncBlock ( this ,
LockType .INSTANCE) ;

try {
//method body

} f ina l ly {
➌ RecordAndPlayback . ex i t ingSyncBlock ( this ,
LockType .INSTANCE) ;

}
}

}
✡✝ ✆

In addition, after inserting the aforementioned method call, the instrumented method

body is enclosed within a try-finally block. To capture the release of the lock acquired

in ➊, our implementation also introduces another method call into the finally block (as

shown in Listing 6.7, ➌). Such a method call is inserted into the finally block because it

has to be executed regardless of what happens in the try block; whether the block exits

normally or abnormally. Note, however, that the method call in ➌ is not necessary for the

characterization of the synchronization sequence (Delamaro, 2004).

The replay mode requires a different transformation. Initially, it needs to address the

following issue: any thread must check the previously recorded synchronization sequence

before trying to acquire a lock and execute the code wrapped in the synchronized block.

For example, if a thread T1 is about to acquire the lock of a given object O1, there must

be a mechanism to check whether this synchronization event (i.e., T1 acquiring the lock of

O1) is the next one. For a synchronized method, before acquiring the lock means that the

instrumentation has to be inserted before the method invocation. However, introducing

such instrumentation before every synchronized method call is inefficient, which is one of

the reasons for our implementation to transform synchronized methods into synchronized

blocks. In doing so, the required instrumentation can be inserted before every synchronized

block. Listing 6.8 gives an example of the transformations performed for replaying a

synchronization sequence. The method beforeEnteringSyncBlock (Listing 6.8, ➊) plays

a key role during replay mode, checking whether the current synchronization event (i.e., the

current thread trying to acquire the underlying lock) matches the next event in the recorded

synchronization sequence.
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Apart from checking the synchronization sequence, it is also necessary to remove the

first synchronization event from the pre-recorded synchronization sequence whenever a

match is found (Listing 6.8, ➋). This must be done inside the synchronized block, assuring

that the lock has been acquired before removing the event from the synchronization

sequence. Performing such a removal before entering the synchronized block would allow

for other threads to lock on the object without respecting the synchronization sequence.

Listing 6.8: Code transformations concerned with the replay mode.✞

public void f oo ( ) {
➊ RecordAndPlayback . be foreEnter ingSyncBlock ( this ,

LockType .INSTANCE) ;
synchronized ( this ) {

try {
➋ RecordAndPlayback . nextSyncEvent ( ) ;

//method body
} f ina l ly {
}

}
}

✡✝ ✆

When in record mode, it is important to log every access to synchronized code, thus

our implementation also has to deal with wait sets. As stated in Section 6.1, invoking wait

causes the current thread to enter the wait set of the object upon which the method was

called. To register this synchronization event, our implementation has to replace all wait

invocations by another method whose body includes the following operations:

• an invocation of the timed version of the wait method;4

• code that logs the fact that the current thread entered the wait set of the object

upon which wait was invoked.

Although not necessary for the replay mode, registering when threads enter wait sets

contributes to debugging by adding information to the recorded synchronization sequence.

Similarly, there is no need to replace notify and notifyAll calls, but doing so makes

it possible to log when threads leave wait sets. Thus, our implementation also replaces

notify and notifyAll calls by a method that performs the following operations:

• invokes notifyAll;

4http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html
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• adds an event to the synchronization sequence indicating that all threads left the

wait set of the object upon which notifyAll was called.

As for the replay instrumentation for the wait method, it needs to check whether the

thread leaving the wait set is supposed to acquire the lock. That is, the instrumentation

needs to verify if the lock acquisition by that thread is the next synchronization event.

In summary, every call to wait is replaced by a timed-wait and ancillary code to log

the related synchronization events. Using a timed-wait prevents the waiting thread from

stalling. Registering when threads enter and leave wait sets contributes to add information

to the synchronization sequence being recorded.

6.3.1 Progressively Exploring Interleavings

Some frameworks for testing concurrent Java programs provide facilities to repeatedly run

the tests with the aim of uncovering fault-manifesting interleavings. Our implementation

also allows for exploring different synchronization sequences. Our strategy relies on the

textual representation of a valid synchronization sequence captured during record mode.

When more than one thread contend for a synchronized block or method, our implemen-

tation tries to ensure that each execution takes a different synchronization sequence at a

certain point.

Consider two threads, T1 and T2, that share a buffer, O. If during record mode T1 is able

to acquire the lock on O,T1 will read and use the contents of O before T2. During exploration

mode our implementation is able to identify the two possible alternatives, thereby allowing

the exploration of the distinct interleaving in a subsequent execution. More precisely, our

implementation identifies which threads contend for a certain synchronized block (i.e.,

shared resource), enumerates the choices available at a certain point in execution, and

tries to enforce alternate choices. So, in this case, an event representing “T1 acquires lock

on O” would prompt our implementation to try the alternative: “T2 acquires lock on O”.

Exploring the interplay between threads and synchronized blocks in such a fashion

increases the chances of uncovering faults. This also obviates the need for stress testing,

which entails increasing the number of threads in hopes of getting more interleaving

coverage (Ball et al., 2011). More on how our implementation explores interleavings is

detailed in Subsection 6.4.3.

6.4 Example Scenario

This section details the characteristics and usage of our proof-of-concept implementation.

The example program used throughout this section is adapted from a Java textbook (Eckel,
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2006). Apart from the class containing the main method (which is detailed later on), this

example has three classes: WaxOn, WaxOff, and Car.

Both WaxOn and WaxOff interact with Car. WaxOn implements the java.lang.Runnable

interface, and instances of this class are responsible for applying wax to Car objects.

Likewise, WaxOff also implements java.lang.Runnable, and instances of such a class can

be seen as polishing tasks. At run time, instances of WaxOff cannot run until an instance

of WaxOn executes. Similarly, WaxOn instances cannot carry on with their execution until

a polishing task takes place. WaxOn’s implementation is displayed in Listing 6.9.

Listing 6.9: WaxOn class.✞

1 import java . u t i l . concurrent . TimeUnit ;
2

3 public class WaxOn implements Runnable {
4 private Car car ;
5

6 public WaxOn(Car c ) {
7 this . car = c ;
8 }
9

10 @Override
11 public void run ( ) {
12 try {
13 while ( ! car . i sSh iny ( ) ) {
14 System . e r r . p r i n t l n ( ‘ ‘Wax on ! ’ ’ ) ;
15 TimeUnit .MILLISECONDS. s l e e p ( 2 0 0 ) ;
16 car . waxed ( ) ;
17 car . waitForBuf f ing ( ) ;
18 }
19 } catch ( Inter ruptedExcept ion e ) {
20 System . e r r . p r i n t l n ( ‘ ‘ Ex i t ing v ia i n t e r r up t ’ ’ ) ;
21 }
22 System . e r r . p r i n t l n ( ‘ ‘ Ending Wax On task ’ ’ ) ;
23 }
24 }

✡✝ ✆

The key method in WaxOn is run, which implements the waxing process. To simulate

the time necessary for waxing, a call to sleep is introduced within the run method’s

body (line 15). After waxing, which basically consists in calling waxed (line 16), waitFor-

Buffing is invoked in order to indicate that the waxing is complete. Invoking the method

waitForBuffing suspends the waxing thread until an instance of WaxOff runs (the imple-

mentation of waitForBuffing is described later).

WaxOff’s implementation is very similar to WaxOn as shown in Listing 6.10. The main

differences are that instead of invoking waxed as WaxOn does, WaxOff calls buffed (line 17);
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and waitForBuffing is replaced by waitForWaxing, line 14 (the implementation of wait-

ForWaxing is described later).

Listing 6.10: WaxOff class.✞

1 import java . u t i l . concurrent . TimeUnit ;
2

3 public class WaxOff implements Runnable {
4 private Car car ;
5

6 public WaxOff (Car c ) {
7 this . car = c ;
8 }
9

10 @Override
11 public void run ( ) {
12 try {
13 while ( ! car . i sSh iny ( ) ) {
14 car . waitForWaxing ( ) ;
15 System . e r r . p r i n t l n ( ‘ ‘Wax o f f ! ’ ’ ) ;
16 TimeUnit .MILLISECONDS. s l e e p ( 2 0 0 ) ;
17 car . bu f f ed ( ) ;
18 }
19 } catch ( Inter ruptedExcept ion e ) {
20 System . e r r . p r i n t l n ( ‘ ‘ Ex i t ing v ia i n t e r r up t ’ ’ ) ;
21 }
22 System . e r r . p r i n t l n ( ‘ ‘ Ending Wax Off task ’ ’ ) ;
23 }
24 }

✡✝ ✆

As shown in Listing 6.11, in this example, the collaboration between instances of WaxOn

and WaxOff is coordinated by invocations of notifyAll (lines 7 and 12) and wait (lines

18 and 24) in the class Car. These methods are used to suspend and restart threads while

they are waiting for the condition of the waxing-polishing process to change. The boolean

variables waxOn and shiny, declared in line 2 and 3, respectively, indicate the state of the

waxing-polishing process. Since these state variables are shared across threads, access to

them is coordinated using synchronization: note that all methods in Car are declared as

synchronized. In waitForWaxing (lines 15 to 19), the variable waxOn is examined, and if

it is false, the current thread is suspended by invoking wait; and the underlying lock is

released. Releasing the lock is necessary because, to change the state of the waxing-polishing

process, the lock must be acquired by each of the running threads in turn.

For example, when an instance of WaxOn calls waxed (lines 5 to 8), the lock must be

acquired to change the variable waxOn to true. Then, notifyAll is invoked from within

waxed, which wakes up the other thread waiting in the object’s wait set. As a result, the
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other thread is eligible to acquire the lock on Car by invoking buffed (lines 10 to 13);

setting the state of the waxing-polishing process to false before calling notifyAll. During

execution, the two-step process involving WaxOn and WaxOff continues to iterate until the

variable shiny is set to true.

Listing 6.11: Car class.✞

1 public class Car {
2 private boolean waxOn = fa l se ;
3 private boolean sh iny = fa l se ;
4

5 public synchronized void waxed ( ) {
6 waxOn = true ; // ready to bu f f
7 no t i f yA l l ( ) ;
8 }
9

10 public synchronized void buf f ed ( ) {
11 waxOn = fa l se ; // ready f o r another coat o f wax
12 no t i f yA l l ( ) ;
13 }
14

15 public synchronized void waitForWaxing ( )
16 throws Inte r ruptedExcept ion {
17 while (waxOn == fa l se )
18 wait ( ) ;
19 }
20

21 public synchronized void waitForBuf f ing ( )
22 throws Inte r ruptedExcept ion {
23 while (waxOn == true )
24 wait ( ) ;
25 }
26

27 public synchronized boolean i sSh iny ( ) {
28 return sh iny ;
29 }
30

31 public synchronized void se tSh iny (boolean b) {
32 sh iny = b ;
33 }
34 }

✡✝ ✆

To execute this example, the class shown in Listing 6.12 was implemented. WaxOMatic

performs the necessary actions to initialize and start the elements involved in this example.

First, an instance of Car is created in line 5. Second, a Thread object is initialized, passing

an instance of WaxOff as its target object (line 6). Then, the thread’s name is set to

115



Chapter 6 — Recording and Replaying Multithreaded Java Programs and Progressively
Exploring Interleavings

“Buffer-1” in line 7. Third, from lines 8 to 9 all the same setup steps are performed, but

this time for an instance of WaxOn and its respective Thread object. In line 9, the name

of the Thread object responsible for invoking WaxOn’s run method is set to “Waxer-1”.

After the initialization step, the previously instantiated thread objects are started

in lines 10 and 11. Next, the instruction in line 12 causes the current thread (main) to

suspend execution for ten seconds, giving the other two threads (i.e., bufferThread and

waxerThread) a chance to perform their tasks. When the main thread runs again, it

concludes the waxing-polishing process by calling the setShiny method on Car (line 13).

Listing 6.12: Class containing the main method, which declares, initializes, and starts
the threads involved in the example.✞

1 import java . u t i l . concurrent . TimeUnit ;
2

3 public class WaxOMatic {
4 public stat ic void main ( St r ing [ ] a rgs ) throws Exception {
5 Car car = new Car ( ) ;
6 Thread buf ferThread = new Thread (new WaxOff ( car ) ) ;
7 buf ferThread . setName ( ‘ ‘ Buf fer −1 ’ ’ ) ;
8 Thread waxerThread = new Thread (new WaxOn( car ) ) ;
9 waxerThread . setName ( ‘ ‘Waxer−1 ’ ’ ) ;

10 waxerThread . s t a r t ( ) ;
11 buf ferThread . s t a r t ( ) ;
12 TimeUnit .SECONDS. s l e e p ( 1 0 ) ; // run f o r a whi l e . . .
13 car . se tSh iny ( true ) ;
14 }
15 }

✡✝ ✆

Running the previous code prints out something similar to the output shown in Fig-

ure 6.2. The command used to run the example program is shown in the first line of

Figure 6.2, ➊. Such a command line can be broken down in four parts:

(i) max is used to launch Maxine VM from the command line5;

(ii) -DrecordTo specifies the path (directory) and the name of the file to which the

synchronization sequence of the current execution is to be saved. This Java property

is used in record, replay, and exploration mode;

(iii) -DplayFrom specifies the path (directory) and the name of the file containing the

synchronization sequence to be enforced by the HLL VM. This Java property is used

only in replay and exploration mode.

5As of the time of this writing, in the Maxine VM project, the max script was ported to Python in
order to improve portability. The Python script is named mx.py, so now mx is used to launch Maxine VM
instead.
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(iv) WaxOMatic represents the name of the class to execute.

When the program is run, our implementation creates the file specified by the recordTo

property. If the file in question already exists, it is overwritten. As for the second property,

since the file play.txt does not exist, Maxine VM runs in record mode and no file is

generated. During execution, control goes back and forth between the waxing and the

polishing threads, which results in the output pointed out in Figure 6.2, ➋. After shiny

is set to true, both threads finish execution, printing out the messages indicated by ➌ in

Figure 6.2.
WaxOMatic Output

➊ $ max -DrecordTo=./syncsequence.txt -DplayFrom=./play.txt WaxOMatic

➋ repeats for about 10 seconds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wax on!

Wax off!

Wax on!

Wax off!

...

Wax on!

Wax off!

Wax on!

Wax off!

➌ shows that the process is over

⎧⎪⎪
⎨
⎪⎪⎩

Ending Wax On task

Ending Wax Off task

Figure 6.2: Output of WaxOMatic when it is run for the first time. That is, when there
is no previously recorded synchronization sequence to enforce.

At run time, our implementation instruments the program before it is compiled by

Maxine VM’s JIT compiler. Code regions guarded by mutual-exclusion locks are modified

as described in Section 6.3. In this example, the only class containing synchronized methods

is Car.

6.4.1 The Synchronization Sequence Domain Specific Language

The main purpose of executing programs in record mode is to capture synchronization

sequences. Our implementation records synchronization sequences in a domain specific

language (DSL) (Sprinkle et al., 2009) designed to express these events in a succinct

fashion.6 The beginning of the synchronization sequence resulted from running the example

6Alternatively, we could have used Extensible Markup Language (XML) files to store information about
synchronization sequences. However, we decided that using an XML parser to manipulate synchronization
sequences would be an overkill.
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program is shown in Listing 6.13.7 Line 1 indicates that“Buffer-1” executes first and, upon

invoking isShiny, it acquires the lock on the shared instance of Car.8 The thread proceeds

to call waitForWaxing, which checks if the boolean variable waxOn is false. At this point

in the execution, waxOn is false, causing the current thread to invoke wait. As a result,

it releases the lock on the shared instance of Car and enters the wait set of this instance

(Listing 6.13, line 2). As shown in Listing 6.13, threads in the wait set of a certain object

or class appear after WS.

Listing 6.13: Part of the synchronization sequence recorded during the execution of the
example program.✞

1 Buffer −1 locked on Car<in s tance >(WS: ) ;
2 Buffer −1 entered wait set of Car<in s tance >(WS: Buf fer −1) ;
3 Waxer−1 locked on Car<in s tance >(WS: Buf fer −1) ;
4 Waxer−1 notif ied a l l threads waiting on Car<in s tance >(WS: Buf fer −1) ;
5 Buffer −1 l e f t wait set of Car<in s tance >(WS: ) ;
6 Waxer−1 released lock on Car<in s tance >(WS: ) ;
7 Waxer−1 locked on Car<in s tance >(WS: ) ;
8 Waxer−1 entered wait set of Car<in s tance >(WS: Waxer−1) ;
9 Buffer −1 locked on Car<in s tance >(WS: Waxer−1) ;

10 Buffer −1 released lock on Car<in s tance >(WS: Waxer−1) ;
11 Buffer −1 locked on Car<in s tance >(WS: Waxer−1) ;
12 Buffer −1 notif ied a l l threads waiting on Car<in s tance >(WS: Waxer−1) ;
13 Waxer−1 l e f t wait set of Car<in s tance >(WS: ) ;
14 Buffer −1 released lock on Car<in s tance >(WS: ) ;
15 Buffer −1 locked on Car<in s tance >(WS: ) ;
16 Buffer −1 entered wait set of Car<in s tance >(WS: Buf fer −1) ;
17 . . .

✡✝ ✆

“Waxer-1”executes next, acquiring the lock on the Car instance upon invoking isShiny

(Listing 6.13, line 3). Then, it prints “Wax on!” to the output. The next instruction causes

the current thread to suspend execution for 200 milliseconds. However, since no other

thread is eligible to execute (the main thread is also suspended and “Buffer-1” is in the

wait set of the Car object) and “Waxer-1” still has ownership of the lock, nothing happens

until “Waxer-1” resumes execution. “Waxer-1” continues execution by invoking waxed,

which sets waxOn to true and calls notifyAll. Invoking notifyAll removes “Buffer-1”

from the wait set, thereby making it eligible to be executed again (Listing 6.13, lines 4, 5,

7Note that our DSL uses fully qualified names for classes. However, for brevity sake, in this example
we omitted package names.

8Actually, for the sake of brevity, synchronization events related to the invocation of isShiny are omit-
ted since they do not contribute much to the discussion. Each invocation simply adds one lock-acquisition
event and one lock-release event to the synchronization sequence. Therefore, we are considering that the
lock is acquired when the current thread invokes isShiny and that the running thread holds the lock
until returning from another synchronized method invocation; be it any method but isShiny.
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and 6). Next, “Waxer-1” calls waitforBuffing. Inside waitForBuffing, “Waxer-1” calls

wait, releasing the lock on the Car instance, suspending itself, and entering the underlying

wait set (Listing 6.13, lines 7 and 8).

When “Buffer-1” tries to resume execution from where it left off, it has to re-acquire

the lock. Only after re-acquiring the lock it can return from waitForWaxing, as shown in

Listing 6.13, line 9. The lock is released as soon as“Buffer-1” returns from waitForWaxing,

as indicated in Listing 6.13, line 10. Afterwards, “Buffer-1” prints “Wax off!” to the output

and sleeps for 200 milliseconds; meanwhile, “Waxer-1” is still in the wait set. Once this

time is elapsed, “Buffer-1” has to acquire the lock again to invoke buffed (Listing 6.13,

line 11). Within the method body, waxOn is set to false and notifyAll is invoked. The

call to notifyAll removes “Waxer-1” from the wait set (Listing 6.13, lines 12 and 13).

In addition, since waxOn was set to false, “Buffer-1” is unable to continue its execution

after invoking waitForWaxing, as indicated in line 16. Synchronization events similar to

the aforementioned ones continue to be captured until the main thread wakes up and sets

shiny to true. The size of the resulting file is less than 38KB and it contains 400 lines.

6.4.2 Replaying a Synchronization Sequence

As mentioned earlier, our implementation provides support for replaying the execution of

multithreaded programs. This is achieved in replay mode, which forces the monitored pro-

gram to execute according to a given synchronization sequence. Synchronization sequences

are enforced by the instrumentation discussed in Section 6.3. When in replay mode, our

implementation reads the synchronization sequence from a file created at the end of the

record mode.

Specifically, we consider that a synchronization sequence differs from another synchro-

nization sequence when the order in which they access synchronized code blocks is different.

Controlling all accesses to synchronized blocks results in poor concurrent performance:

when our implementation enforces synchronization sequences and multiple threads contend

for the same lock, throughput suffers.

In the light of this instrumentation overhead, in replay mode programs usually take

longer to run, which may further complicate the replay of time-bound executions. Therefore,

in order to properly replay executions, it is necessary to either take a conservative approach

and increase their execution spans and disable any time limitations (see Section 6.6). For

instance, line 12 of Listing 6.12 shows that the main thread sleeps for about ten seconds,

which gives the other threads roughly the same time to execute. After that, the main

thread sets the variable shiny to true, which causes the other two threads to terminate
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their executions (see the while loops in Listings 6.9 and 6.10). One way of replaying the

example program is to set the running time to around 45 seconds.

When our implementation reaches the end of the given synchronization sequence, the

threads stall. Thus, considering the execution of the example program in replay mode, two

scenarios are possible:

• shiny is set to true before the whole synchronization sequence is replayed. That

is, the execution time indicated in line 12 of Listing 6.12 expires before the repro-

duction of the whole synchronization sequence. In this case, only a subset of the

synchronization sequence is replayed.

• the reproduction of the synchronization sequence takes place before the execution

time expires. This is the optimal case scenario for replaying time-bound programs.

6.4.3 Exploring Interleavings

As can be seen in Listing 6.13, our DSL does not represent all possible schedules. In-

stead, it focuses on logging the interleavings that take place when threads contend for

synchronized blocks. As mentioned in Subsection 6.3.1, our implementation allows the

exploration of these synchronization sequences captured during record mode in hopes of

finding error-yielding interleavings.

Algorithm 6.1 gives an overview of the main steps by which our implementation uses

a previously recorded synchronization sequence to expose new possible interleavings. As

shown in line 2, only the lock-acquisition events are taken into account. After filtering

out the other synchronization events, the algorithm analyzes the right hand side of the

lock-acquisition events in order to identify the objects used as locks (line 3). Similarly, the

left hand side of the synchronization events is investigated to identify what threads tried

to acquire a certain lock (line 5).

Naturally, there can be an arbitrary number of threads and shared locks. Our algorithm

groups threads into sets according to the lock that they acquire at run time (line 6). Given

a synchronization sequence file containing a lock L1, which is shared by three threads, T1,

T2, and T3, our algorithms yields two sets: one comprised only of the lock, L = {L1}, and

the other containing the threads, T = {T1, T2, T3}. This step of the algorithm is further

exemplified in Figure 6.3.

Figure 6.3 shows the synchronization file in Listing 6.13 after being processed to

remove all synchronization events but lock-acquisition ones, as illustrated in line 2 of

Algorithm 6.1. After performing the step described in line 3, our algorithm identifies that

the only lock being used throughout the file is the one in Car. Then, when screening each
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synchronization event for threads that contend for the lock (Algorithm 6.1, line 5), two

threads are identified: “Buffer-1” and “Waxer-1”.

Algorithm 6.1 Interleaving exploration.

1: procedure interleavingExploration(synchSequence)
2: lockAcqEvents← synchSequence.filterBy(ACQUIRE LOCK)
3: locks← dslParser.parseRightHandSide(lockAcqEvents)
4: for each lock in locks do
5: threads← dslParser.getThreadsThatContendFor(lock, lockAcqEvents)
6: threadsAndLockHash← {lock => threads}
7: end for
8: for each key, values in threadsAndLockHash do
9: for each thread in values do

10: interleavings← [thread, key]
11: end for
12: end for
13: end procedure

Figure 6.3: Grouping threads according to the lock that they contend for.

Locks and their respective contending threads are stored in a hash map whose keys are

the lock themselves and the values are arrays containing the threads as indicated in line 6.

Subsequently, the interleavings that we wish to explore are represented as a Cartesian

product of these two sets: T ×L = {T1, T2, T3} × {L1} = {(T1, L1), (T2, L1), (T3, L1)}.

The exploration of interleavings starts from the last lock-acquisition and proceeds

backward to the first one. In exploration mode, the execution is replayed until the

lock-acquisition event that is predetermined to change. Each execution explores only

one new interleaving. For instance, considering Figure 6.3, during the first execution in

exploration mode, our implementation will try to enforce a scenario in which “Waxer-1”

acquires the lock on Car instead of “Buffer-1”. In other words, each permutation resulted

from {“Buffer-1”, “Waxer-1”} × {Car} is enforced in turn.

Most of the steps described in Algorithm 6.1 are carried out or triggered by a class

named ExplorationController. When a program is run for the first time in exploration
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mode, ExplorationController triggers the parser to create the hash map containing the

locks and their respective contending threads. The interleavings that will be explored during

execution are derived from such a hash map. Apart from storing the interleavings that

should be enforced, ExplorationController keeps track of the interleaving exploration by

means of an internal counter whose value indicates the current line in the synchronization

sequence that is being explored. Thus, the initial value of this counter corresponds to

the number of lines of the synchronization sequence file being explored. Upon exploring

all possible combinations for a given line, such a counter is decreased by one. Object

serialization (Kurotsuchi, 1997) is used to persist ExplorationController’s data between

executions.

Note that it is not possible to enforce all interleavings because Algorithm 6.1 at times

generates infeasible interleavings. When our implementation fails to enforce an interleaving,

it signals that the exploration of that particular interleaving has been tampered with, and

it resumes execution in record mode.

6.5 The Interplay Between Synchronization Sequence Files

and Each Execution Mode

Figure 6.4 shows an overview of the role that synchronization sequence files play in each

execution mode. Essentially, two configuration properties determine which execution mode

will take place, as previously indicated in Figure 6.2. If no playFrom property is supplied,9

our implementation runs in record mode. Running a program in record mode logs the

synchronization sequence that took place during execution in the file specified by the

recordTo property, as shown in Figure 6.4.

In order to execute a program in replay mode, it is mandatory to specify a valid

synchronization sequence file through the playFrom property. As illustrated in Figure 6.4,

replaying a synchronization sequence does not alter the contents of the file. Optionally, a

copy of the synchronization sequence file being replayed can be created: when playFrom

and recordTo specify different files, the contents of the file indicated by the former are

copied to the file indicated by the latter. In Figure 6.4, for example, A and B are two

different files with the same synchronization sequence.

To run a multithreaded program in exploration mode, the value of the playFrom

property has to point to a valid synchronization sequence file. To distinguish this execution

mode from replay, an extra configuration property is employed. Such a property, called

interExplor, has to be set to true (as shown in Figure 6.5). In exploration mode, the

9The same happens when the file indicated by the playFrom property does not exist or is empty.
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synchronization sequence file indicated by playFrom is enforced until execution reaches

the line whose number corresponds to the current value of ExplorationManager’s counter.

Upon executing this line, ExplorationManager tries to execute a different synchronization

event. Next, execution resumes in replay mode. As shown in Figure 6.4, in exploration mode,

it is also possible to save the new synchronization sequence to a file simply by specifying

an empty file through the recordTo property. At its simplest, when the exploration of

a new interleaving succeeds, the copy (A1. . .An) differs from the original synchronization

sequence (A) in exactly one line (Figure 6.4). As depicted in the bottom part of Figure 6.4,

the interleaving exploration continues until all lines of the original file have been explored,

each execution explores a new interleaving.

Figure 6.4: The interplay between execution modes and synchronization sequence files.
A valid synchronization sequence is used as input to all execution modes but
record. In record mode the recordTo property indicates the file that will
contain the main output, whereas in other execution modes it is used to log
debugging information.
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To explore new interleavings manually, testers have to edit synchronization sequence

files and then use the replay mode in hopes of enforcing the new scheduling encoded into

these files.

Exploration Mode

$ max -DrecordTo=./A1.txt -DplayFrom=./A.txt -DinterExplor=true ProgName

Figure 6.5: Triggering the exploration mode from the command line.

6.6 Evaluation

In this section, we evaluate our proof-of-concept implementation on a set of multithreaded

Java programs. The evaluation is twofold. Firstly, we examine the record and replay mode of

our implementation by gauging the overhead incurred by their respective instrumentations.

Secondly, we shed some light on how the resulting DSL files can be modified by testers of

multithreaded Java programs to expose resource deadlocks (Goetz et al., 2006).

This evaluation was carried out using Maxine VM on a 2.1GHz Intel Core 2 Duo with

4GB of physical memory running Mac OS X 10.6.6. We used ten Java programs ranging

in size from 44 to 143 lines of code, totaling 885 lines of code. The two largest programs

are comprised of five Java files. During the selection of these programs, we gave priority

to textbook examples. As listed in Table 6.1, all subject programs are taken from Java

textbooks. Producer-Consumer (Niemeyer and Knudsen, 2005), for instance, implements

the classic producer-consumer problem, which has been extensively used to exemplify how

to synchronize multiple threads that share a common resource such as a fixed-size buffer.

Programs that were originally designed to run in an infinite loop were modified to run for

a fixed period of time.

Aside from the instrumentation overhead in question, the performance of Java programs

is influenced by several factors. For example, GC and JIT compilation are two factors

that impact performance. For the sake of mitigating these sources of variability and thus

carrying out a more rigorous performance evaluation, the measured running times reported

in Table 6.2 are the average (mean) execution time across 3 runs; with the exception of

time-bound programs, which had their maximum execution time set to ten seconds both

during execution without instrumentation and in record mode. For the subject programs

whose number of synchronization events varies during execution, resulting in varying-sized

synchronization sequences, we report the median size of the synchronization sequence file

and its respective number of lines across 3 runs.
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As shown in Table 6.2, the overhead imposed by the record mode instrumentation is

negligible. The highest overhead measured was 25.81% (SynchronizedInteger). As for

the other subject programs, the overheads in record mode were 0.98% (Counter), 3.58%

(AccountDanger), and 5.82% (Bank & Company). Interestingly, the instrumented version of

SynchronizedBuffer performed better in record mode than its non-instrumented version.

It took on average 18.93s to execute in record mode and 19.77s to run without instru-

mentation. This suggests that when running in record mode our approach is minimally

intrusive. We conjecture that this is due to the fact that, when replay is not required, guard

conditions that prevent threads from acquiring locks are relaxed. This also indicates that

the record instrumentation can be kept switched on at all times. Doing so can contribute

to pinpoint and eliminate Heisenbugs: whenever an error occurs, it is possible to gather

further information about its cause by analyzing the generated synchronization sequence

file.

Table 6.1: Multithreaded programs extracted from the literature.

Program Lines of Code† Files Textbook

SynchronizedInteger 44 2 (Goetz et al., 2006)

AccountDanger 62 2 (Sierra and Bates, 2008)

Counter 76 2 (Goetz et al., 2006)

StackImpl 76 2 (Mughal and Rasmussen, 2008)

Bank & Company 77 4 (Javier, 2012)

Producer-Consumer 92 3 (Niemeyer and Knudsen, 2005)

Dining Philosophers 92 4 (Garg, 2004)

WaxOn WaxOff 94 4 (Eckel, 2006)

Reader-writer 129 5 (Silberschatz et al., 2009)

SynchronizedBuffer 143 5 (Deitel and Deitel, 2004)

Total 885 33
†Physical lines of code (non-comment and non-blank lines).

Due to the different characteristics of the selected programs, the amount of synchroniza-

tion events yielded by them differs. For instance, AccountDanger and Bank & Company

take roughly the same time to execute, however, the number of synchronization events

generated by the latter is 20 times larger than the number of synchronization events

produced by the former (Table 6.2). Both AccountDanger and Bank & Company generate

only lock-acquisition and lock-release events. In other words, during the execution of these

programs there are no calls to wait, so none of the running threads enters a wait set. In

comparison, SynchronizedBuffer generates all types of synchronization events that can

be captured by our DSL at run time, and yet the resulting synchronization sequence file

is smaller than the one generated for Bank & Company.
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In contrast to running applications in record mode, enforcing synchronization sequences

in replay mode results in noticeable overhead. In order to properly replay the execution of

time-bound applications, two approaches can be taken: (i) increasing the running time limit

so that it takes into consideration the slowdown introduced by the replay instrumentation or

(ii) turning off the time limit making our implementation halt execution after reproducing

the last synchronization event. During this evaluation, we took the second approach. The

mean replay times in Table 6.2 suggest that the replay instrumentation incurs moderate

overhead. We conjecture that some of this slowdown can be ascribed to the additional

interthread coordination cost introduced by our instrumentation. One factor that seems

to influence the time our implementation takes to replay an execution is the number of

involved threads. It seems that the more threads involved, the longer it takes to replay an

execution.

Table 6.2: Performance of our implementation in record and replay mode.

Program Threads Exec. Time∗ Record⋆ Replay⋆ File Size† Lines‡

SynchronizedInteger 2 0.31s 0.39s 0.48s 0.82K 8
AccountDanger 2 2.51s 2.60s 3.31s 1.8K 20
Counter 2 10.15s 10.25s 23.09s 93K 1014
StackImpl 2 ≈10s ≈10s 15.10s 1.7K 19
Bank & Company 2 2.06s 2.18s 4.01s 41K 400
Producer-Consumer 2 ≈10s ≈10s 18.35s 4.4K 45
WaxOn WaxOff 2 ≈10s ≈10s 39.53s 38K 400
SynchronizedBuffer 2 19.77s 18.93s 27.01s 9.5K 78
Dining Philosophers 5 ≈10s ≈10s 55.21s 11K 80
Reader-writer 6 ≈10s ≈10s 89.67s 87K 889
∗Average execution time across 3 runs with instrumentation turned off.
⋆Average execution time across 3 runs in either record or replay mode.
†File size indicates the amount of storage space required to store the synchronization file.
‡Values in this column represent the number of lines in synchronization sequence files.

6.6.1 Editing Synchronization Sequence Files to Expose Interesting

Interleavings

Given that our implementation relies on synchronized blocks and methods, it might not be

very effective to detect race conditions. Simply put, programs that properly synchronize

access to data are likely to be free of data races. Our implementation, however, can be

useful to simulate deadlock scenarios in programs whose outcomes depend on the execution

order. Aimed at demonstrating this, we manually modified the synchronization sequence

file generated for Dining Philosophers to make it run into a deadlock.
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As pointed out by Garg (2004), the dining philosophers problem was first formulated and

solved by Dijkstra. This synchronization problem illustrates the need to properly allocate

shared resources among threads in a deadlock-free and starvation-free fashion (Silberschatz

et al., 2009). Deadlock arises when each philosopher (thread) grabs the chopstick (shared

resource) to his left and then has to wait for the adjacent philosopher to release the

other chopstick. This behavior can be reproduced by inserting the synchronization events

shown in Listing 6.14 into a previously recorded synchronization sequence. The code in

Listing 6.14 forces each philosopher to grab only the chopstick on his right, thus none of

them can resume execution because they have to wait for the left chopstick, which is held

by the philosopher to their left.

Listing 6.14: Snippet of code that causes Dining Philosophers to run into a deadlock.
This code has to be inserted before any lock-acquisition related event.✞

. . .
Phil −4 locked on BinarySemaphore<in s tance >(WS: ) ;
Phil −3 locked on BinarySemaphore<in s tance >(WS: ) ;
Phil −2 locked on BinarySemaphore<in s tance >(WS: ) ;
Phil −1 locked on BinarySemaphore<in s tance >(WS: ) ;
Phil −0 locked on BinarySemaphore<in s tance >(WS: ) ;

. . .
✡✝ ✆

Tools such as ConTest (Edelstein et al., 2003) increase the probability of the aforemen-

tioned concurrency hazard by trying to introduce a context switch after each left chopstick

is picked. Using our implementation, the same can be achieved in a deterministic way

by editing the DSL file generated from running Dining Philosophers. We were able to

simulate the aforementioned scenario in which none of the involved threads is able to

resume execution.

6.7 Known Limitations

Capturing synchronization sequences from non-terminating programs poses a challenge

due to the infinite size of these synchronization sequences. A possible workaround is to

capture only the first n synchronization events. Likewise, debugging long running programs

using our implementation is ineffective due to huge synchronization sequences and the

overhead associated with enforcing them.

In the current implementation, deadlocks might occur during replay mode or when

exploring new interleavings if one of the involved threads terminates abnormally (e.g.,

due to an uncaught exception). In the future, we plan to address this by wrapping our
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instrumentation into a try-catch block,10 which will enable our implementation to properly

resume execution. In record mode, however, it is possible to capture synchronization

sequences that lead to deadlock. In other words, despite the fact of having to force the

JVM to shut down in case of deadlock, the synchronization sequence captured up to the

point of such a concurrency hazard is not lost. A shutdown hook (Goetz et al., 2006) is

used to ensure that synchronization sequences are saved to file when the JVM is shutting

down.

Prior to Java 5, the only mechanisms for coordinating access to shared resources were

synchronized methods and blocks and the volatile keyword (Goetz et al., 2006). Java 5

introduced a new option, namely, ReentrantLock.11 Despite the fact that ReentrantLock

should not be seen as a replacement for intrinsic locking, ReentrantLock implements

reentrant mutual exclusion lock with the same basic behavior as synchronized methods and

blocks, but including additional advanced features. As of this writing, our implementation

does not support the replay of programs that use ReentrantLock in lieu of synchronized

blocks or methods.

Similarly to enforcing executions in replay mode, exploring different synchronization

sequences significantly slows down our implementation. Another source of slowdown is

that the number of possible synchronization sequences increases exponentially with the

number of threads and number of acquire-lock events.

Given that our implementation relies on bytecode instrumentation, it does not support

native methods.

6.8 Related Work

As previously mentioned, testing multithreaded programs is as challenging as multithreaded

programming. Part of this complexity can be ascribed to the shortcomings of unit testing

frameworks, which have been developed with single-threaded programming in mind. There-

fore, they fail to take into account issues that arise when testing concurrent programs. To

cope with these issues, researchers have been extending test frameworks to include basic

facilities that support the creation and execution of unit tests for programs containing

multiple threads.

10Another possibility is to use the uncaught exception handlers provided by the Thread API through
the UncaughtExceptionHandler interface. Handlers that implement this interface are invoked when any
of the registered threads abruptly termine (http://docs.oracle.com/javase/1.5.0/docs/api/java/
lang/Thread.UncaughtExceptionHandler.html).

11http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/locks/

ReentrantLock.html
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An example of shortcoming is that test frameworks tailored to single-threaded programs

ignore failures in auxiliary threads. ConcJUnit is a concurrency-aware version of JUnit

that supports the developer in writing unit tests for concurrent programs (Ricken and

Cartwright, 2009). By handling uncaught exceptions and failed assertions in all threads,

ConcJUnit simplifies the creation of unit tests for concurrent programs. In addition, it

detects child threads that were not forced to terminate before the main thread finishes

execution.

Other frameworks have focused on recording failing interleavings and deterministically

replaying them by transforming the program under test. Carver and Tai (1991) use a

language-based transformation approach that turns the original program under test into

an equivalent program that employs semaphores and monitors to control synchronization.

Writing large test cases containing many possible interleavings is an established strategy

for testing concurrent programs. Thus, aimed at increasing the chances of discovering faulty

interleavings, several concurrent test frameworks provide facilities to boost the range of

possible interleavings. Edelstein et al. (2002) developed a tool for detecting synchronization

faults named ConTest. To reveal concurrent faults, ConTest seeds the program under

test with various primitive calls (e.g., sleep and yield) at shared memory accesses and

synchronization events. Then, at run time, ConTest randomly decides whether the seeded

primitives are to be executed, increasing the probability of uncovering faults. Along the

same lines, CalFuzzer (Joshi et al., 2009) and CTrigger (Park et al., 2009) employ analysis

techniques to generate potentially erroneous schedules.

Besides these frameworks, researchers have been developing record and replay mecha-

nisms, as the ones discussed in the previous chapter. A notable example of such mechanism

is DEJAVU (Choi et al., 2001), which is similar to our implementation because it was

implemented as part of a JVM. However, given that DEJAVU was implemented in a

green-thread JVM, it achieves a greater degree of control over threads. Instead of relying

on a scheduler, our workaround solution capitalizes on the way threads are implemented

in the JVM and its intermediate language. Differently from our implementation, DEJAVU

deterministically replays the entire execution, not only the order in which synchroniza-

tion events take place. When it replays a program up to a synchronization primitive, it

also faithfully replays the whole program and execution environment states. Compared

to DEJAVU, our implementation records much less run-time information. Most record

and replay mechanisms sit on top of execution environments. An example of record and

playback tool is RecPlay (Ronsse and De Bosschere, 1999).

129



Chapter 6 — Recording and Replaying Multithreaded Java Programs and Progressively
Exploring Interleavings

6.9 Concluding Remarks

Designing and implementing concurrent programs is difficult. Most of this complexity

stems from the inherent non-determinism of concurrent programs and the shortcomings

of the abstractions used for representing concurrency (Lee, 2006). To overcome the nonde-

terminism of multithread Java programs, our implementation piggybacks on the way that

the execution environment serializes access to certain blocks of code.

Given the granularity with which our proof-of-concept implementation deals with

non-determinism, executions are replayed in terms of coarse-grained synchronization events,

i.e., accesses to synchronized blocks. Thus, synchronization events that take place outside

synchronized regions are not taken into account.

We believe that recording synchronization sequences into a reader-friendly textual for-

mat and deterministic replay are useful to understanding and debugging concurrency-related

faults.

Our approach and implementation thereof still have room for improvements. In the

future, to mitigate the slowdown caused by the introduced instrumentations, we intend

to investigate the idea of running multiple Maxine VM instances in a concurrent fashion,

each exploring different synchronization sequences.
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Conclusions and Future Work

This chapter revisits the research problem and the RQs (Section 7.1). Drawing on the

findings of our investigation, we further elaborate on the advantages and disadvantages

of extending JIT compilers to support software testing techniques (Section 7.2). This

chapter also restates the contributions (Section 7.3), discusses the current limitations

(Section 7.4) of our proof-of-concept implementation, and suggests future research directions

(Section 7.5). The chapter concludes with a discussion of the relevance of this research and

a summary of the technical challenges faced when extending Maxine VM (Section 7.6).

7.1 Research Problem and RQs Revisited

Our survey of the literature, along with our own experiences, led us to believe that the

bulk of the research on HLL VMs has focused on developing faster JIT compilers and GCs.

Few efforts have tried to augment HLL VMs with software testing support.

We argued that lowering the implementation of testing support into the HLL VM

could offer several advantages. First, it would open up possibilities for further speeding up

computationally expensive software testing techniques. In other words, software testing

support would better leverage off all the optimizations present in today’s HLL VMs when

integrated within HLL VMs. Second, it would be possible to achieve extensive control over

program execution by taking advantage of the facilities afforded by HLL VMs. So, this

dissertation tackled the research problem of investigating whether HLL VMs provide a
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sound basis for implementing software testing support. Based on this research problem,

two RQs were formulated. In the light of our findings, these RQs are answered as follows.

• RQ1: Can HLL VMs be harnessed to support software testing?

– We addressed RQ1 by designing and implementing a testing infrastructure

within a modern HLL VM. We started off with the selection of the target

HLL VM. Given that the results of our systematic mapping suggest that JVMs

are the most widely used HLL VMs, we settled on using Maxine VM, which is

a mature, research-oriented, high-performance JVM implementation. Next, we

set out to demonstrate the feasibility of capitalizing on HLL VMs to speed up

compute-intensive testing techniques. To this end, we chose to retrofit mutation

testing support to Maxine VM. The resulting implementation that automates

weak mutation was described in Chapter 4. Subsequently, facilities for support-

ing the test of multithreaded Java programs were also integrated within the

chosen JVM. Such facilities include record-and-playback and an interleaving ex-

ploration mechanism, which were presented in Chapter 6. Therefore, the answer

to RQ1 is that HLL VMs can be harnessed to support software testing.

As we looked at the results of retrofitting software testing support into Maxine VM,

we fine-tuned our investigation by asking:

• RQ2: What sort of software testing support is more suited to modern HLL VMs?

– Our results suggest that the benefits provided by modern HLL VMs are suited

to speed up the execution of computationally expensive techniques such as mu-

tation testing. On the other hand, controlling threads from within Maxine VM

has proved challenging. Essentially, the problem lays within the thread model

used by most high-performance HLL VMs. Maxine VM and other contem-

porary JVMs are inappropriate for hosting record-and-playback mechanisms

because they use native threads. That is, these HLL VMs rely on the OS

to manage threads, which are compiled to pthreads. HLL VMs tailored to

resource-constrained devices use green threads. In a green thread model, the

implementation of threads is managed entirely in the HLL VM. Therefore, we

surmise that green-thread HLL VMs might afford better control over threads.

Being able to access and modify the thread scheduler would make the imple-

mentation of facilities as the one described in Chapter 6 easier.

Summing up, our findings indicate that the answer to RQ2 is that testing

techniques that benefit from improved performance are better suited to be im-

plemented as part of a cutting-edge execution environment. From within such
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an execution environment it is easier to capitalize on the optimization infrastruc-

ture (e.g., JIT compilation and GC). Additionally, by integrating those software

testing features into the runtime environment, it is possible to take advantage of

ahead-of-time compilation. That is, the set of classes that belongs to the core ex-

ecution environment is usually compiled in an ahead-of-time fashion to generate

a bootstrap image. Thus, adding testing features to the core of HLL VMs turns

them into self-contained execution environments that require no dynamic class

loading until later stages of execution. As for controlling threads, green-thread

HLL VMs are more amenable to the implementation of replay mechanisms that

entail a great degree of control over threads. Unfortunately, due to performance

reasons, no mainstream JVM implementation uses green threading.

7.2 JIT Compilation: What Are the Advantages It Has

to Offer to Software Testing Automation?

Based on the results of our investigation, we could draw the following conclusions. JIT

compilers significantly increase the complexity of HLL VMs. Usually, HLL VMs need to

be deployable on different platforms, so these runtime compilers have to be adapted for

different hardware architectures. This makes JIT compilers difficult to implement and

maintain, but the difficulty pales in comparison to the performance benefits they provide.

Such a characteristic, along with the fact that it is easier to trigger the runtime compiler

from within the execution environment, makes HLL VMs a sound basis for speeding

up computationally expensive testing techniques. It turns out that taking advantage of

Maxine VM’s JIT compiler is fairly straightforward. However, modifying it seems to be

quite complex, time-consuming, and error-prone.

As pointed out by Weyuker (2002), the analysis required by some code-based testing

techniques as the dataflow criteria is similar to the one carried out by a JIT compiler:

when looking for optimization opportunities, the compiler has to determine whether a

given variable occurrence is either a definition or a use. Despite that, the complexity and

brittleness in Maxine VM’s compiler led us to believe that it might be hard to tailor it to

even similar needs.

To circumvent the aforementioned problems, researchers that have extended JIT-enabled

JVMs for some sort of code coverage analysis have opted for relying on bytecode trans-

formation instead of modifying the runtime compiler (Chilakamarri and Elbaum, 2004).

Apart from being a simple instruction set, bytecodes can be easily mapped to source code

and some HLL VMs provide bytecode manipulation facilities. Therefore, we believe that
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it is more convenient to implement support for control flow and data flow criteria through

bytecode instrumentation at loading time. In addition, if performance is not a concern,

interpretive HLL VMs can be a better fit for tracking code coverage information and

achieving a higher degree of control over execution. The main advantage of an interpretive

HLL VM is that interpreters tend to be simpler than runtime compilers (Klint, 1981).

7.3 Summary of Contributions

We systematically surveyed the literature describing research into HLL VM. We found

that most studies concentrate on improvements for boosting performance and introducing

better GC capabilities. Furthermore, the results of this systematic mapping suggest that

JVMs are by far the most investigated implementations within academic settings. These

findings add to a growing body of literature on understanding trends in HLL VM research.

Our VM-integrated approach to weak mutation forks new threads to execute mutant

methods. One of the benefits of forking new threads is that the program up until a method

call does not need to be repeated for every mutant. This implements the split-stream exe-

cution envisioned by King and Offutt (1991). Moreover, the method model of Maxine VM

was extended with mutation testing semantics, where certain methods are seen as mutants

and can be in either of two states: alive or dead. The experiment shows that major savings

in computational cost can be achieved by this weak mutation approach, speedups of up

to 95% were obtained in comparison to muJava.

We retrofitted record-and-playback and interleaving exploration capabilities into Max-

ine VM. The contributions of this implementation are fourfold. First, our implementation

is able to capture information about the order in which threads execute synchronized

code and when they enter and exit the waiting set of shared objects. Second, using such

an information, our implementation is able to ensure the deterministic re-execution of

multithreaded Java programs. Third, our implementation can enforce the execution of new

interleavings by modifying a given synchronization sequence file. Moreover, since synchro-

nization sequences are expressed in a compact and user-friendly textual representation,

testers can drive the exploration of new interleavings by changing these files by hand.

Forth, we think that logging synchronization sequences into a reader-friendly representa-

tion is helpful for debugging concurrency-related faults. Our implementation is tailored

to support approaches similar to the one proposed by Offutt et al. (1996b) (discussed in

Section 5.4) whose feasibility and correctness are highly dependent on the degree to which

deterministic re-executions and new scheduling sequences can be enforced.

Throughout this dissertation, the implementation details of the improvements to sup-

port software testing were discussed in terms of a JVM implementation. We argue that
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this is no limitation. We believe that most ideas discussed herein can be transferred into

other execution environments. In fact, execution environments for other HLLs and their

intermediate languages employ very similar concepts (Singer, 2003), thereby they can be

extended in similar ways.

7.4 Limitations

While our proof-of-concept implementation bolsters our hypothesis that HLL VM can

be augmented with testing support, its design has some limitations. This section briefly

restates the main limitations, which have been discussed in detail in Sections 4.3 and 6.7.

• Limitations of the weak mutation system:

– Our implementation does not automate the generation of mutant methods.

– The execution of mutant native methods is not supported because these methods

do not use Java stacks. Instead, native methods use C stacks (Liang, 1999). As

a result, our implementation is not able to obtain a snapshot of the context

before and after the invocation of native methods.

• Limitations of the record-and-playback mechanism:

– Our implementation does not support the replay of programs that use Reen-

trantLock in lieu of synchronized blocks or methods.

– Given that part of our implementation relies on bytecode transformations, it

does not support native methods. Thus, programs with concurrent native code

may not be properly replayed.

• Limitations of our interleaving exploration mechanism:

– Exploring interleavings of long running programs using our implementation

is ineffective. Although our approach minimizes the amount of data recorded

(i.e., only coarse-grained synchronization events are logged), long running pro-

grams with lots of lock contention still may yield very large synchronization

sequences. Given that no additional technique is used to reduce the size of the

resulting synchronization sequence files, exploring interleavings as described in

Subsection 6.4.3 may take too long: long running programs aggravate the state

explosion problem.

• Limitations related to the integration of the split-stream execution and our replay

mechanism:
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– In our split-stream approach, after the execution of an original method, new

threads are forked to run mutants. When that happens, the main thread

(i.e., thread executing the original method) is held until all mutants are run.

In effect, the main thread is held before it returns from the original method

(i.e., the frame of the original method is still the current frame when the thread

is held). Since locks are released only after method completion, the threads

spawned to run the mutants of a synchronized method are not able to acquire

the lock associated with the underlying object (for instance methods) or class

(for static methods), and thus they cannot execute the synchronized regions

within these mutant methods. As a consequence, it is not possible to deter-

ministically replay the execution of programs containing synchronized mutant

methods. Two simple workarounds for this problem are discussed in Section 7.5.

• Limitations inherent to Maxine VM:

– Since our implementation is part of Maxine VM, its architecture is less portable

than similar tools. To be precise, while similar tools can run atop many JVM

implementations, some elements of our implementation are specific to Max-

ine VM. Furthermore, our implementation can only run on the platforms that

Maxine VM has been ported to. Currently, Maxine VM only supports 64-bit

computer architectures; it runs on Linux, Solaris, and Mac OS.

– Our implementation is not fully compatible with Java 7 programs. It is likely

that this limitation will be removed in the future as the developers aim to keep

Maxine VM up to date with respect to the latest version of the JVM specifi-

cation (Wimmer et al., 2013). As of this writing, Maxine VM integrates with

the JDK 7 class library. However, it does not implement the invokedynamic

bytecode, introduced with Java 7, so Maxine VM cannot execute programs

needing some Java 7 features.

7.5 Future Research Directions

We believe that the resulting HLL VM can be seen as an integrated testing environment

that can be further tuned and augmented. Although fully functional, this integrated testing

environment is subject to further improvements. The research described in this document

can be continued in several directions:

• We intend to evaluate the scalability of our proof-of-concept implementations by car-

rying out follow-up experiments involving more complex programs. In these follow-up

experiments we need to look at the following:
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– Regarding the weak mutation system, we need to examine how much of the

achieved speed-up is due to multithreading (i.e., split-stream execution) and

how much can be attributed to weak mutation. While we did not seek to answer

this research question, it is relevant for the future.

– In the experiment described in Section 4.2, we did not compare our variant of

weak mutation with strong mutation in terms of effectiveness. It is known that

weak mutation is not as effective as strong mutation. Future work can examine

how the proposed method-based weak mutation compares with strong mutation

in terms of effectiveness. Along similar lines, future work can also investigate

more appropriate ways to implement weak mutation within Maxine VM. For

example, instead of performing the state comparison after method executions,

a finer-grained variant of weak mutation could compare the program states as

follows: (i) after the first execution of the basic block that contains the mutated

statement; or (ii) after the first execution of the mutated statement.

• There are three workarounds to make split-stream execution work in replay mode.

The first workaround is to simply prevent synchronized methods from being mutated,

which does not entail any changes to our implementation. The second workaround is

to transform synchronized mutants into non-synchronized methods at loading time.

However, it is worth noting that not every method can be turned into a regular

method. For example, methods that invoke thread collaboration methods such as no-

tify and notifyAll will not work properly when transformed into regular methods.

The reason is that notify and notifyAll should only be called when the current

thread owns the underlying object’s lock, otherwise an IllegalMonitorStateEx-

ception is thrown. The third workaround is modify our split-stream implementation

so that the main thread releases the lock before forking new threads to execute

mutants. Nevertheless, since only one thread (the one that owns the lock) would

be able to be executed at any given time, this workaround defeats the purpose of

the split-stream approach. Future work will be needed to investigate better ways to

integrate split-stream and deterministic re-execution.

• The interleaving exploration algorithm can be improved with better heuristics.

• For a faster exploration of interleavings, our implementation can be extended so that

it is possible to run multiple instances of Maxine VM in a concurrent fashion, each

exploring a new interleaving.

• This research has shown that it is feasible and, in some cases, beneficial to implement

testing techniques in an HLL VM. Aimed at creating an execution environment
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hosting a wider variety of testing techniques, long term future work includes the

investigation of how Maxine VM can be modified to support other testing techniques.

• More broadly, not only software testing techniques are susceptible to being integrated

within HLL VMs. Future research should concentrate on examining programming

mechanisms and constructs that are currently realized through code instrumentation

or implemented in libraries but should rather be supported at HLL VM level.

7.6 Overall Conclusions

This research has supplied insights into the sort of software testing support that can

capitalize on the features of state-of-the-art HLL VMs. This dissertation is the first to

look at how HLL VMs can be extended with software testing support. Although previous

research has built on compilers and interpreters to speed up mutation testing, ours is the

first to explore a full-fledged, JIT-based HLL VM. The results of the experiment described

in Section 4.2 further strengthened our hypothesis that the optimization infrastructure

of HLL VMs has the potential of yielding marked speedup. Therefore, we posit that our

findings advance knowledge and understanding in the field of mutation testing.

The implementation of the record-and-playback and interleaving exploration facilities

was hindered by the fact that Maxine VM does not have a scheduler, which is a trait of

modern JVMs. We argue that a greater degree of control over threads could have been

achieved if we had modified a green-thread JVM. However, only JVMs tailored to small

devices use green threading. Thus, choosing a JVM designed for small devices would limit

the scope of our findings.

Despite Maxine VM’s research-oriented design, modifying it posed some technical

challenges. All in all, HLL VMs are complex and consist of many subsystems whose intricate

interactions entail implicit dependencies; Maxine VM is no exception. Maxine VM has

around 550,000 lines of code and includes more than ten subsystems. Thus, reasoning

about which elements of these subsystems should be extended and the implications of

modifications proved to be a challenge during the early stages of development. Another

factor that significantly hindered the implementation of the two testing facilities was the

slow turnaround time: getting feedback on whether changes to Maxine VM worked or

not requires at least a five-minute wait for recompilation. This rendered the use of agile

practices such as test-driven development (TDD) impractical.
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