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Abstract— This paper addresses the dynamics, control, plan-
ning, and visual servoing for micro aerial vehicles to perform
high-speed aerial grasping tasks. We draw inspiration from
agile, fast-moving birds, such as raptors, that detect, locate,
and execute high-speed swoop maneuvers to capture prey.
Since these grasping maneuvers are predominantly in the
sagittal plane, we consider the planar system and present
mathematical models and algorithms for motion planning
and control, required to incorporate similar capabilities in
quadrotors equipped with a monocular camera. In particular,
we develop a dynamical model directly in the image space,
show that this is a differentially-flat system with the image
features serving as flat outputs, outline a method for generating
trajectories directly in the image feature space, develop a
geometric visual controller that considers the second order
dynamics (in contrast to most visual servoing controllers that
assume first order dynamics), and present validation of our
methods through both simulations and experiments.

I. INTRODUCTION

The dexterity and adaptability of living creatures far

exceeds what we see in modern robots but provides great

inspiration for avenues of research. For example, birds of

prey can not only cover great distances by flight, but they are

also excellent hunters and are able to perch and walk. Some

raptors exhibit great speed and agility, and they use visual

target recognition and perception-action loops to swoop

down to grasp their prey [1]. For example, see Fig. 1 for

still images of a Red Kite swooping to capture a target.

Such capacities would be advantageous for robots in aerial

manipulation tasks. For example, placing sensors quickly,

perching to save energy, and dynamic grasping to acquire

and transport materials or other robots, are a few tasks that

increase the usefulness of aerial robots and require similar

capabilities to those of raptors. Aerial robots, however, do

not yet have a comparable rich set of capabilities, and they

are limited partially by low strength/weight actuators, heavy

materials, and batteries with low energy density and low

specific power. In addition, our poor understanding of the

perception-action loops required for agile flight and manipu-

lation remains a limiting factor. For grasping or perching,

the robot must be able to detect the object of interest

and subsequently use visual feedback to control the robot’s

motion. To maintain agility, the robot must also accomplish
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Fig. 1. A Red Kite swoops down and uses visual feedback to approach,
grasp, and retrieve food on the ground [8].

this task with a minimal sensor payload and consideration

of the dynamics of the system [2], [3].

In scenarios like this, a monocular camera is an inexpen-

sive and versatile sensor of choice, especially when com-

bined with an Inertial Measurement Unit (IMU) [4], [5]. Such

applications requiring control feedback using a single camera

motivate either Position Based Visual Servoing (PBVS) or

Image Based Visual Servoing (IBVS) [6]. PBVS requires an

explicit estimation of the pose of the robot in the inertial

frame while IBVS acts directly using feedback from the

image coordinates. In particular, a single monocular camera

is sufficient for visual servoing when there is some known

geometry or structure in the environment. Further, visual

servoing can even be effective in an unknown environment

while remaining insensitive to camera calibration [7].

Our goal is to ascribe to aerial vehicles the ability to fly

above, grasp, or perch on a target using vision. The platform

considered is a quadrotor micro aerial vehicle (MAV) which

is similar to a helicopter, but has four rotors [9]. The

quadrotor platform is appealing because of its mechanical

simplicity, agility, and well understood dynamics [10].

Despite the fact that it is underactuated, it is possible

to design controllers that will guarantee convergence from

almost any point on SE(3), the Euclidean motion group.

In our group’s previous work, similar controllers have also

been derived for a quadrotor carrying a cable-suspended

payload [10]. However, both of these approaches require full

knowledge of the state. Therefore, our goal is to use similar

approaches with the dynamics of the system directly in the

image plane (rather than in the Cartesian space) to develop

an IBVS controller based on visual features of a cylinder.

We will also demonstrate a method to generate dynamically-

feasible trajectories in the image plane.

There are many excellent tutorials on visual servoing [11],

[6], [12], [13]. However, most approaches are limited to first-

order or fully-actuated systems. For example, Taylor and

Ostrowski demonstrated robustness to camera calibration,

but only considered a first-order system [7]. Cowan et al.

proved stability for second order systems, but assumed a fully

actuated system [14]. More recently, Hamel and Mahoney



Fig. 2. Top: A bald eagle snatches a fish from the water [18]. Bottom: A
quadrotor dynamically grasps at 3 m/s using a custom gripper [2].

leveraged a spherical camera model and utilized backstep-

ping to design non-linear controllers for a specific class of

underactuated second-order systems [15], [16]. As is typical

in backstepping, however, it is necessary to assume that the

inner control loops are significantly faster than the outer

ones. Some preliminary efforts have been made to enable

autonomous landing, but require an estimate of velocity in

the inertial frame using an external motion capture system

[17]. Therefore, there is a lack of IBVS controllers which can

handle the dynamic motion required for aggressive grasping

and perching.

In this paper, we build upon existing IBVS literature,

generalizing from the typical first-order fully actuated system

to a higher-order underactuated system, and we develop

IBVS controllers for dynamic vision-based grasping and

perching. In our previous work, we demonstrated a proof-

of-concept bio-inspired gripper which, when attached to a

quadrotor, enabled dynamic grasping of stationary objects as

displayed in Fig. 2 while moving at 3 m/s (or 9 body lengths

/ s) [2]. However, this work required a motion capture system

[19] and therefore restricted such aggressive maneuvers to a

structured environment.

The primary contribution of this paper is to enable

high-speed grasping maneuvers by developing a dynamical

model directly in the image space, showing that this is a

differentially-flat system with the image features serving as

flat outputs, developing a geometric visual controller that

considers the second order dynamics (in contrast to most

visual servoing controllers that assume first order dynam-

ics), and presenting validation of our methods through both

simulations and experiments1.

The rest of the paper is structured as follows. In Section

II, a mapping from Cartesian space to the image space is

presented. Section III develops a dynamical model in the

image space, while Section IV establishes that the system

is differentially-flat, with the visual features being the flat

outputs, and presents a trajectory generation method. Section

V develops an IBVS controller for the full dynamical system

using geometric techniques. Finally, Sections VI and VII

present simulation and experimental results, respectively.

1It must be noted that grasping maneuvers are predominanty in the sagittal
plane and thus our developed models and algorithms for motion planning
and control are based on a planar model (x − z plane). However, since
the experimental system is 3D, we will use a Vicon-based motion capture
system to ensure stability for the yaw and the y-axis dynamics. The x− z
dynamics will be stabilized thorugh our developed IBVS controller.

II. VISION

In this section, we present an overview of the vision

system, outline the camera model, and derive the geometric

constraints on the cylinder detection in the image plane.

A. Problem Formulation

The problem is formulated in the sagittal plane, which

is the dominant plane of actuation for aerial grasping ma-

neuvers in nature and enables high-speed dynamic grasping

for aerial robots [2]. This also allows us to simplify the

problem. When considering the sagittal plane, two image

features are sufficient to establish a relationship between

the vision system and the pose of the robot. These features

could be any two known points; however, it is not always

possible to have such a structured environment in practice.

Conveniently, cylinders with known (or estimated) radii are

fairly common and provide sufficient structure for visual

servoing and grasping.

We will use the following nomenclature. Let T be the

homogeneous transformation matrix from the camera frame

to the world frame, fi denote a focal length in the ith

direction, ci be the center image pixel in the ith direction,

and λ be an arbitrary scaling factor.

B. Camera Model

The camera is modeled using a standard pinhole perspec-

tive camera model so that a generic point in the world,
[

X Y Z 1
]T

, is projected onto the image plane,
[

x′ y′ 1
]T

, according to [20] such that
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From here on, we will use the calibrated image coordinates,




x

y

1



 = K−1





x′

y′

1



 ,

which are equivalent to the transformation and projection of

points in the world to an image plane with unity focal length

and a centered coordinate system.

C. Geometry

Let the image features be the points whose rays are tangent

to the cylinder and lie in the vertical plane. In contrast to

typical visual servoing approaches, these points are now a

function of the position of the robot. Therefore, we cannot

use the standard image Jacobian as in [12], which assumes

the target points are stationary in the inertial frame.

We now formulate the mapping between the image fea-

tures and the robot pose. Let rq = (xq, zq)
T ∈ R

2 denote the
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Fig. 3. We assume, without loss of generality, that the target is located at
the origin and the quadrotor is located at (xq , zq). The focal length of the
camera, fx, defines the location of the image plane relative to the quadrotor
and the image coordinates are given by v1 and v2. The optical ray tangent
to the target intersects the target at (xt, zt). The coordinate system of the
camera is indicated by xc and zc.

position of the quadrotor in the inertial frame with the target

cylinder at the origin, as shown in Fig. 3. Let Rt denote the

radius of the target cylinder, and rt,i ∈ R
2 be a point on the

circumference that has a tangent passing through the focal

point. With the camera at the same position as the quadrotor,

we have two geometric constraints,

‖rt‖2 = Rt

‖rq‖
2
2 = ‖rq − rt‖

2
2 +R2

t .

Knowing the radius of the cylinder, Rt, these equations have

two solutions which represent the two tangent points,

rt,i =
R2

t

‖rq‖
2





[

xq

zq

]

±

[

−zq
xq

]

√

‖rq‖
2

R2
t

− 1



 . (1)

Unfortunately, the features in the image plane are coupled

with the attitude, and if not compensated, would not allow

for the desired attitude-decoupled mapping between the state

of the robot and the image features. Therefore, we map

the calibrated image coordinates to coordinates on a virtual

level image plane similar to [21] by rotating the camera

coordinate system to a virtual frame where θ = 0. Then, the

problem can be formulated in the rotated coordinate system

where the virtual image plane is level. The virtual calibrated

coordinates of the features can then be computed using (1)

and
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(2)

with the appropriate transformation T ∈ SE(3). The virtual

coordinates, v = [v1, v2]
T , in (2) provide two equations

which can be solved to determine the robot and camera

position as a function of the virtual image coordinates.

We also define the space S = {rq ∈ R
2 | 2Rt ≤ ‖rq‖ ≤

Br, zq > 0}, such that the quadrotor’s position is bounded

below by 2Rt and bounded above by Br, and the quadrotor is

always above the horizontal plane. Then, there exists V ⊂ R
2

and a smooth global diffeomorphism Γ : S −→ V such that

v =
fx

z2q −R2
t





xqzq +R2
t

√

‖rq‖
2

R2

t

− 1

xqzq −R2
t

√

‖rq‖
2

R2

t

− 1



 ≡ Γ (rq) , (3)

v̇ =
dΓ (rq)

dt
=

∂

∂ṙq

(

dΓ (rq)

dt

)

ṙq ≡ J ṙq,

where J is the image Jacobian [22]. Note that J can be

expressed as a function of either the image coordinates or

the position of the robot by using (3) and the fact that

Γ is invertible. Having established a mapping between the

Cartesian coordinates and the image coordinates, we will

next develop a dynamic model of the quadrotor system

directly in the image coordinates.

III. DYNAMICS

The dynamics of this quadrotor system are well known in

literature. For simplicity, we restrict the robot to the vertical

(x− z) plane as shown in Fig. 4 and we assume the gripper

is massless (See [23] for the complete 3-D dynamic model).

We define

rq =

[

xq

zq

]

, wq =

[

rq

θ

]

where rq is the position of the quadrotor and θ is the pitch

angle. Then, the dynamics in the inertial frame take the form

Dẅ + Cẇ +G = F (4)

where D ∈ R
3×3 is a diagonal inertial tensor because the

robot frame is aligned with the principal axes of the inertia.

In this case, centripetal and Coriolis terms, C ∈ R
3×3, are

zero. Gravity appears in G ∈ R
3×1, and F ∈ R

3×1 is

F =

[

fRe2

M

]

where R ∈ SO(2), f ∈ R is the total thrust, e2 =
[

0 1
]T

, and M is the pitch moment generated from

the difference of thrusts between the front and rear rotors

as depicted in Fig. 4. Since the system has three degrees

of freedom, given by wq , and only two control inputs that

appear in F, the system is underactuated.

rq

x

z

θ

f1

f3

fRe2

M

Fig. 4. The total thrust is f =
∑

4

i=1
fi and is in the direction of Re2.

The moment, M , is the result of the thrust difference between f3 and f1.

Now, ṙq and r̈q can be expressed as functions of the image

coordinates using the inverse of the image Jacobian, J . Then,

the dynamics in (4) can be expressed in terms of the image

coordinates

D

[

J−1
v̈ − J−1J̇J−1

v̇

θ̈

]

+ C

[

J−1
v̇

θ̇

]

+G = F

which simplifies to:

v̈ =
1

m
J [fRe2 −GA] + J̇J−1

v̇ (5)

D3θ̈ = M (6)



where GA denotes the upper left 2 × 2 block of G, D3 is

the {3,3} element of D, and m is the mass of the robot.

Equation (5) presents the translational dynamics directly in

the image coordinates. Next, we will demonstrate that these

coordinates form a set of flat outputs for the system, enabling

trajectory design directly in the image space.

IV. DIFFERENTIAL FLATNESS AND PLANNING

In this section, we formulate the trajectory planning prob-

lem in the image plane and compute trajectories that satisfy

the dynamic constraints (i.e. are dynamically feasible) in (5)

and (6). The central idea relies on the differential flatness

(see [24] for definition) property of our system. We will

show that there is a set of so-called “flat outputs” such that

there is a diffeomorphism from the vector of state variables

and inputs to the vector of flat outputs and its derivatives. In

practice, this means that dynamically feasible trajectories can

be generated by considering sufficiently smooth (the order is

defined by the map) trajectories in the space of flat outputs. In

this paper, we show that the image coordinates, v ∈ V ⊂ R
2,

serve as flat outputs.

First, there exists a diffeomorphism between the image

coordinates and the position of the robot, namely Γ as defined

in (3). From (5), we get:

fRe2 = mJ−1
(

v̈ − J̇J−1
v̇

)

+GA,

and

f = ‖FA‖ , θ = arctan

(

F1

F2

)

.

where FA = mJ−1
(

v̈ − J̇J−1
v̇

)

+GA. Further,

ḟ = e
T
2 R

T
ḞA, θ̇ =

1

f
e
T
1 R

T
ḞA.

Since f appears in the denominator, we require that f > 0
so that the thrust is always positive. From (6) and one more

derivative, we obtain:

M = D3
1

f

(

e
T
1 R

T
F̈A − 2ḟ θ̇

)

. (7)

Thus, all state variables and inputs can be written as func-

tions of the image coordinates and their derivatives. Since

we require the 4th derivative of the image coordinates (see

(7)), the planned trajectories in the image plane must be at

least C4 continuous.

Following previous work [25], [2], since the input M is

an algebraic function of the fourth derivative (snap), it is

natural to plan smooth trajectories that minimize the snap of

the trajectory using the cost functional,

Ji =

∫ tf

t0

∥

∥

∥v
(4)
i (t)

∥

∥

∥

2

dt.

Choosing a polynomial basis allows the minimization to

be formulated as a Quadratic Program (QP) [25]. Further,

equality constraints can be enforced and can be determined

by desired robot positions (or velocities) using the Γ map

or by previously measured image coordinates. Finally, all

constraints on attitude and the field of view must be written

as inequalities in the virtual image plane. Having obtained

a trajectory in the image space, we next develop a visual

controller that will track this trajectory.

V. CONTROL

A. Attitude Controller

First, let Rd ∈ SO(2) denote the desired rotation matrix

defined by a desired attitude, θd. Then, we define attitude

errors

eR =
1

2

(

RT
d R−RTRd

)∨
= sin(θ − θd)

eΩ = Ω−RTRdΩd = θ̇ − θ̇d

where ∨ is the “vee” map defined in [26]. These errors are

similar to [26] but simplified for the planar case. Also, we

define a configuration error function as

Ψ(R,Rd) =
1

2
tr
[

I −RT
d R

]

.

The attitude controller is then given as below.

Proposition 1: [26, Prop. 1] (Exponential Stability of At-

titude Controlled Flight Mode) Consider the control moment

defined as

M = −KReR −KΩeΩ +D3θ̈d,

where KR and KΩ are positive scalars. Further, suppose the

initial conditions satisfy

Ψ(R(0), Rd(0)) < 2,

‖eΩ(0)‖
2
<

2

D3
kR (2−Ψ(R(0), Rd(0))) .

Then, (eR, eΩ) = (0, 0) is exponentially stable for the

closed-loop system.

Proof: Follows from [26, Prop. 1]. See http://www.

jtwebs.net/ICRA-2014/ for details.

B. Position Control

Let errors in the image plane be defined by

ev = v − vd.

Then, using (5), the image space error dynamics are

mëv = fJRe2 − JGA +mJ̇J−1
v̇ −mv̈d.

The visual servoing controller in then given as below.

Proposition 2: (Exponential Stability of Visual Feature

Controlled Flight Mode) Consider the total thrust component

along the current body frame vertical axis defined by

f = A ·Re2.

where A = GA + mJ−1 [−Kpev −Kdėv + v̈d], and the

commanded attitude given by

Rce2 =
A

‖A‖
.

Then, the zero equilibrium (ev, ėv, eR, eΩ) = (0,0, 0, 0) is

locally exponentially stable.

Proof: See http://www.jtwebs.net/

ICRA-2014/ for details.

http://www.jtwebs.net/ICRA-2014/
http://www.jtwebs.net/ICRA-2014/
http://www.jtwebs.net/ICRA-2014/
http://www.jtwebs.net/ICRA-2014/


VI. SIMULATION RESULTS

Using the trajectory generation method outlined in Sec-

tion IV, we can generate sample trajectories directly in the

image coordinates, representing a swooping maneuver. It is

reasonable to specify a limit on the attitude, which enables

the incorporation of linear visibility constraints, rather than

requiring non-linear visibility constraints when planning in

the Cartesian space. A sample trajectory is shown in Fig. 5

(top), where the boundary conditions and intermediate way-

point were computed using Γ, and with the derivatives in the

intermediate waypoint left unconstrained.

Next, using the generated desired trajectory in the image

plane, the controller from Section V is simulated on the

dynamic model given by (5)-(6). The simulation is started

with an initial image coordinate error of 0.10m, and the

resulting trajectory and error are plotted in Fig. 5.
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Fig. 5. A sample trajectory in simulation. The simulated image coordinates,
vi, and the desired coordinates, vi,d, are in the top graph where there is
an initial error of 0.1m in each coordinate. The feature errors and error
velocities are in the bottom graph.

VII. EXPERIMENTAL VALIDATION

A Hummingbird quadrotor equipped with a global shutter

CaspaTM VL camera and Computer on Module from Gumstix

[27] is used for experiments to fly down and grasp a cylin-

der object. As mentioned earlier, grasping maneuvers are

predominantly in the sagittal plane and thus our developed

models and algorithms for motion planning and control are

planar. Since the experiments are on a 3D system, an external

Vicon-based motion capture system is used to stabilize

the yaw and lateral dynamics while our IBVS controller

stabilizes motion in the sagittal plane.

Visual detection and tracking of the cylinder object runs

onboard the robot, is based on blob tracking using Freeman

chain coding, and is obtained using the C++ Visp library

[28]. When the object is in the image and rq ∈ S, the

measured image points from the camera are mapped to the

virtual image plane using feedback from the IMU and the

transformation shown in Fig. 6, which is mathematically

equivalent to

vi = tan (arctan (vi,m) + θ)

where vi,m is the boundary of the cylinder in the actual

calibrated image. The points in the virtual plane are filtered

Optical Axis 

Image Plane 
Virtual “level” 

Image Plane 

Optical Ray 
Camera 

Virtual 

Optical 

Axis θ

vi

vi,m

Fig. 6. The measured image feature points, vi,m, which are affected by
θ, are projected onto a virtual level image plane to decouple the motion
from the attitude of the robot and determine the coordinates vi.

Onboard 

Controller 
IBVS 

Vicon 

Camera 

Dynamics 

Lateral and 

Yaw Controller 
f, θc

Robot Ground Station 

Gumstix 

rq

vm, θ

y, ẏ,ψ

Fig. 7. A camera captures images of the cylinder, which are sent to the
Gumstix Overo Computer on Module (COM). The images are processed at
65 Hz using blob tracking; the boundaries of the cylinder are undistored,
calibrated, and sent back to a ground station along with the pitch as
measured from the IMU. From here, the ground station maps the points
to the virtual plane and computes desired control inputs using the IBVS
controller. In parallel, Vicon feedback is used to close the loop on the lateral
(y, ẏ) and yaw (ψ) dimensions of the robot. Then, the desired attitude is
sent to the onboard controller, which uses the IMU to control the attitude
at 1 kHz.
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Fig. 8. Experimental results of the feature coordinates in the virtual plane
for a “swooping” trajectory. The feature coordinates are denoted by vi and
the desired trajectory is given by vi,d.

to improve the estimate of the image features and their

derivatives to compute J and J̇ . A block diagram of the

system is shown in Fig. 7.

The stability of the controller was demonstrated through

several experiments including hovering, vertical trajectories,

“swooping” trajectories, and hovering above a moving cylin-

der. Here we present a “swooping” trajectory, which includes

some components of the mentioned trajectories. See Fig. 8

for the planned and actual trajectories in the virtual image

plane, Fig. 9 for the corresponding estimated and actual

position in the inertial frame, and Fig. 10 for a sequence

of still images from a sample experiment. The reader can

observe the other trajectories in the attached video.

The aggression of our trajectories is limited beause of (i)

slow feedback due to limited onboard sensing and computa-

tion, (ii) a limited optical resolution, and (iii) a small optical

field of view.
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Fig. 9. Positions in the inertial frame for the experiment in Fig. 8. The
vision estimates of the position (using Γ) are denoted by the “v” subscript.
The ground truth only has the “q” subscript.

Fig. 10. Still images from a sample “swooping” trajectory using the vision-
based controller developed in this paper. The background has been washed
out slightly to improve visibility.

VIII. CONCLUSION

This paper demonstrates a first step towards autonomous

dynamic grasping and manipulation for micro aerial vehicles

in unstructured environments. In particular, we considered

a quadrotor system equipped with a monocular camera and

formulated the dynamics of the underactuated system directly

in the virtual image plane. The system was demonstrated

to be differential flat, with the image coordinates being the

set of flat outputs. We presented a trajectory generation

method which guarantees dynamic feasibility and enables

incorporating visual constraints as linear constraints. We

developed a non-linear vision-based controller for trajectory

tracking in the image space, presented a proof of stability,

and provided validation of the controller both in simulation

and in experimentation on a quadrotor. A next step would

be to generalize the control law to full three dimensions and

consider the yaw of the robot by using image moments to

detect the primary axis of the cylinder.
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APPENDIX

A. Attitude Controller

The proof of the attitude controller is outlined below.

Proof: Follows from [26, Prop. 1], with the Lyapunov

function

VR =
D3

2
eΩ · eΩ +KRΨ(R,Rd) + c2eR · eΩ, (8)

with c2 being a positive scalar, such that,

z
T
θ Mθzθ ≤ VR ≤ z

T
θ MΘzθ, (9)

V̇R ≤ −z
T
θ Wθzθ, (10)

where zθ = [‖eR‖ , ‖eΩ‖]
T

, and Mθ,MΘ, and Wθ are

positive definite.

B. Position Control

To demonstrate the stability of the position controller, we

first set up the proof. Define K ′
p,K

′
d, B, α ∈ R as,

K ′
p = m ‖J‖

∥

∥J−1
∥

∥Kp (11)

K ′
d = ‖J‖

(

m
∥

∥J−1
∥

∥Kd +
∥

∥

∥

˙J−1
∥

∥

∥

)

(12)

B = ‖J‖
(

‖GA‖+m
∥

∥J−1
∥

∥

∥

∥v̈
d
∥

∥+
∥

∥

∥

˙J−1
∥

∥

∥

∥

∥v̇
d
∥

∥

)

(13)

α = ‖eR‖ (14)

and define Wv1
,Wv2 ,Wvθ,Wv ∈ R

2×2 as

Wv1
=

[

c1Kp

m
c1Kd

2m
c1Kd

2m Kd − c1

]

,Wvθ =

[

c1
m
B 0
B 0

]

(15)

Wv2
=

[

c1αK
′

p

m
α
2

(

c1
m
K ′

d +K ′
p

)

α
2

(

c1
m
K ′

d +K ′
p

)

αK ′
d

]

(16)

Wv = Wv1
−Wv2

. (17)

Suppose we choose positive constants c1,Kp,Kd,KR,KΩ

such that,

Kp >
c21
m

(18)

λmin(Wθ) >
4 ‖Wvθ‖

2

λmin(Wv)
(19)

Then, there exists positive constants γ1, γ2, γ3, such that

‖J‖ ≤ γ1,
∥

∥J−1
∥

∥ ≤ γ2,
∥

∥

∥

˙J−1
∥

∥

∥
≤ γ3, and if initial

conditions and the desired trajectory satisfy

α <
1

mγ1γ2
, (20)

dist(vd(t), V
c) < ‖ev(0)‖ , (21)

where V c is the complement of V , and dist(vd(t), V
c) =

inft∈[0,∞),w∈V c ‖vd(t)− w‖ is the smallest distance be-

tween a trajectory and a set, then the zero equilibrium

(ev, ėv, eR, eΩ) = (0,0, 0, 0) is locally exponentially stable.

Proof: We take an approach very similar to [26] to

show that the controller is exponentially stable. Using (5),

we can determine the image errors

ëv = v̈ − v̈d (22)

=
1

m
J [fRe2 −GA] + J̇J−1

v̇ − v̈d (23)

so that

mëv = fJRe2 − JGA +mJ̇J−1
v̇ −mv̈d. (24)

Defining

X = J
f

eT2 R
T
c Re2

((

e
T
2 R

T
c Re2

)

Re2 −Rce2

)

, (25)

the error dynamics become

mëv = J

(

f

eT2 R
T
c Re2

Rce2

)

+X

− JGA +mJ̇J−1
v̇ −mv̈d. (26)

Next, let

f = A ·Re2 (27)

and the commanded attitude be defined by

Rce2 =
A

‖A‖
. (28)

Then, from the previous two equations, we have

f = ‖A‖ eT2 R
T
c Re2. (29)

Substituting this into (26) and using A, we have

mëv = J

(

‖A‖ eT2 R
T
c Re2

eT2 R
T
c Re2

Rce2

)

+X

−JGA +mJ̇J−1
v̇ −mv̈d (30)

= J (‖A‖Rce2) +X

−JGA +mJ̇J−1
v̇ −mv̈d (31)

= JA+X− JGA +mJ̇J−1
v̇ −mv̈d (32)

= −Kpev −Kdėv +X (33)

which has the same form as (83) in [26]. We use the same

Lyapunov candidate, but in our image coordinates,

Vv =
1

2
Kp ‖ev‖

2
+

1

2
m ‖ėv‖

2
+ c1ev · ėv. (34)

Now, let zv =
[

‖ev‖ , ‖ėv‖
]T

, then it follows that the

Lyapunov function Vv is bounded as

z
T
v Mvzv ≤ Vv ≤ z

T
v MV zv, (35)

where Mv,MV ∈ R
2×2 are defined as,

Mv =
1

2

[

Kp −c1
−c1 m

]

, MV =
1

2

[

Kp c1
c1 m

]

. (36)

Then,

V̇v = Kp (ėv · ev) +m (ëv · ėv)

+ c1 (ev · ëv + ėv · ėv) , (37)

and incorporating (33),

V̇v = −
c1Kp

m
‖ev‖

2
− (Kd − c1) ‖ėv‖

2

−c1
Kd

m
(ev · ėv) +X ·

(

c1
m
ev + ėv

)

. (38)



Now, we establish a bound on X. From (25),

X = J
f

eT2 R
T
c Re2

((

e
T
2 R

T
c Re2

)

Re2 −Rce2

)

(39)

‖X‖ ≤ ‖J‖

∥

∥

∥

∥

‖A‖Rce2 ·Re2

Rce2 ·Re2

∥

∥

∥

∥

‖eR‖ (40)

≤ ‖J‖ ‖A‖ ‖eR‖ (41)

≤ ‖J‖
∥

∥GA +mJ−1 [−Kpev −Kdėv + v̈d]

+ ˙J−1 [ėv + v̇d]
∥

∥

∥ ‖eR‖ (42)

≤
(

K ′
p ‖ev‖+K ′

d ‖ėv‖+B
)

‖eR‖ (43)

where K ′
p,K

′
d, B are as defined in (11)-(13), and from [26],

0 ≤ ‖eR‖ ≤ 1.

Next we will show that there exists positive constants

γ1, γ2, γ3 s.t., ‖J‖ ≤ γ1,
∥

∥J−1
∥

∥ ≤ γ2, and

∥

∥

∥

˙J−1
∥

∥

∥ ≤ γ3.

Since Γ is smooth (we only require C2 here), J is smooth on

the closed set S. This implies J is bounded on S, i.e., ∃γ1 >

0, s.t. ‖J‖ < γ1. Next, since J is smooth and nonsingular

on S, the inverse is well defined and is smooth on S, which

implies J−1 is bounded on S, i.e., ∃γ2 > 0, s.t.
∥

∥J−1
∥

∥ <

γ2. Next, observe that d
dt
J−1(rq) = ∂

∂rq
J−1(rq)ṙq is a

composition of smooth functions on S, implying that it is

bounded on S, i.e., ∃γ3 > 0, s.t.

∥

∥

∥

˙J−1
∥

∥

∥ < γ3.

Then, similar to [10], we can express V̇v as

V̇v = −
[

e
T
v ė

T
v

]

Wv1

[

ev

ėv

]

+X ·
(c1

m
ev + ėv

)

(44)

≤ −
[

e
T
v ė

T
v

]

Wv1

[

ev

ėv

]

+K ′
p ‖ev‖ ‖eR‖

(

c1
m

‖ev‖+ ‖ėv‖
)

+K ′
d ‖ėv‖ ‖eR‖

(

c1
m

‖ev‖+ ‖ėv‖
)

+B ‖eR‖
(

c1
m

‖ev‖+ ‖ėv‖
)

. (45)

This can be written as,

V̇v ≤ −z
T
v Wvzv + z

T
v Wvθzθ (46)

where Wvθ,Wv are as defined in (15), (17). Since Wv =
(Wv)

T
and Wv ∈ R

2×2, it is sufficient to show that

det(Wv) > 0 and Wv(1, 1) > 0 in order to claim that

Wv > 0. Then, from the assumption on α in (20), we have

w11 > 0. This is reasonable since α is a functional on the

attitude error such that α ∈ [0, 1]. Thus, the assumption in

(20) is simply a bound on the attitude error. The determinant

can be expressed as a quadratic function of Kd such that

det(Wv) = β0 + β1Kd + β2K
2
d (47)

and βi is a function of c1, Kp, γ1, γ2, γ3, and m. The critical

point of the quadratic occurs when

Kd =
Kpm

c1
+

Kpm+ αc1γ1γ3

c1 (1− αγ1γ2m)
(48)

and has a value of

det(Wv) =
Kp (1− αγ1γ2m)

(

Kpm− c21
)

m
. (49)

In both equations, (1− αγ1γ2m) > 0 as a result of the

assumption in (20). Thus (48) is positive, and by (18), (49)

is positive and W ′
v > 0. Now, we consider the combined

Lyapunov candidate for the translational and rotational error

dynamics, V = Vv + VR. From (9) and (35), we have,

z
T
v Mvzv + z

T
θ Mθzθ ≤ V ≤ z

T
θ MΘzθ + z

T
v MV zv. (50)

Further, we see that

V̇ ≤ −z
T
v Wvzv + z

T
v Wvθzθ − z

T
θ Wθzθ, (51)

≤ −λmin(Wv) ‖zv‖
2
+ ‖Wvθ‖ ‖zv‖ ‖zθ‖

−λmin(Wθ) ‖zθ‖
2
, (52)

and from (19), we have V̇ to be negative definite, and

the zero equilibrium of the closed-loop system is locally

exponentially stable.
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