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ABSTRACT 
Revolute-jointed cobots depend on continuously variable 

transmissions (CVTs).  CVTs constrain the speed ratio 
between two shafts to a particular value within a continuous 
range.  The spherical CVT is well suited to cobots, but like 
other point contact transmissions, achieving good performance 
is challenging. 

We have studied the contact mechanics of the spherical 
CVT under certain simplifying assumptions.  Results of the 
calculations are compared to experimental measurements of an 
instrumented CVT.  Improved CVT performance may require 
better control of compliance and contact forces in the CVT.  
Results for the contact forces under load conditions are shown.  
We conclude with a discussion of design implications for 
improved CVTs. 

1. INTRODUCTION 

1.1. Continuously Variable Transmissions (CVTs) 
A continuously variable transmission (CVT) is a 

mechanical transformer whose modulus can be programmed to 
any value on a continuous range.  The modulus is the speed 
ratio between two velocities.  These might be the rotational 
velocities ω1 and ω2 of two drive shafts in a rotational CVT or 
two linear velocities vx and vy in a translational CVT. 

A spherical CVT design exists [8] utilizing rolling 
contacts between a sphere, a set of drive rollers, and a set of 
steering rollers.  The steering rollers control the speed ratio 
between the drive rollers by varying a transmission angle, 
ideally allowing the spherical CVT a speed ratio on the range 
(+∞, –∞).  This spherical CVT is a core element of a novel 
class of collaborative robotic devices called cobots whose end 
effector paths are constrained by CVTs at their joints to travel 
only along trajectories programmed by tuning the speed ratios 
of the CVTs [1][2].  

1.2. Other Work 
Goi, Kawakami, Yamakawa, and Tanaka[3] discuss the 

design and testing of a helicopter traction-drive CVT in high 
viscous traction fluid. The CVT they design allows for output 
speeds between 85% and 100% of the input speed (roughly 
23,000 RPM) and tested over input torques up to 40 Nm. 

Kluger and Fussner [4] review several CVT mechanisms 
and efficiencies, including belt type, hydrodynamic traction 
type, and epicycle type mechanisms.  They typically find 
efficiencies greater than 85% for each design they examine. 

Singh and Nair [5] also review a variety of CVT designs 
and compare their relative efficiencies after "normalizing" the 
operating ranges of the different CVT types.  They include in 
their survey belt type, and hydrodynamic traction type CVTs 
along with hydrodynamic torque converters.   

(Neither [4] nor [5] examine a CVT design based on dry 
rolling contact.) 

The device considered in this work is the spherical CVT 
depicted conceptually in Figure 2.  Johnson [6] reviews rolling 
contact models, which underlie the mechanics of the rolling 
contact patch between both the drive and steering rollers and 
the sphere in a spherical CVT.   

Moore [7] and Moore, Peshkin, and Colgate [8] have 
described the spherical CVT in the context of its use as a 
nonholonomic element in serial link cobots.  Moore discusses 
(among other things) CVT design goals for use in cobots and 
performs experiments on a particular CVT to determine 
maximum supportable torques for that CVT.     

Gillespie, Peshkin, Colgate, and Moore [9] develop an 
analytical model to examine the effects of longitudal 
kinematic creep and spin in the contact patches of the drive 
rollers of a spherical CVT.  They determine an expression that 
predicts the speed ratio of a spherical CVT at a particular 
transmission angle in the face of a lateral torque.  They also 
review a simple translational CVT (an elastic wheel rolling on 
a plane) and discuss the notion of a sideslip angle when that 
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CVT is subject to lateral forces.  They develop an expression 
for an analogous sideslip angle in the spherical CVT.  It is the 
analytical creep and spin model developed in [9] which the 
present work uses for comparison with experimental results. 

1.3. Present Work 
As we might expect, real CVTs cannot achieve speed 

ratios on the range (+∞, –∞) when transmitting loads, due to 
various losses in the rolling contacts.  The spherical CVT has 
been subject to analysis by Gillespie et alia [9] which models 
kinematic creep and spin in the contact patches of the drive 
rollers in the presence of lateral loading and which predicts 
slip that varies with the transmission angle and the applied 
lateral load and results in a departure from the ideal speed 
ratio.   

The present work subjects a physical CVT to 
experimental testing to determine the ability of the creep/spin 
model to predict the speed ratio for the transmission.  We 
introduce a bond graph model of the spherical CVT, 
accounting for both the kinematic creep and spin losses 
analyzed in [9] and various other frictions we model for 
experimental computation. We determine the speed ratio of 
the actual CVT under various lateral loads compare that to the 
predictions of the creep/spin model.   

In addition, we test the utility of the creep/spin model to 
allow corrective resteering of the CVT transmission angle to 
ensure that it provides the desired speed ratio under a known 
lateral load and we compare this to resteering attempts made 
by interpolating within the collected data. 

We also summarize investigation of transmission losses in 
the spherical CVT due to creep and spin.  We present a bond 
graph model incorporating these losses and use it to determine 
the CVT's power transmission efficiency, η, predicted by the 
model and compare it to the total efficiency as measured by 
experiment. 

We find that the creep/spin model fits the form of the 
collected data quite well, though it tends to underpredict 
overall losses.  However, by fitting a model parameter to 
observed data, the creep/spin model can be practically used to 
resteer CVTs.  

1.4. Assumptions 
This work considers only the spherical CVT in dynamic 

equilibrium (i.e. constant velocity of both flows coupled by 
the CVT).  We do not consider transient effects of either 
acceleration of either drive roller or reorientation of the 
steering rollers.  See Section 6 for consideration of other 
assumptions. 

1.5. Organization 
Section 2 reviews ideal CVT motion for translational and 

rotational CVTs and summarizes the results of the kinematic 
creep and spin model to which the experimental data will be 
compared.  Section 3 describes the experimental hardware and 
software setup used in this work and introduces the bond 
graph model we use to model the spherical CVT.  Section 4 

discusses the reduced experimental data in terms of sideslip 
angle and speed ratio and compares it to the predictions of the 
creep/spin model.  We also discuss the theoretical and 
measured power efficiencies of the CVT.  Section 5 
summarizes the resteering experiments used to show the utility 
of the creep/spin model in pre-correcting the CVT in the face 
of a known lateral torque.  Section 6 discusses some of the 
outstanding issues in CVT design and possible directions for 
research to improve the next generation of CVTs.  Section 7 
summarizes our findings and concludes this work. 

2. CVT MOTION 

2.1. Nominal CVT Motion 
Our CVTs, both translational and rotational, have an 

allowed direction of motion determined by contact geometry.  
In general, it is simpler to think in terms of the translational 
CVT, but the behavior of the spherical CVT is analogous.   

2.1.1. Translational CVT 
Figure 1 depicts a top-view of a simple translational CVT, 

an upright disk (wheel) rolling on a planar surface.   
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uy F⊥
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Figure 1. Top-view of a simple, translational CVT: a disk 
rolling in a plane 
As we move the disk along the x-axis, its rolling constraint provides 
motion along y as well.  (The F⊥  shown here will have a negative 
measure number.) 

Nominally, the disk is free to move along the allowed u||
  

direction and cannot move along the disallowed, lateral u⊥
  

direction without skidding.  If, as shown, the disk is oriented 
at a steering angle, +γ measured from the x-axis of the 
Cartesian basis (ux,uy), then we can define a coordinate basis 
which describes the coupling between basis (ux,uy) and the 
allowed and disallowed directions of motion, (u||

 , u⊥
 ).  For this 

basis, the unit vectors describing the allowed and lateral 
directions of motion are given by 

u||
   =  ux ux + uy uy  =  (cos γ) ux + (sin γ) uy  (1) 

u⊥
    =  (–sin γ) ux + (cos γ) uy  (2) 

We can determine a nominal speed ratio for this translational 
CVT as the ratio of y-axis motion to x-axis motion.  Thus, 

Ty/x  =  uy / ux  =  tan γ (3) 
For a system in equilibrium, we know that F|| = 0.  We can 
apply that condition in the (ux,uy) basis and determine that 
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fy / fx  =  –1/tan γ   =  –1/Ty/x (4) 

2.1.2. Rotational CVT 
A similar relation applies to the spherical CVT [7][8][9], 

which couples the rotational velocities of two drive shafts to 
that of a sphere that spins between them.  This coupling as 
accomplished by maintaining the orientation of the axis of 
rotation (or transmission axis) of the sphere such that each of 
the drive rollers is rolling along a circle of a different radius 
on surface of the sphere.  (We refer to these two drive shaft 
velocities as motor and brake velocities, ωm and ωb.)   
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Figure 2. Simplified Spherical CVT: sphere and two drive 
rollers 
The motor and drive rollers roll on a sphere constrained to rotate about 
a transmission axis.  The radii of the circles on which they roll 
determine the drive roller speeds. 

The actual implementation is somewhat involved, but 
Figure 2 illustrates a simplified spherical CVT, with two drive 
rollers in rolling contact with a sphere.  The motor and brake 
rollers roll on circles of radius Rsm and Rsb respectively.  We 
can determine the ratio of motor speed to brake speed: 

Tm/b  =  ωm / ωb  =  (ωm / ωs) (ωs / ωb)  =  Rsm / Rsb (5) 
By changing the transmission angle γ, we can set the radii 

on which the drive rollers rolls anywhere on the range [0, R], 
where R is the radius of the CVT sphere.  The radii of the 
circles on which the motor and brake rollers roll can be shown 
to be 

Rsm  =  R sin γ    and 
Rsb  =  R cos γ (6) 

And we can substitute (6) into (5) and find the speed ratio in 
terms of γ 

Tm/b  =  ωm / ωb  =  tan γ (7) 
just as it was for the translational CVT. 

Equations (6) also make clear that Rsm and Rsb may 
assume zero and then negative values as γ crosses multiples of 
π/2.  In this way the spherical CVT can (ideally) achieve 
speed ratios from –∞ to ∞. 

When examining the translational CVT, we noted that the 
transmission angle couples the Cartesian basis with an 
allowed/disallowed basis. We can define the transmission 
angle for the spherical CVT and develop a set of bases that 
describe both the motor and brake velocities and the allowed 

and disallowed velocities.  Figure 3 shows those bases in 
quadrant I, where 0 < γ < π/2. 
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Figure 3. Bases for a Spherical CVT, quadrant I 
Here we note that the speeds of the motor and brake shafts, given by 
ωm and ωb, respectively, are the measure numbers for the (ubrake, umotor) 
basis and they correspond to the Cartesian x and y velocities in the 
translational CVT. 

Figure 3 assumes that we have commanded a positive 
velocity from the motor, placing ωm on the positive umotor axis.  
The (u||, u⊥) basis is rotated +γ from the (ubrake, umotor) basis, so 
we can follow ωm over to the u|| axis (where we see ω|| is 
positive) and then down to find that ωb lies on the positive half 
of the ubrake axis.  For dissipative brakes, τb must lie on the 
negative side of that axis.  As a check, following τb up to 
where it intersects u⊥  (giving us a positive τ⊥) and then back to 
the umotor axis shows τmotor to be positive, as it must be with a 
positive ωm to contribute power to the system.   

We note that, similar to the translational CVT, 
ωm / ωb  =  tan γ (8) 

And, for systems in equilibrium, τ|| = 0.  Thus, 
τm / τb  =  –1/tan γ (9) 

We could als o derive (9) as a consequence of conservation of 
energy (power) in this lossless, ideal CVT.  The equilibrium 
condition also relates the lateral torque load τ⊥  to τm and τb so 
that 

τ⊥   =  τm / cos γ (10) 
τ⊥   =  –τb / sin γ (11) 

2.2. CVT Slip 

2.2.1. Translational CVT Slip 
For a real disk, when the applied forces contain 

components lateral to the nominal path, these lateral forces 
will cause the disk to slip somewhat and leave its nominal 
path, as shown in Figure 4. 
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Figure 4. Actual direction of motion for rolling disk with 
lateral force 
This new direction of motion deviates from the nominal direction of 
motion by a sideslip angle, α.  (Nominal quantities shown in 
parentheses.) 

The rolling disk running as depicted in Figure 1 will tend 
to deviate from its nominal velocity.  Figure 4 shows such a 
disk following a path shifted from its nominal path by a 
sideslip angle α measured clockwise from the allowed 
direction of motion, so α < 0 for the case shown.  (The 
measure numbers vx and vy for the ux and uy velocities for the 
ideal case with no slip are shown in parentheses for reference.)  
As we would expect for the lateral force shown, the resulting 
vx and vy measure numbers are more positive than before. 

Considering motion with the given sideslip angle, then, 
our speed ratio T is now given by 

Ty/x  =  uy / ux  =  tan (γ + α) (12) 
Though motion changes, the same kinetic equilibrium 
condition applies as in the no slip CVT, 

fy / fx  =  –1/tan γ (13) 

2.2.2. Rotational CVT Slip 
As with a translational CVTs, the spherical CVT will 

exhibit some slip when subject to lateral torques.  In the 
conceptual spherical CVT of Figure 2, this is equivalent to the 
motor and brake rollers slipping slightly in their rolling 
contact with the sphere. While the contact mechanics details 
of the slip in spherical CVTs differ significantly from those of 
the thin wheel, the resulting slip is analogous. 

In Figure 5, we can see that the spherical CVT has a τ⊥  in 
place of the translational CVT's f⊥  and the (u||, u⊥) basis for the 
spherical CVT corresponds to (u||, u⊥) for the translational 
CVT. In the same sense for both CVTs, efforts along u|| tend 
to accelerate the system along its allowed direction of motion 
and efforts along u⊥  cause deviation from that motion. 
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Figure 5. Motor/brake and allowed/disallowed bases for a 
spherical CVT 

As with the translational CVT, the actual speed ratio 
differs from the nominal ratio.  Gillespie [9] has modeled 
kinematic creep and spin in the drive roller contact patches of 
a spherical CVT and determined an expression for the actual 
speed ratio at a given transmission angle in the face of lateral 
loads.  He finds the ratio of the motor-to-brake velocities to be 

Tm/b  =  
sin(γ) – τ⊥  k  cos2(γ)
cos(γ) + τ⊥  k  sin2(γ)

    (0 < γ < 
π
2

) (14) 

Tm/b  =  
sin(γ) + τ⊥  k  cos2(γ)
cos(γ) + τ⊥  k  sin2(γ)

    (–
π
2

 < γ < 0) (15) 

Where τ⊥  is the lateral torque load defined in (10) and (11) and 
k  is a constant we have amalgamated based on the specific 
CVT design and material parameters (described in section 
3.1.1).  Note that, when τ⊥  is zero, the creep/spin model 
described by (14) and (15) is the same as the ideal model 
given by (9).  Figure 6 shows brake speed over motor speed 
predictions as transmission angle γ varies for the ideal model 
and creep/spin model predictions for two values of kτ⊥ . 

As we might expect, the creep/spin model predicts that 
larger lateral torque loads cause larger deviations from ideal 
behavior as more slip occurs at the drive rollers.  

In addition, we can define the sideslip angle in a spherical 
CVT in a way completely analogous to that given in (12).  
Thus, 

Tm/b  =  
ωm

ωb
  =  tan (γ + α) (16) 
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Figure 6. Speed Ratio for Ideal and Creep/Spin CVT 
models 

Applying (16) to (14) and (15), Gillespie also determines 
the sideslip angle α for the spherical CVT. 

tan (α)  =  
k τ⊥  (sin3γ + cos3γ)

1 + k τ⊥  (cos2γ sinγ – sin2γ cosγ)
  (17) 

for 0 < γ < π/2 and 

tan (α)  =  
k τ⊥  (sin3γ – cos3γ)

1 + k τ⊥  (cos2γ sinγ + sin2γ cosγ)
  (18) 

for π/2 < γ < π.  Figure 7 shows how the sideslip angle varies 
with the transmission angle at different fixed lateral loads. The 
model predicts some α variation with γ whose magnitude is 
largest at multiples of 90° and whose magnitude is smallest at 
odd multiples of 45°. 
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Figure 7. Sideslip Angle Versus Transmission Angle 
The theoretical creep/spin model predicted sideslip angle α plotted 
against γ for larger lateral loading as we move toward the top and 
bottom of the figure, where gross slip would occur. 

Figure 8 shows the variation of α with the lateral torque at 
the transmission angles corresponding to largest and smallest 
magnitudes of α in Figure 7.  Sideslip angle appears to be very 
linear for small values of kτ⊥  (though the relationship isn't 
actually linear) and it does go to zero when the lateral torque 
is zero.   
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Figure 8. Sideslip Angle versus Lateral Load 

It is these creep/spin predictions for speed ratio and 
sideslip angle that we compare to data collected on an 
experimental CVT. 

3. EXPERIMENTS AND EXPERIMENTAL MODEL 
To test the validity of the creep/spin predictions for speed 

ratio and sideslip angle, we applied a constant speed on the 
motor side of the transmission and a constant torque load on 
the brake side over a range of transmission angles.  As shown 
in Figure 9, we added several pieces of hardware to a spherical 
CVT to actuate it and collect the data that would allow us to 
evaluate the creep/spin model. 
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steering
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(motor
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ωb
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Figure 9. CVT Hardware Diagram 

3.1.1. Bond Graph 
The bond graph shown in Figure 10 models the CVT.  

The parameters shown in the bond graph are 
R  =  radius of sphere  
r  =  radius of drive rollers  
rs  =  radius of steering rollers  
µ  =  contact patch Coulomb friction coefficient  
a  =  contact patch half width 

And we can define the model parameter k  mentioned in 
section 2.2.2 such that 

k   =  (a/R)/(rµN ) (19) 
k  will have units of 1/torque.  We choose k  this way to 
collapse all of the parameters affecting the speed ratio and 
sideslip angle into one constant.  (Note that not all of the 
parameters affecting k  are easily measured.  E.g., Coulomb 
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friction between bowling ball spheres and roller blade wheel 
drive rollers varies considerably with testing conditions.)  For 
the system tested, our measured parameter yield 

k   =  (0.275/2)/4.25)/((3.150/2)*0.7*53.2)  
    =  0.000552/(in ⋅lbf) (20) 
The bond graph representation of the experimental CVT 

allows us to discuss the creep/spin losses in the system as flow 
losses at the 0-junctions.  These allow us to model the slip that 
occurs at the drive rollers so that we have the actual velocity 
of the motor shaft and the velocity lost due to creep- and spin-
related slip in the drive roller contact patch.  The difference 
between the real motor velocity and this slip loss gives us the 
"ideal" velocities ωmi and ωbi going into the "ideal CVT" 
shown in the bond graph. 

The torque and velocity leaving the 0-junctions enter this 
"ideal CVT" – a  1-junction connected to three transformers.  
Conceptually, the 1-junction is the sphere and the transformers 
connect it to 1) the motor roller, 2) the steering rollers (losses 
not examined here), and 3) the brake roller.  The moduli of 
these transformers vary only with the transmission angle, γ.  

The brake and motor sides of the bond graph mirror one 
another.  We model motor (run in velocity mode) as a flow 
source and the magnetic particle brake as an effort source.   

4. DATA PLOTS AND DISCUSSION 

4.1. Data Range 
At each nominal transmission angle γ, data was taken by 

running through a set of brake torque settings designed to give 
a fairly even range of τ⊥ .  This was done at constant motor 
speeds of 4 rotations/sec and –4 rotations/sec (about ±25 
radians/sec).  The range of γ was [-90, -10] n  [10, 90] at 5° 
increments and τ⊥  on ±[0, 40] in⋅lbf.  It turns out that getting 
data anywhere near γ  = 0° (where the transmission axis passes 
through the motor roller and where, in theory, ωb/ωm = ±∞) 
quickly caused gross slip at the motor roller.  Also, due to 
friction, it was not generally possible to achieve τ⊥  near 0 
in⋅lbf.   Figure 11 shows the positive and negative data regions 
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Figure 11. Data Range for ωm = ±4 rotations/sec 

4.2. Sideslip Angle Plots 
The measure of spherical CVT slip that is most easily 

understood in terms of the translational CVT analogy is the 
sideslip angle α (see section 2.2).   

4.2.1. Sideslip Angle versus Lateral Load 
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Figure 12. Sideslip vs. Lateral Load, selected γ 
The sideslip angle increases linearly fashion as we increase the lateral 
load. 

Figure 12 shows that the relationship between the sideslip 
angle and the applied lateral load is fairly linear, just as the 
creep/spin model predicts (Figure 8). 

4.2.2. Sideslip Angle versus Transmission Angle 
The characteristic shown in Figure 13 does not show the 

same curvy nature as the one predicted by the creep/spin 
model (Figure 7).  Instead, in the experimental tests, we see 

0 TF 1 0TF

R R

Sf Seωm ωbωsphωsphr/(Rsinγ) (R/r)cosγ

creep / spin creep / spin

sphere

brake

τm τm

τm τb

τb τb

brake
roller

motor
roller

ωmi ωbi

a ωmiτm
rRµN tan γ

a ωbiτb tan γ
rRµNmotor

ideal CVT

ωsph

ωsteer

R (3 + sin 2γ)1/2

2rs

TF

Rsteering
rollers

 
Figure 10. Bond Graph of CVT Experimental Model 
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more slip in the region near where the motor is forced to drive 
the brake at higher speeds but not where the brake velocity is 
much lower than that of the motor.  On way to interpret this is 
that we see more slip when the motor roller's contact patch is 
dominated by spin (rotation in the contact patch) and less 
when it is dominated by creep (slight longitudinal slip in the 
contact patch).  That is, when the motor is applying power 
through a contact patch which is swirling underneath it, more 
slip occurs. 
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Figure 13. Experimental Sideslip Angle versus 
Transmission Angle, ωm < 0 
Dependence on γ does not display the slight added curvy characteristic 
the model does.  This is a minor point since that characteristic is small 
in the previous plot.  More interesting is that the experiments showed 
increased slip as we move from γ = ±90° toward γ = 0°, which the 
model does not. 

An oddity we note in this figure is that the sideslip angle 
α dips past 0° (changes sign) at low values of τ⊥  near γ = 
±90°.  Strictly speaking, this implies that the brake roller is 
rotating faster than we would expect in the ideal case, which is 
really not very likely.  What is more likely here is that this is a 
result of the transmission angle not being exactly what it 
should be according to the steering roller position.  In effect, if 
γ were actually larger than it should ideally be, then we would 
observe larger brake velocities than at the nominal γ and this 
would result in the behavior we see in α above. 

4.3. Speed Ratio Plot 
In terms of typical transmission applications coupling the 

one rotating shaft to another, the most obvious measure of a 
CVT is its speed ratio.  In this section we compare an actual 
speed ratio Tb/m = ωb/ωm to the "ideal" speed ratio given by (7) 
and to the predictions of the creep/spin model as given by (14) 
and (15). 
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Figure 14. Various Speed Ratios 
Here we have speed ratios shown for several different cases.  
Horizontal lines are ideal (no slip) speed ratios.  Also shown are bars 
showing the speed ratio range (over the applied lateral torques) for 
three cases: 1) as obtained in the experiments; 2) as predicted by the 
creep/spin model using a "best fit" value for the model parameter k; 3) 
as predicted using the k derived from measuring the quantities in the 
expression for nominal k (as given in (19)). 

Figure 14 shows the various speed ratios of the spherical 
CVT.  It emphasizes how closely the range of creep/spin 
predicted speed ratios overlay the measured speed ratios for 
our applied lateral loads, when the appropriate model 
parameter k  is chosen.  First, the horizontal lines mark the 
ideal speed ratio predicted by the model accounting for no 
slip.  The leftmost bar at each transmission angle shows the 
actual range of speed ratios observed when we applied our 
range of lateral loads in the experiments.  Then, the 
corresponding predicted ranges of speed ratio for two ks are 
shown.  The middle bar at each γ shows the speed ratio range 
for k  = 0.0042 1/(in⋅lbf) as determined by a least squares fit of 
the data to the model in (14), minimizing the squared 
difference between predicted and measured sideslip angles.  
This is quite a bit higher than the second value for k  described 
in (19) and computed by (20), 0.000552/(in⋅lbf), based purely 
on measured physical parameters.  The rightmost bar at each γ 
shows the predicted speed ratio range for the creep/spin model 
with that value of k .  We can see that it tends much closer to 
the ideal prediction. 

But the overall shape of the model predictions is 
sufficiently similar to the actual CVT behavior that it is still 
useful, as we will see in the resteering experiments in section 
5.  We can see that, except for quite near γ = 0°, the creep/spin 
model covers very much the same range as the actual speed 
ratios, though it does tend to predict a higher speed ratio. 

4.4. Power Use in the Spherical CVT 

4.4.1. Theoretical Efficiency 
The model shown in Figure 10 depicting losses only due 

to creep and spin allows us to determine an expression for 
CVT efficiency as a function of the sideslip angle.  Defining 
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efficiency η in terms of motor power and creep/spin power 
losses, 

η  =  
Pm – Ploss

Pm
  (21) 

we find 

η  =  
tan (γ)

tan (γ + α)
 (22)    

Which describes CVT efficiency accounting for power losses 
only due to creep and spin at the drive rollers.   

4.4.2. Measured Efficiency 
We can directly measure the power losses in the 

experimental CVT from experimental torque and speed data to 
compute an efficiency including other losses, such as rolling 
losses at the drive and steering rollers.   

Figure 15 displays the efficiency predicted by the 
creep/spin model (circles) (at the "best fit" k) for measured 
lateral loads and transmission angles and the actual 
experimental efficiency of the CVT (dots).  We show this for 
an entire set of experimental data.  While larger lateral torques 
result in lower CVT efficiencies, the model consistently 
predicts a higher efficiency than was actually realized.  We 
expect this as the creep/spin model accounts only for slip 
losses in the drive roller contact patches.  The actual CVT 
looses power overcoming rolling resistance in the drive and 
steering rollers, lateral slip in the steering rollers, et cetera. 
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Figure 15. Measured Efficiency from Data and Creep/Spin 
Predicted Efficiency 
We show the efficiency measured from the data (circles) and the 
efficiency predicted by the creep/spin model applied to the sideslip 
angles predicted by the creep/spin model for the same data points. 

5. RESTEERING CVTS 
Our primary use for CVTs in cobots uses a particular 

CVT speed ratio to constrain some cobot endpoint motion to a 
desired trajectory.  In view of this end and in light of the fact 
the we know CVTs exhibit slip which alters their nominal 
speed ratio when loaded, we would like to be able to resteer a 
CVT exposed to some lateral load so that it still provides the 
desired transmission ratio and, thereby, ensures that its cobot 
endpoint follows the desired trajectory. 

5.1. Resteering 
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Figure 16. A resteered CVT (right) follows a desired actual 
path despite lateral forces 

The idea of resteering is straightforward.  If we have a 
CVT which is leaving its nominal path, as the CVT of Figure 
4 above is, then we wish to change its axis so that, even with 
the applied lateral forces, it remains on its nominal path. 
Figure 16 shows a disk CVT before (left) and after (right) 
resteering it so that its new actual path is the same as the 
previous nominal (desired) path. 

We can determine an appropriate angle to which a 
resteered CVT must be sent to maintain its desired trajectory 
using either Gillespie’s kinematic creep and slip model [9] or 
by doing inverted lookup using the experimental CVT data 
taken.  By using a model or lookup data to predict the amount 
of slip in an open-loop CVT, we can determine the amount of 
feed-forward steering needed to "pre-correct" for the slip and 
keep the CVT on its nominal path.  In addition, the application 
of resteering provides us with a good test of the effectiveness 
of the model predictions in accurately controlling a CVT.   

5.2. Experimental Resteering Data 
We tested our CVT’s ability to produce desired 

transmission ratios under varying lateral loads.  The test set 
loads tested were τ⊥  = 0, 10, 20, and 30 in lbf, nominally, from 
which we ended up with loads 2 - 3 in lbf higher from frictions 
in the system.  As we would expect, all of the models worked 
well at low lateral torques, so we show only on the highest 
lateral load data.  At each loading, we asked for speed ratios 
ωm / ωb = {0.4, 0.5, 0.8, 1.0, 1.25, 2.0, 2.5}, (geometrically 
symmetric about 1.0).  

For each test set, we tested five cases.   
- The “ideal” case of ωm / ωb = tan γ. 
- The Gillespie model where   

ωm / ωb  =  
sin γ – k  τ⊥  cos2γr

cos γ + k  τ⊥  sin2γ
   

for our testing range.  We test this with k  = 0.00056 / (in 
lbf), which is its nominal value based on CVT geometry. 

- The Gillespie model with k = 0.00223, the value based on 
creating a least squares fit of sideslip angles to the 
experimental CVT data. 
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- The Gillespie model with k = 0.00505, the value based on 
creating a least squares fit of speed ratios to the 
experimental CVT data. 

- Inverted table lookup of speed ratios from the 
experimental data.  This test was to give a baseline for 
good response and provide something of a measure of the 
noise in our data. 

5.2.1. Resteering Results 
The following plot is the comparison between models at 

the highest lateral torque setting.  The plot shows the 
performance of all five models over the range of requested 
speed ratios.  The vertical axis is the relative error in 
percentage 

%∆error = 
(ωm/ωb)requested –  (ωm/ωb)achieved

(ωm/ωb)requested
 (23) 

0 0.5 1 1.5 2 2.5 3
-50

-40

-30

-20

-10

0

10

(ωm/ωb)request

%
∆

 e
rr

or

Speed Ratio following Model comparison, τ⊥ = 32.5

no resteering
creep/spin (k = 0.00056 1/(in*lbf ))

creep/spin (k = 0.002228 1/(in*lbf))
creep/spin(k = 0.005050 1/(in*lbf ))

inverted data interpolation

 
Figure 17. Speed Ratio Following Model Comparison, High 
Lateral Torque 
We show all of the tested CVT models trying to achieve the requested 
ωb/ωm speed ratios (0.4, 0.5, 0.8, 1, 1.25, 2, and 2.5) at a high applied 
lateral torque.  Only inverted lookup and Gillespie model 
(k = 0.00505/(in lbf)) resteering have average errors under 10%. 

As Figure 17 shows, at the highest torque tested for 
resteering, deviation from the requested speed ratio is getting 
substantial except for the high k  (0.00505/(in lbf)) Gillespie 
model and the inverted data lookup, whose errors average 
7.1% and 2.4%, respectively. 

We would further expect from Figure 13 and Figure 14 
that the tendency of the CVT to deviate from its ideal behavior 
will increase as we try to attain speed ratios closer to Tb/m = ∞.  
Unfortunately, those plots also indicate that to be the region 
where the creep/slip model is poorest at predicting CVT 
behavior and is therefore not likely to be as beneficial in 
resteering CVTs. 

6. OUTSTANDING ISSUES 

6.1. Sources of Error in the Creep/Spin Model 
As shown in section 5, the creep/spin model allows much 

better control of the CVT than does the ideal model, but it is 

still not perfect, as highlighted, for instance, in Figure 14.  
Possible sources of error in the model include: 

6.1.1. Assumption of Ideal Behavior at Steering 
Rollers 

It is true that there is good reason to believe there is no 
significant longitudinal creep in the steering rollers, as they do 
not support a longitudinal traction, as do the drive rollers.  
However, the steering rollers definitely support lateral loads.  
This load will result in lateral creep and this lateral creep 
means that the transmission angle γ will not be exactly what it 
should.  This effect is qualitatively visible during testing, 
particularly at values of γ near nπ (n = 0, 1, 2, ...) where we 
desire high values of ωb/ωm, and it must cause deviation from 
the model's predicted speed ratios.  More exploration of 
transmission angles actually achieved for given steering angles 
and under loading will be a significant step in properly 
predicting CVT behavior and explaining the slight oddities in 
the data such as those seen in Figure 13. 

6.1.2. Drive Roller Contact Patch Modeled as Line 
The actual shape of the contact patch between drive roller 

and the sphere looks something like an ellipse with its major 
axis lying longitudinally (parallel to the tractive forces) as 
shown in Figure 18A.  The real contact patch supports the 
normal force N of the roller blade wheel into the sphere with a 
pressure distribution varying from some likely maximum near 
the center of the ellipse to zero at the ellipse's perimeter.  The 
model in [9] assumes a line contact as shown in Figure 18B 
with constant pressure (force/length) along the line. 
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Figure 18. Real vs. Creep/Spin Model Contact Patches 
The actual contact patch (A) is more ellipsoidal and supports a more 
complex pressure distribution than the line contact (B) that is modeled 
in the creep/spin model. 

Clearly, this may be a fairly significant simplification.  
The line model does capture some longitudinal creep and 
some spin, but it is very likely that the creep and spin in the 
actual contact patch is different.  Particularly, spin in the 
actual contact patch is probably more dependent on the length 
of the major axis of the contact patch, whereas the line model 
is characterized in terms of the minor axis length only. 

6.1.3. Normal Force Variation 
The creep/spin model assumes that the normal force 

holding the drive rollers against the sphere is constant.  
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However, direct observation reveals that the normal force 
varies both with the applied lateral torque and with the 
transmission angle γ. 

Analytical results by Songho Kim shows that variation in 
normal forces results due to CVT geometry.  A pair of lateral 
torques by the two drive rollers generates some combined 
lateral force and normal force differential in the steering 
rollers.  Assuming there exists a relationship in the distribution 
of lateral force as function of normal forces on the steering 
rollers (size of contact patch), variations in normal forces 
result in the drive rollers.  There exist lateral forces on the 
drive rollers as well, but they are significantly smaller than the 
drive roller tractive forces. 

The knowledge about the lateral forces in the steering 
roller contact patches may allow exploration of the contact 
mechanics at the steering rollers.  If we can model the slip at 
the steering rollers, we will have a more accurate model of the 
sphere's transmission axis, the primary determinant of nominal 
CVT behavior, as described in section 6.1.1. 

6.2. Further Work on CVT design 
In this work we have compared actual spherical CVT 

behavior to model predictions and improved the ability of a 
CVT to attain a desired speed ratio by resteering it.   

Further steps in design and use of CVTs could include: 

6.2.1. Eliminating Sources of Error in Creep/Spin 
Model 

The sources of potential error discussed in section 6.1 are 
likely addressable via a more sophisticated contact mechanics 
and kinematic models.   

6.2.2. Exploring Drive and Steering Roller Materials 
Significant continuous power transmission will require 

tougher materials than the CVTs constructed with roller blade 
wheels and bowling balls.  Quite simply, both of these 
components are insufficiently robust against normal abrasion 
and tend to wear down over time.   

It may be fruitful to employ different roller materials at 
the drive and steering rollers.  For instance, the steering rollers 
and driver rollers are doing different jobs.  The optimum 
materials for each task may not be the same. 

Similarly, harder roller material would seem to be a 
benefit all around as they would reduce the size of the contact 
patch, decreasing losses due to spin.  In addition, smaller 
contact patches reduce steering effort. 

6.2.3. Drive and Steering Roller Shape 
The current use of roller blade wheels as drive and 

steering rollers results in a roughly elliptical contact patch 
with the spherical bowling ball.  It may be desirable to change 
the shape of these rollers in order to optimize the major and 
minor axis lengths, or even make them equal (resulting in a 
circular contact patch).   

We might also alter roller size by optimizing radii versus 
various metrics.  For instance, for high torque transmission 

applications, having larger drive rollers reduces the needed 
tractive force in each contact patch, reducing creep and 
increasing the torque that can be transmitted before gross slip 
occurs. 

In fact, while designing both drive rollers to have the 
same radius preserves a symmetry in the CVT, it may be 
useful to design CVTs with a different radius for the motor 
roller and brake roller. For an application using a fast, but low-
torque motor and low brake speed requirements, we might use 
a CVT with a small motor roller and larger brake roller to 
achieve higher maximum brake torques. 

At any rate, exploring these problems by analyzing the 
contact patch mechanics analytically and numerically and 
perhaps building a test bed to do low level rolling contact 
experiments seems the likely route to the next step in 
advancing spherical CVT design. 

7. CONCLUSIONS 
In this work, we focused on comparing a theoretical 

model of a spherical continuously variable transmission 
(CVT) accounting for kinematic creep and spin at the CVT's 
drive rollers (Gillespie's creep/spin model [9]) to an actual 
CVT, both to better understand CVT function and to 
determine the utility of the theoretical model in predicting 
CVT behavior in applications.  We built an experimental 
hardware and software setup allowing us to subject a physical 
CVT to different lateral loads at a variety of transmission 
angles.  We collected data from this experimental CVT setup 
to determine the ability of the creep/spin model to predict the 
speed ratio and sideslip angle for the transmission.   

We introduced a bond graph model of the spherical CVT, 
accounting for both the kinematic creep and spin losses of 
Gillespie's model as flow losses and various other frictions in 
the system such as rolling resistance as effort losses.  We 
believe this representation is useful in examining different 
components of the CVT and we used it to investigate 
transmission losses in the spherical CVT due to creep and 
spin.  We derived an expression for the CVT's power 
transmission efficiency, η, as a function of the sideslip angle.  
We found that, while the creep/spin model showed the same 
basic shape of efficiency as the actual CVT, it the tended to 
underpredict losses as it did not account for losses due to 
rolling resistance in the drive and steering rollers. 

As a check on the model in a practical application, we 
tested the utility of the creep/spin model to allow corrective 
resteering of the CVT transmission angle to ensure that it 
provided the desired speed ratio under a known lateral load 
and we compared this to an unresteered CVT and resteering 
attempts made by interpolating within the collected data.  We 
found that, by fitting a model parameter to observed data, the 
creep/spin model could be practically used to resteer CVTs.   

We concluded with a brief discussion of outstanding 
issues with the spherical CVT and suggestions for further 
research. 
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