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Toward improved streamflow forecasts: 

Value of semidistributed modeling 

Douglas P. Boyle, • Hoshin V. Gupta, and Soroosh Sorooshian 
Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, USA 

Victor Koren, Ziya Zhang, and Michael Smith 
Hydrology Laboratory, Office of Hydrologic Development, NOAA/NWS, Silver Spring, Maryland, USA 

Abstract. The focus of this study is to assess the performance improvements of 
semidistributed applications of the U.S. National Weather Service Sacramento Soil 
Moisture Accounting model on a watershed using radar-based remotely sensed 
precipitation data. Specifically, performance comparisons are made within an automated 
multicriteria calibration framework to evaluate the benefit of "spatial distribution" of the 
model input (precipitation), structural components (soil moisture and streamflow routing 
computations), and surface characteristics (parameters). A comparison of these results is 
made with those obtained through manual calibration. Results indicate that for the study 
watershed, there are performance improvements associated with semidistributed model 
applications when the watershed is partitioned into three subwatersheds; however, no 
additional benefit is gained from increasing the number of subwatersheds from three to 
eight. Improvements in model performance are demonstrably related to the spatial 
distribution of the model input and streamflow routing. Surprisingly, there is no 
improvement associated with the distribution of the surface characteristics (model 
parameters). 

1. Introduction, Motivation, and Scope 

Conceptual rainfall-runoff (CRR) models are often difficult 
to calibrate because of the large number of functional param- 
eters and complex relationships. Systematic manual calibration 
techniques such as those developed by the U.S. National 

Weather Service (NWS) for calibration of the Sacramento Soil 
Moisture Accounting (SAC-SMA) model can result in good 
model calibrations but are complicated and highly labor inten- 
sive. Traditional automatic calibration procedures take advan- 
tage of the speed and power of digital computers, while being 

objective and relatively easy to implement. However, they do 
not provide parameter estimates and hydrograph simulations 
that are considered acceptable by the hydrologists responsible 
for operational forecasting and have therefore not entered into 

widespread use. Gupta et al. [1998] acknowledged some of the 
more serious limitations with the classical automatic approach 
and presented a more general multicriteria framework for 
model calibration that recognizes the multiobjective nature of 
the problem. Yapo et al. [1998] developed the MOCOM-UA 
algorithm, an effective and efficient methodology for solving 
the multiobjective global optimization problem. Boyle et al. 

[2000] analyzed the similarities and differences between the 
automatic and manual calibration approaches and proposed a 
new hybrid multicriteria approach that combines the strengths 
of each. They demonstrated that the new approach could be 
used to emulate some of the important aspects of the manual 
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approach pursued by an expert. Further, the approach pro- 
vides information that is useful for evaluating the limitations of 

the various structural components of the model, thereby point- 
ing toward potential structural improvements. 

The majority of CRR model calibration studies have typi- 

cally been concerned with "lumped" applications (i.e., averag- 

ing of the dominant subwatershed-scale processes that contrib- 

ute to the overall watershed-scale response). However, 

remotely sensed, high-resolution hydrologic information (e.g., 

Next Generation Weather Radar (NEXRAD) Stage III pre- 
cipitation data [Klazura and Imy, 1993]) is now becoming 
widely available (at least in Europe and the United States), and 
hydrologists have begun to incorporate this information into 

their modeling procedures [e.g., Smith et al., 1999; Michaud 

and Sorooshian, 1994; Ogden and Julien, 1993, 1994; Winchell et 

al., 1998; Krajewski et al., 1991]. This has led to the develop- 
ment of relatively complex "fully distributed" models that al- 

low the user to construct a very detailed representation of the 

spatial variability of the hydrologic processes within the water- 

shed (e.g., S•½steme Hydrologique European (SHE) [Abbott et 
al., 1986], among others). The main premise is that the spatial 
detail will lead to an improved understanding of the watershed 

behavior while improving simulations. However, the degree to 

which the spatial variability of each process needs to be rep- 

resented (to provide the maximum improvement-in the simu- 
lations) is not well understood. Further, these models typically 

have a very large number of parameters for which values must 

be estimated, either through a calibration procedure or from 

maps of watershed properties. 

In the case of streamflow (flood) forecasting the primary 
concern is to generate estimates of discharge at a limited num- 

ber of fixed points along the river channel, and there is typically 
little need for spatially detailed information about the various 
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internal states of the watershed. An attractive alternative to the 

lumped and fully distributed approaches is the so-called semi- 
distributed approach in which the watershed is conceptualized 
as a network of functionally distinguishable land segments 

(subwatersheds), each represented by a lumped CRR model. 
The runoff response from each segment is routed to the outlet 
of the watershed to compute the total watershed response. In 
this approach the spatial variability of the hydrologic processes 
within the watershed is represented through the number and 
location of segments, which determine the degree of spatial 
distribution of the model input (precipitation), structural com- 
ponents (soil moisture and streamflow routing computations), 
and surface characteristics (parameters). 

The added complexity in going from a lumped to a semidis- 
tributed representation of a watershed results in a significantly 
more complex model calibration problem. CRR models tend 
to use complex, highly parameterized, vertical representations 

(of the movement of moisture through the soil), and the over- 
all number of parameters to be estimated for each unit can be 
quite large. Further, many of the parameters may not be sup- 

ported (identifiable) by the information contained within the 
observed data, remotely sensed or otherwise [Jakeman and 

Hornberger, 1993; Wagenet et al., 1999; Wheater et al., 1993]. As 
the number of hydrologic segments is increased, the calibration 

procedure (manual or automatic) can quickly become intrac- 
table. Operational use of semidistributed rainfall-runoff model 
applications to produce flood forecasts has therefore been 
limited. 

The focus of this paper is to provide an assessment of the 

potential improvements in rainfall-runoff model performance 

that can be achieved by semidistributed modeling of a water- 

shed using radar-based (NEXRAD) remotely sensed precipi- 
tation data. The relative benefits of spatially distributing the 

model input (precipitation), structural components (soil mois- 
ture and streamflow routing), and surface characteristics (pa- 
rameters) are examined. The CRR model used is the NWS 
Sacramento Soil Moisture Accounting (SAC-SMA) model 
[Burnash et al., 1973]. The multicriteria framework developed 
by Boyle et al. [2000] for application to lumped hydrologic 
models is used to calibrate the semidistributed model in terms 

of three objective measures designed to reflect the different 
observable characteristics of watershed behavior (peak flow 
and timing, quick recession, and base flow). Multicriteria per- 
formance comparisons among the different model applications 
are used to evaluate the benefits of various types and degrees 

of spatial complexity. Results from an independent NWS man- 

ual (expert) calibration study are used as a basis to evaluate the 
approach. 

This paper is organized as follows: the background and con- 
text for the work is discussed in section 2. The theoretical and 

practical basis for applying the multicriteria methodology to 
investigate spatially distributed modeling approach on a study 
watershed is presented in section 3. The results of the model 

applications are presented in section 4, and the results and 
future extensions of the study results are discussed in section 5. 

2. Background 

Since the early 1990s, the NWS has been investigating meth- 

ods to assess the benefit (improvement in streamflow fore- 
casts) of representing the spatial variability of the high- 
resolution precipitation, soil, and vegetation properties within 
the NWS modeling system [Smith et al., 1999, 2000]. One 

primary focus has been the incorporation of high-resolution, 

remotely sensed, Next Generation Weather Radar Stage III 

precipitation data into standard NWS procedures for flood 

forecasting using the SAC-SMA model. 
The SAC-SMA model is a continuous soil moisture account- 

ing algorithm with an upper zone representing the upper soil 

layer and interception storage and a lower zone representing 
the majority of the soil moisture and the longer groundwater 

storage. Within each zone, water is stored in two forms (ten- 
sion and free water). The model computes six components of 
flow: direct runoff, surface runoff, interflow, supplementary 
base flow, primary base flow, and subsurface outflow. The 

details of these computations have been discussed previously in 

the literature [e.g., Burnash et al., 1973; Burnash, 1995; Peck, 

1976; Brazil and Hudlow, 1981; Sorooshian and Gupta, 1983]. 

Each component of flow, except subsurface outflow (consid- 
ered a loss from catchment), contributes directly to the channel 
inflow and may be routed to the outlet of the catchment using 

a unit hydrograph. 
The soil moisture accounting component of the model has 

17 parameters whose values must be specified (Table 1). While 
some of these parameters can be related to observable char- 
acteristics of the watershed, many are abstract conceptual rep- 
resentations of nonmeasurable watershed characteristics that 

are difficult to estimate and are therefore typically specified 
through a calibration procedure. In addition, the unit hydro- 
graph ordinates must be derived either from observed precip- 

itation and streamflow information or from empirical methods 

related to physical characteristics of the watershed. 

In a recent study the NWS applied the SAC-SMA model to 
five different watersheds in both lumped and semidistributed 
applications and compared the resulting streamflow simula- 
tions to observed data [Smith et al., 1999, 2000; Zhang et al., 
2001]. The results indicated that for four of the watersheds 

characterized as having a deep soil layer (> 150 cm) the accu- 
racy of the semidistributed simulations "did not show signifi- 

cant improvement in accuracy" when compared to the lumped 

simulations. However, the results for the remaining watershed 

(Blue River at Blue, Oklahoma), characterized as having much 
shallower soils, "were improved significantly" by use of the 
semidistributed model. On the basis of these findings the Blue 

River watershed was selected for the studies reported in this 

paper. 

2.1. Description of Blue River Watershed and Data 

The Blue River watershed is located in southern Oklahoma 

near Blue, Oklahoma (Figure 1). The watershed is a long 
narrow valley with a contributing area of 1227 km 2 distributed 
primarily along the main channel. The soils are generally char- 
acterized as shallow (<2 m) sandy clay throughout the region. 

The mean annual precipitation is 1003 mm, and the runoff 
coefficient is estimated (from annual data) at 0.20 [Niadas, 
1999]. The U.S. Geological Survey (USGS) surface water dis- 
charge station 07332500, Blue River near Blue, Oklahoma, is 

located at the outlet of the watershed and has been in opera- 
tion since 1948. 

A NEXRAD Stage III precipitation data set for the Blue 

River watershed was obtained for the period June 1, 1993, to 

April 30, 1999. The NEXRAD product offers gridded precip- 
itation estimates, spatially averaged over 4 km by 4 km grid 

cells and temporally averaged over 1 hour. For the same time 

period, hourly estimates of instantaneous discharge are avail- 
able from the USGS surface water discharge station. The 
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Table 1. Parameters and State Variables of the SAC-SMA Model 

Parameter Description 

Multicriteria 

Calibration Range NWS Lumped 

UZTWM 

UZFWM 

LZTWM 

LZFPM 

LZFSM 

ADIMP 

UZK 

LZPK 

LZSK 

ZPERC 

REXP 

PCTIM 

PFREE 

RIVA 

SIDE 

RSERV 

PXMLT 

UZTWC 

U. ZFWC 

LZTWC 

LZFPC 

LZFSC 

ADIMC 

upper zone tension water maximum storage (mm) 
upper zone free water maximum storage (mm) 
lower zone tension water maximum storage (mm) 
lower zone free water primary maximum storage (mm) 
lower zone free water supplemental maximum storage (mm) 
additional impervious area (decimal fraction) 
upper zone free water lateral depletion rate (day -•) 
lower zone primary free water depletion rate (day -•) 
lower zone supplemental free water depletion rate (day -•) 
maximum percolation rate (dimensionless) 
exponent of the percolation equation (dimensionless) 
impervious fraction of the watershed area (decimal fraction) 
fraction of water percolating from upper zone directly to 

lower zone free water storage (decimal fraction) 
riparian vegetation area (decimal fraction) 
ratio of deep recharge to channel base flow (dimensionless) 
fraction of lower zone free water not transferable to lower 

zone tension water (decimal fraction) 
precipitation multiplication factor (dimensionless) 
upper zone tension water storage content (mm) 
upper zone free water storage content (mm) 
lower zone tension water storage content (mm) 
lower zone free primary water storage content (mm) 
lower zone free secondary water storage content (mm) 
additional impervious area content (mm) 

1.0-200.0 40 

1.0-100.0 37 

90-200.0 160 

50-400.0 120 

1.0-90.0 75 

0.0-0.4 0.0 

0.1-0.9 0.5 

0.0008-0.01 0.002 

0.01-0.2 0.03 

1.0-250.0 180 

1.0-3.0 1.8 

0.0-0.01 0.008 

0.0-0.6 0.04 

0.00 0.00 

0.00 0.00 

0.30 0.30 

1.00 1.00 

NWS-derived hourly values of potential evapotranspiration 
(PET) are based on long-term average values obtained from 
the atlas of National Oceanic and Atmospheric Administration 
(NOAA) free water evaporation [NOAA, 1982]. It should be 
noted that the PET values vary seasonally but not annually 

(i.e., an estimate of PET for 1 year has been made and is 
repeated for each year of record). 

The NWS created a digital elevation model (DEM) of the 
Blue River watershed from 100 m (cell size) elevation data. 
The watershed was partitioned into eight subwatersheds (Fig- 
ure 1) on the basis of an analysis of DEM stream connectivity 
data (stream channel structure), and the variability of the high- 
resolution soil property information available from the U.S. 
Department of Agriculture (USDA) State Soil Geographic 
Database (STATSGO) for the resulting subwatersheds (V. 
Koren, Hydrologic Laboratory, NWS, personal communica- 

tion, 2000). The average soil depth determined from the 
STATSGO information and the contributing area of each sub- 
watershed are listed in Table 2. 

Mean areal precipitation values for each of the eight sub- 
watersheds were estimated from the 4 x 4 km NEXRAD Stage 

III hourly precipitation data. Unit hydrographs for each sub- 
watershed were developed in conjunction with the DEM, using 
the methodology described by Smith et al. [1999], to route the 
simulated channel inflow to the outlet of the watershed. For 

the lumped conceptualization the unit hydrograph was derived 
from the subwatershed unit hydrographs. 

2.2. NWS Modeling Strategy 

The NWS applied the SAC-SMA model in both lumped and 

semidistributed (eight subwatersheds) forms to the Blue River 
watershed. In the lumped case, the channel inflow was com- 

puted at each time step for the entire watershed and then 

routed to the outlet with a single unit hydrograph. In the 
semidistributed case the soil moisture computations were 

made separately for each subwatershed, and the resulting sim- 

ulated channel inflows were then routed independently to the 

outlet of the watershed and combined to compute the total 
simulated streamflow for the entire watershed. 

The NWS first used a sophisticated, highly interactive man- 

ual procedure to estimate values for 13 of the SAC-SMA 

parameters (four were set to default values) [Anderson, 1997] 

for the lumped watershed case. In this procedure, initial values 

for the calibration parameters are estimated from analytical 

relationships derived by Koren et al. [2000] based on soil prop- 

erty data (STATSGO soil texture data). While these estimated 
values are not "optimum" values, they are considered (by the 

NWS) to be "very reasonable initial approximations" [Koren et 
al., 2000]. Next, a systematic sequence of steps is followed to 

develop parameter estimates based on an examination of the 

hydrological database (precipitation, PET, and streamflow) of 
the watershed. Periods in the observed time series data are 

identified where specific hydrologic processes are dominant 

(e.g., base flow, interflow, surface flow, evaporation, transpira- 
tion, abstraction, infiltration, etc.). For each of these periods 

the closeness of the model and the data is evaluated visually, 
and values for the relevant parameters are estimated by heu- 

ristic methods. In the last (and most difficult) step of the 
procedure the hydrologist must deal with the effects of param- 

eter interactions on the model responses by simultaneously 

evaluating a number of subjective and objective criteria while 

iteratively adjusting the parameter values so that the model 
matches the behavior of the watershed system as closely as 

possible. 

For the semidistributed case, there are 104 parameters to be 

estimated (13 for each of the eight subwatersheds). For each 
subwatershed, initial parameter values were estimated from 

the soils data using the analytical relationships developed by 
Koren et al. [2000]. Next, the calibration parameter values were 

adjusted manually while maintaining the ratios between the 

initial parameter values among the subwatersheds. Finally, a 
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Kansas 

Oklahoma 

Blue River Watershed 

Texas 

Missouri 

Arkansas 

Figure 1. Location of Blue River watershed. 

"fine-tuning" of the parameter estimates for each subwater- 

shed was done through a complicated and subjective examina- 

tion of the hydrological database of the watershed and through 

consideration of the soil moisture state and simulated hydro- 

graph (at the outlet of the watershed) for each subwatershed. 
This step requires the hydrologist to search the entire simula- 

tion period for consistent deviations between the model and 

watershed behavior and to make appropriate parameter ad- 

justments (e.g., precipitation events that occur primarily over a 

Table 2. Subwatershed Attributes 

Contributing Average Soil 
Subwatershed Area, knl 2 Depth,m 

1 153.1 1.19 

2 150.0 0.88 

3 153.1 0.83 

4 144.0 1.70 

5 162.9 1.71 

6 165.0 1.75 

7 169.9 1.75 

8 129.0 1.75 

single subwatershed can be isolated and the corresponding 

parameters adjusted to improve the associated streamflow sim- 

ulations). Clearly, the large number of model parameters and 
limited number of isolated events for each subwatershed limit 

the effectiveness of this approach. 

3. Methods 

The manual calibration conducted by the NWS was used 

in this study as the basis for an evaluation of the strengths 
and weaknesses of the automatic multicriteria calibration 

approach [Gupta et al., 1998; Boyle et al., 2000]. In addition, 
a number of different model runs were conducted to inves- 

tigate the benefit of different levels of spatial representation 
of model input (precipitation), structural components (soil 
moisture and streamflow routing computations), and surface 

characteristics (parameters) of the SAC-SMA model ap- 

plied to the Blue River watershed. The study was designed 
to complement the NWS semidistributed studies on the 

Blue River by expanding our understanding of the specific 

benefits associated with different levels of spatial represen- 
tation of the model. 
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Figure 2. Partitioning of the observed hydrograph into three components: driven Q r• (solid black area), 
nondriven quick QQ (horizontally lined area), and nondriven slow Qs (dotted area). 

3.1. Multicriteria Parameter Estimation Methodology 

The multicriteria approach to calibration presented in detail 
by Boyle et al. [2000] combines the strengths of both automated 
and manual calibration methods. The approach involves the 
identification of several characteristic features of the observed 

streamflow hydrograph, each representing a distinct (prefera- 
bly unique) aspect of the behavior of the watershed. In brief, 
the hydrograph is partitioned into three components based on 
the reasonable assumption that the behavior of the watershed 

is inherently different during periods "driven" by rainfall and 
periods without rain. Further, the periods immediately follow- 
ing the cessation of rainfall and dominated by interflow can be 

distinguished from the later periods that are dominated by 

base flow. The streamflow hydrograph can therefore be parti- 
tioned into three components (Figure 2), which we call "driv- 

en" (QD), "nondriven quick" (QQ), and "nondriven slow" 
(Qs). The time steps corresponding to each of these compo- 
nents are identified through an analysis of the precipitation 
data and the time of concentration for the watershed. The time 

steps with nonzero rainfalls, lagged by the time of concentra- 
tion for the watershed, are classified as driven. Of the remain- 

ing (nondriven) time steps those with streamflows lower than a 
certain threshold value (e.g., mean of the logarithms of the 
flows) are classified as nondriven slow, and the rest are classi- 
fied as nondriven quick. For each of the components the close- 
ness between the model outputs and the corresponding ob- 
served values is estimated separately using the RMSE statistic, 
resulting in three evaluation criteria, designated as FD (driv- 

en), FQ (nondriven quick), and FS (nondriven slow), respec- 
tively. 

An important characteristic of the multiobjective problem is 
that it does not, in general, have a unique solution. Because of 
errors in the model structure (and other possible sources), it is 
not usually possible to find a single unique solution that simul- 
taneously minimizes all of the criteria. Instead, it is common to 

have a "Pareto set" of solutions with the property that moving 
from one solution to another results in the improvement of one 
criterion while causing a deterioration in one or more others. 

The Pareto set represents the minimum uncertainty that can be 
achieved for the parameters via calibration, without subjec- 
tively assigning relative weights to the individual model re- 

sponses. The size and properties of this set are related to errors 
in the model structure and data. In this study, the Multi- 

Objective Complex evolution algorithm [Yapo et al., 1998; Bas- 
tidas et al., 1999] was used to solve the multicriteria optimiza- 
tion problem. MOCOM is a general-purpose multiobjective 
global optimization algorithm that provides, in a single opti- 
mization run, a set of points that approximate the Pareto set. 
For details, the reader is referred to Gupta et al. [1998] and 

Yapo et al. [1997, 1998]. 

3.2. Description of This Study 

In this study, a series of lumped and semidistributed appli- 
cations of the SAC-SMA model to the Blue River watershed 

was made to investigate the improvements in model perfor- 
mance associated with various levels of spatial representation 
of model input (precipitation), structural components (soil 
moisture and streamflow routing computations), and surface 
characteristics (parameters). Each model application was de- 
signed to isolate the effects of the different levels of spatial 
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Table 3. Table of Different Modeling Cases a 

Case Case Name Precipitation P 
Soil Moisture Routing Parameters 

Computation S Computation R 0 

1 LUMP-ALL L 

2 DIST-PS D 

3 DIST-PSR D 

4 DIST-SR L 

5 DIST-PSR0 D 

L L L 

D L L 

D D L 

D D L 

D D D 

aL, lumped; D, distributed. 

representation in terms of specific desirable watershed behav- 

iors (driven flow, "peaks and timing"; nondriven quick flow, 
"quick recession" responses; and nondriven slow, "base flow" 

responses). The calibration data set (precipitation, PET, and 
streamflow) used in this study was the same as that used in the 

NWS study. Model calibration and evaluation of the perfor- 
mance improvements for each application were performed us- 
ing the multicriteria approach described above. For each case 
the Pareto optimal solution space for the three criteria (FD, 
FQ, and FS) was estimated by 500 solutions generated using 
the MOCOM algorithm. 

Five separate cases of spatial distribution of the SAC-SMA 

model were investigated (see Table 3). In case 1 (LUMP-ALL) 
the SAC-SMA model was applied in a lumped configuration 

(precipitation P, soil moisture computations S, and streamflow 
routing computations R, were all lumped) to the Blue River 
watershed. This case served as a benchmark for performance 
comparisons with cases 2-5, in which the SAC-SMA model was 

applied in varying levels of spatial distribution to the eight- 
subwatershed configuration used by the NWS. Note that in 

cases 2-4 the model parameters were treated as lumped (all 
the subwatersheds were assigned the same values of the 13 

calibration parameters) and only the spatial distribution of the 
model input and structural components was investigated. 

In case 2 (DIST-PS) the precipitation and soil moisture 
computations were spatially distributed among the subwater- 
sheds, but the routing was treated as lumped. In this applica- 
tion, soil moisture computations were performed separately to 
compute separate channel inflow sequences for each subwa- 
tershed, but these were combined into a total channel inflow 

for the entire watershed before routing to the outlet of the 

watershed using a single unit hydrograph. In case 3 (DIST- 
PSR) the precipitation, soil moisture computations, and 
streamflow routing computations were spatially distributed 
among the subwatersheds to assess the additional benefit of 

distributed routing. In this application, the channel inflow 
computed for each subwatershed was independently routed to 

the outlet of the watershed with separate unit hydrographs and 
then combined to estimate the total runoff from the watershed. 

In case 4 (DIST-SR) the precipitation was treated as lumped 
over the entire watershed, but the soil moisture and streamflow 

routing computations were spatially distributed among the 
subwatersheds. This configuration was designed to investigate 

the value of the spatially distributed precipitation through 
comparison with cases 1-3. In case 5 (DIST-PSR0) the addi- 
tional value of spatially distributing the watershed soil proper- 
ties was investigated by allowing some of the model parameters 
to vary among the subwatersheds. The five parameters allowed 
to vary were LZTWM, REXP, UZTWM, UZFWM, and UZK, 

selected on the basis of the results of previous studies by the 

NWS [Koren et al., 2000] indicating that these parameters ex- 
hibit empirical relationships with different soil property data. 

Finally, to further investigate the effects of spatial represen- 

tation, cases 2-5 were repeated using a smaller number of 
subwatersheds (i.e., the entire watershed was partitioned into a 
three-subwatershed configuration). In this new configuration 

(also provided to us by the NWS), the original subwatersheds 
1, 2, and part of 3 were combined to form the new subwater- 
shed 1 of the three-subwatershed configuration. Similarly, 4, 5, 
and parts of 3 and 6 were combined to form the new subwa- 
tershed 2, while 7, 8, and part of 6 were combined to form the 
new subwatershed 3. The mean areal precipitation and PET 
for each of the three new subwatersheds were estimated by the 

NWS using the same methods mentioned previously. 

4. Results 

4.1. NWS Manual Calibration Results 

The NWS manual calibration studies were used as bench- 

marks for evaluation of the automatic calibration studies de- 

scribed above. The manual calibration results are shown in the 

multicriteria format in Figures 3a-3c. Figures 3a-3c present 

the results for each case using two-dimensional projections of 

the three-criteria solution space (NWS lumped case is large 
open square and NWS semidistributed case is large open cir- 
cle). Clearly, the semidistributed application results in an im- 
provement in the model's ability to simulate the observed flow 

in terms of FQ and FS, as compared with the lumped appli- 
cation. There is a slight decrease, however, in the model's 
ability to simulate the driven flows measured by FD. 

4.2. Automatic Multicriteria Calibration Results 

4.2.1. Case 1: Lumped model. The results of the multi- 

criteria automatic calibration of the lumped case (LUMP- 
ALL) are also shown in Figures 3a-3c, as a three-criteria 
trade-off surface represented by the set of 500 Pareto optimal 

solutions (indicated by the light shaded dots). The inability of 
the model to simultaneously match all three aspects of the 

hydrograph is clearly illustrated. For example, Figure 3b illus- 
trates the smoothly varying trade-off between the model's abil- 

ity to match the driven (Qr•) and the nondriven slow (Q s) 
portions of the hydrograph (similarly, see Figure 3c and, to a 
lesser extent, Figure 3a). 

A visual comparison of the 500 Pareto solutions with the 

NWS lumped solution (open square) in Figures 3a-3c shows 
that the automatic approach provides a closer fit of the base 
flow responses (FS) and, to a lesser extent, the quick recession 
responses (FQ). In terms of the peaks and timing (FD), how- 
ever, most of the 500 Pareto solutions are inferior to the NWS 

lumped solution. 
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Figure 3. Pareto solutions obtained with the automatic multicriteria approach to calibrate the Sacramento 
Soil Moisture Accounting (SAC-SMA) model: (a-c) two-dimensional projections of objective space. Dots 
correspond to 500 Pareto solutions for case 1 (light shaded dots), case 2 (dark shaded dots), and case 3 (solid 
dots). U.S. National Weather Service (NWS) manual calibration results are shown for lumped (open square) 
and semidistributed (open circle). 

The variability in the parameter values across the 500 Pareto 

optimal solutions for the case LUMP-ALL is shown in Figure 
4a (shaded lines) using a normalized parameter plot. Each line 
across the graph represents one of the parameter sets. The 

maximum range for each parameter represents the range over 
which the multicriteria calibration procedure was performed 

(see Table 1). Notice that the multicriteria optimization has 
resulted in a significant reduction in the parameter range. 
Notice also that the seven parameters LZFPM, LZFSM, 

LZPK, LZSK, PCTIM, ZPERC, and REXP show only small 

amounts of variability while corresponding well with the NWS 

lumped solution (solid line) obtained by an expert via manual 
calibration. The relative lack of variability in these parameters 
indicates that they are not primarily responsible for the per- 
formance trade-offs associated with the inability of the model 

to simultaneously match the three different components of the 

hydrograph (indicated by FD, FQ, and FS). Of these parame- 
ters, the first five (LZFPM, LZFSM, LZPK, LZSK, and PCTIM) 
are considered to be the ones that are "most identifiable" and 

relatively easy to estimate via careful off-line examination of 

the observed hydrograph and precipitation data [Peck,.1976]. 
The fact that the automatic multicriteria approach gives com- 
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Figure 4. Normalized parameters for Pareto solutions obtained with the automatic multicriteria approach 
to calibrate the SAC-SMA model: (a) case 1, (b) case 2, and (c) case 3. 
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Figure 5. Pareto solutions obtained with the automatic multicriteria approach to calibrate the SAC-SMA 
model: (a-c) two-dimensional projections of objective space. Dots correspond to 500 Pareto solutions for case 
1 (light shaded dots), case 4 (dark shaded dots), and case 3 (solid dots). NWS manual calibration results are 
shown for lumped (square) and semidistributed (open circle). 

parable values for these parameters is a good indication of the 
reasonableness of the automatic approach. Note, however, that 
the two parameters, ZPERC and REXP, that control the be- 
havior of the percolation (infiltration) component of the model 
are not easy to estimate directly from the observed data. 

There is, in general, larger variability in the estimates for the 

remaining six model parameters (and, in particular, UZTWM 
and UZFWM), which are primarily related to the properties of 
the upper soil layer and control the partitioning of the hydro- 
graph into different quick flow components (overland and in- 
terflow). This suggests that the model performance tradeoffs 
indicated in Figures 3a-3c are associated primarily with inad- 
equacies in the representation of the near-surface soil pro- 
cesses. 

4.2.2. Case 2: Distributed input and soil moisture. The 
results of the multicriteria automatic calibration of case 2 

(DIST-PS) are shown in Figures 3a-3c. Note that, in this case, 
the channel inflows for all the subwatersheds are lumped to- 
gether and routed to the outlet using a single unit hydrograph. 
The results for the eight-subwatershed configuration did not 
give better results than the three-subwatershed configuration. 
Therefore the results presented here will draw primarily from 
the results of the three-subwatershed study. Comparison of the 

solutions for this case (dark shaded dots) with the lumped case 
(case 1, LUMP-ALL, light shaded dots) indicates a significant 
benefit to allowing the precipitation input and the soil moisture 
computations to be distributed. In particular, the ability of the 
model to simulate the quick recession responses (FQ) and, to 
a lesser extent, the peaks/timing (FD) has been improved. 
However, there appears to be no additional impact on the 
model's ability to simulate the base flow responses (FS). 

A visual comparison of the DIST-PS results with the NWS 
lumped solution in Figures 3a-3c clearly shows that the auto- 
matic approach provides a closer fit to the observed data in 

terms of all three criteria FD, FQ, and FS. Further, compari- 
son of the DIST-PS results with the NWS semidistributed 

solution shows that most of the 500 Pareto solutions provide a 
better fit to the base flow (FS) and peaks/timing (FD), while 
providing a comparable fit to the quick recession (FQ). 

The variability in the parameter values across the 500 Pareto 
optimal solutions for the DIST-PS case is shown in Figure 4b. 

Notice that the variability in the parameters has generally 
decreased when compared with case 1 (LUMP-ALL). As be- 
fore, the range for the seven parameters, LZFPM, LZFSM, 

LZPK, LZSK, PCTIM, ZPERC, and REXP, is close to the 

values for the lumped NWS solution, further supporting the 

notion that the automatic multicriteria approach is finding 
appropriate values for these parameters. 

4.2.3. Case 3: Distributed input, soil moisture, and rout- 

ing. The results of the multicriteria automatic calibration of 

case 3 (DIST-PSR) are also shown in Figures 3a-3c. In this 
case the precipitation, soil moisture computations, and channel 
routing are all treated separately for each subwatershed. 
Again, the results for the eight-subwatershed configuration did 

not give better results than the three-subwatershed configura- 

tion, and results are therefore only presented for the latter 
configuration. The 500 Pareto optimal parameter sets (solid 
dots) show that routing the channel inflow independently from 
each subwatershed to the outlet of the watershed improves the 

model's ability to simulate both the quick recession responses 
(FQ) and the peaks/timing (FD). Once again, there is no ad- 
ditional improvement in the model's ability to simulate the 
base flow responses (FS). A visual comparison of the 500 
Pareto solutions for this case with the NWS lumped and semi- 
distributed solutions (Figures 3a-3c) clearly shows that the 
automatically calibrated semidistributed model DIST-PSR 

provides a much better reproduction of the watershed re- 
sponse in terms of all three criteria, FD, FQ, and FS. 

The normalized parameter values for the 500 Pareto solu- 
tions are shown in Figure 4c. Again, the variability in the 

parameters is generally less than in case 1 (LUMP-ALL), and 
the parameters LZFPM, LZFSM, LZPK, LZSK, PCTIM, 
ZPERC, and REXP are close to the lumped NWS solution. 
However, the variability of parameter UZTWM (upper zone 
tension water maximum capacity) significantly increased when 
compared with the results from cases 1 and 2, suggesting that 
this parameter may need to take different values in each sub- 
watershed. 

4.2.4. Case 4: Distributed soil moisture and routing: 

Lumped input. The results of the multicriteria automatic cal- 

ibration of case 4 (DIST-SR) are shown in Figures 5a-5c. In 
this case the input was treated as lumped (averaged over the 
watershed), thereby simulating the lack of availability of radar- 

based precipitation data, while the model computations were 
run in semidistributed mode. Only the three-subwatershed 

case is shown. The 500 Pareto optimal parameter sets obtained 
for this case (dark shaded dots) are shown overlaid on the 
results from case 1 (LUMP-ALL, light shaded dots) and case 
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Figure 6. Normalized parameters for Pareto solutions obtained with the automatic multicriteria approach 
to calibrate the SAC-SMA model for case 5: (a) upper subwatershed, (b) middle subwatershed, and (c) lower 
subwatershed. 

3 (DIST-PSR, solid dots). Note that FQ for most of the case 4 
solutions is improved over case 1, but not as "good" as case 3, 
indicating that spatially distributed routing and input (precip- 
itation) both contribute to improvements in simulating the 
quick recession (FQ). However, the case 4 solutions (lumped 
input and distributed routing) that provide the best match to 
FD (peaks/timing) are comparable to the case 3 solutions (dis- 
tributed input and distributed routing), indicating that the sim- 
ulation of the peaks is controlled more strongly by the spatial 
representation of routing than by the spatial representation of 
the inputs (precipitation). 

4.2.5. Case 5: Distributed input, soil moisture, routing, 

and parameters. In case 5 (DIST-PSR0) the additional value 
of spatially distributing the watershed soil properties was in- 
vestigated by allowing five of the model parameters (LZTWM, 
REXP, UZTWM, UZFWM, and UZK) to vary among the 
subwatersheds. Unexpectedly, the calibration results showed 
no noticeable criterion value improvements over the solutions 
obtained for the lumped parameter case 3 (DIST-PSR). This is 
surprising, given the larger number of calibration parameters 
(23) compared with the number of calibration parameters (13) 
in case 3 (DIST-PSR), Additional runs made with other com- 
binations of parameters also provided no noticeable gains. 
However, the parameter plots shown in Figures 6a-6c (each 
subplot represents a different subwatershed) indicate that the 
calibration has converged to significantly different values for 
the parameter UZTWM (upper zone tension water maximum 
capacity) in each subwatershed: low value for the upper sub- 
watershed, medium value for the middle subwatershed, and 

high value for the lower subwatershed. This variability is con- 
sistent with results obtained under case 3, where forcing this 

parameter to be lumped results in a large trade-off range (i.e., 
the parameter must take different values to fit different por- 
tions of the data record). Further, it seems reasonable that the 
increasing trend for UZTWM from the upper to lower sections 
of the watershed is hydrologically realistic and is consistent 
with soil depth maps for the watershed. 

4.3. Comparison of Automatic and Manual Hydrographs 

Examples of the simulated hydrographs for a 120 hour por- 
tion of the calibration period are shown in Figure 7. The solid 
dots correspond to the observed data, the light shaded region 
corresponds to the hydrograph trade-off uncertainty associated 
with the case 3 (DIST-PSR) multicriteria solution, and the 
dashed and solid lines correspond to the NWS lumped and 
semidistributed results, respectively. Because the ordinates of 
the unit hydrographs were kept fixed (not dynamically ad- 
justed) during the calibration, the hydrograph recessions are 
not well simulated. Nevertheless, the multicriteria solutions 

are able to reproduce the timing and magnitude of the flood 
peak extremely well. 

5. Summary and Conclusions 

The semidistributed approach to modeling the spatial vari- 
ability of important hydrologic processes is becoming popular 
as the availability of high-resolution hydrologic information 
continues to increase. However, the spatial detail with which 
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Figure 7. Hydrograph range associated with the Pareto solution set for case 3. The dots correspond to the 
observed streamflow data, the light shaded region corresponds to the 500 Pareto solutions, the dashed line 
corresponds to the NWS lumped solution, and the solid line corresponds to the NWS semidistributed solution. 

this variability needs to be represented to provide accurate 
streamflow simulations is not well understood. Further, the 

increased complexity of the semidistributed approach (and, in 
particular, the large number of parameters) results in a cali- 
bration problem of considerable difficulty. Traditional manual 
and automatic calibration approaches typically provide a single 
suboptimal solution, with little or no information about the 

uncertainty in the estimated parameters or the model perfor- 
mance. 

The applicability of multicriteria automatic calibration 
methods to the calibration of semidistributed watershed mod- 

els has been demonstrated in this study. The automatic ap- 

proach was shown to be able to effectively handle the increased 

model complexity and provide parameter estimates (and hence 
model performance) that are comparable or superior to those 
obtained by the manual/expert approach. The improved results 
are also achieved at a considerable savings in "calibration 

time": after problem setup, the automatic approach requires 
--•2-4 hours of computing time on a Sun workstation, com- 

pared with several days to weeks of person time for the manual 
approach (M. Smith, Hydrology Laboratory, NWS, personal 
communication, 2000). In addition, the study has demon- 
strated how multicriteria methods provide a useful framework 
for the systematic investigation of appropriate model complex- 
ity. 

The study was specifically motivated by the needs of the U.S. 
National Weather Service for improved procedures for cali- 
bration of watershed models in the context of the Advanced 

Hydrologic Prediction System modernization initiative. In par- 

ticular, it was designed to complement ongoing NWS studies 
into the development of semidistributed modeling strategies 
that exploit the increasing availability of spatial hydrologic 
information, including NEXRAD precipitation. The effective- 

ness and efficiency of the automatic approach enabled us to 
rapidly investigate the specific benefits associated with differ- 
ent levels of spatial representation of various model compo- 
nents, including the model input (precipitation), structural 
components (soil moisture and streamflow routing computa- 
tions), and surface characteristics (parameters). In particular, 
it was found that (1) the semidistributed model provided sig- 
nificant performance improvements over the lumped model, 

(2) there was a limit to the performance improvements asso- 
ciated with increasing representation of spatial hydrologic vari- 
ability in the model, (3) the main improvements were provided 

by spatial representation of the precipitation (inputs) and 
structural components (soil moisture and streamflow routing 
computations), (4) little or no improvements were provided by 
spatial representation of the soil properties (model parame- 
ters), (5) the spatial variability in hydrologic information con- 
tributed mainly to improved simulation of the flood peaks and 
the quick recessions, and (6) semidistributed modeling pro- 
vided no improvements in representation of the base flow. 
These results are, of course, specific to the SAC-SMA model 
for the Blue River watershed, although conclusions 1, 2, and 6 

may prove to be more generally applicable. 
Conclusion 4, relating to the lack of improvement in model 

performance when the model parameters are allowed to be 

distributed spatially, is both unexpected and interesting. This 
seems contrary to the general belief among hydrologists that 
the spatial variability in soil properties exerts a significant con- 
trol on the hydrologic response of a watershed. For the Blue 
River watershed at least, our results indicate that the dominant 

control on the hydrologic response is the watershed topogra- 

phy (which strongly determines the routing characteristics and 
(perhaps less strongly) the spatial distribution of precipitation) 
and that the impacts of variations in the soil and vegetation 
properties are averaged out by the time the streamflow reaches 
the watershed outlet. Further studies to investigate the condi- 

tions under which the various components of hydrologic vari- 

ability do (or do not) contribute to variations in total water- 
shed response would provide significant improvements to our 
understanding of watershed behavior. 

Research aimed at further understanding the relationship 
between model complexity and performance improvement is 

ongoing. This includes investigation of the benefits associated 

with various levels of vertical model complexity. While the 

scope of this study was limited to calibrations on a single 
watershed, further testing on a large number of watersheds is 

planned through participation in the Distributed Model Inter- 

comparison Project recently proposed by the Hydrology Lab- 
oratory of the NWS. The results of that work will be reported 
in due course. As always, we invite dialog with others inter- 

ested in these topics. 
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