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Abstract

A new assessment conception is described that integrates constructed-response

testing, artificial intelligence, and model-based measurement. The conception

incorporates complex constructed-response items for their potential to

increase the validity, instructional utility, and credibility of standardized

tests. Artificial intelligence methods are invoked to produce item-level

partial-credit scores and diagnostic analyses similar to those of a human

expert. Finally, cognitively-grounded measurement models provide diagnostic

statements based on commonalities in performance across items. Progress

toward achieving this conception is examined, with emphasis on two automated

scoring programs. Potential applications of intelligent assessment are

discussed.
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Toward Intelligent Assessment: An Integration of Constructed Response

Testing, Artificial Intelligence, and Model-Based Measurement

This paper describes a new testing conception called intelligent

assessment. The paper outlines a formulation and rationale for this

conception, describes progress toward realizing it, and offers some ideas on

practical applications including ones related to large-scale standardized

testing programs.

Intelligent Assessment

Intelligent assessment is conceived of as an integration of three

research lines, each dealing with cognitive performance from a different

perspective: constructed-response testing, artificial intelligence, and

model-based measurement. This integration is envisioned as producing

assessment methods consisting of tasks closer to the complex problems

typically encountered in academic and work settings. These tasks will be

scored by automated routines that emulate the behavior of an expert, providing

a rating on a partial-credit scale for summative purposes as well as a

qualitative description designed to impart instructionally useful information.

The driving mechanisms underlying these tasks and their scoring are

cognitively-grounded measurement models that may dictate what the

characteristics of items should be, which items from a large pool should be

administered, how item responses should be combined to make more general

inferences, and how uncertainty should be handled.'

It is important to stress that the emphasis is on assessment that

facilitates instruction rather than on instruction that embeds assessment, as

some intelligent tutoring systems at least implicitly do (J. R. Frederiksen &

White, 1988). This emphasis was chosen to encourage developments that might

result in near-term, incremental improvements to major standardized testing
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programs (such as achievement and admissions programs), in more sophisticated

environments for preparing for such tests, and, in the longer term, in more

effective assessment modules for intelligent tutoring systems (Wenger, 1987).

Complex Constructed-Response Tasks

A constructed response task can be thought of as any task for which the

space of examinee responses is not limited to a small set of presented

options. As such, the examinee is forced to formulate, rather than recognize,

an answer. This definition implies a substantial range in the complexity of

the responses, from an item that calls for rearranging the sentences in a

paragraph to one that requires performing a musical piece (Bennett, Ward,

Rock, & LaHart, in press). In this paper, interest is focused toward

responses of greater complexity. Hence, a complex constructed-response item

is one for which scoring decisions cannot typically be made immediately and

unambiguously, using

criteria, but rather

presents examples of

domains.

mechanical application of a limited set of explicit

require some degree of expert judgment. Figure 1

such items in the algebra and computer programming

Insert Figure 1 about here

The use of such items may engender many difficulties. Surely, more

multiple-choice questions can

constructed responses. Tests

reduced content coverage and,

be completed per unit time than complex

composed of the latter item type will often have

potentially, lower reliability and validity (as

seen from the traditional test theoretic perspective). Scoring constructed

responses for any large-scale testing program is a major undertaking:

detailed, defensible scoring keys must be produced; human judges trained,
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housed, and fed while scoring is underway; and rater performance must be

constantly monitored to maintain inter-judge agreement and scale stability.

Given these difficulties, why be interested in such items at all? For

one, these items are likely to measure skills different from those tapped by

multiple-choice tests (Ackerman & Smith, 1988; Ward, N. Frederiksen, &

Carlson, 1980). Because constructed-responses may more closely represent

real-world tasks, they should more readily engage many of the higher-order

cognitive processes required in academic and work settings. As a result,

important constructs that are presumably not measured by multiple-choice tests

are likely to be assessed. Such increases in construct validity may, in turn,

lead to enhanced predictive value (N. Frederiksen & Ward, 1978), especially

when constructed responses are combined with multiple-choice items (Breland,

Camp, Jones, Morris, & Rock, 1987).

A second argument for using complex constructed-response items is that

the responses provide a window onto the strategies examinees use in arriving

at a solution. This window facilitates the gathering of diagnostic

information not easily attainable in the multiple-choice format (Birenbaum &

Tatsuoka, 1987).

Third, it has been argued that constructed-response questions play an

important role in making the outcomes of instruction more clearly visible

(Breland, Camp, Jones, Morris, & Rock, 1987; J. R. Frederiksen & Collins,

1989). As implied, multiple-choice tests in many instances attempt to measure

skill using a format different from those commonly encountered in real-world

tasks. Even when substantially similar cognitive operations underlie the two

formats, instruction would seem less efficient as teachers (and students) use

one format to achieve the objectives of the curriculum and the other to

prepare for the test. The real danger comes in those situations where the
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multiple-choice format requires a substantially different (and less valued)

set of operations than the criterion performance, and test preparation is

emphasized over curricular achievement (J. R. Frederiksen & Collins, 1989; N.

Frederiksen, 1984)--as, in high-stakes testing situations, it inevitably will

be. The result might be a class of students good at recognizing isolated

facts but poor at integrating the knowledge, skill, and strategies needed for

more involved tasks. Complex constructed-response items should eliminate this

conflict by focusing both instruction and assessment on the same criterion

tasks.

Finally, because it looks different from--and more mechanical than- -

real -world tasks, the multiple-choice format is easily characterized as

irrelevant and trivial (e.g., Fiske, 1990). The persistency and frequency

with which these characterizations have been made would seem to reduce the

credibility of conventional testing programs. Such characterizations would be

much less convincing if the test and the criterion tasks were more similar.

The research literature underlying these purported advantages of complex

constructed-response is quite limited, leading to few definitive conclusions

(Traub & MacRury, in press). Though there is, for example, considerable

evidence that different abilities are demanded by multiple-choice and free-

response items, the nature of these differences is not clearly understood.

Even so, the ar.ments for constructed response appear logically and often

theoretically well-grounded, justifying continued exploration of this format

as, at the least, a potential supplement to multiple-choice items.

Scoring

The second feature in the proposed conception of intelligent assessment

is evaluative feedback approximating the analyses of an expert. For summative

purposes, an expert would be expected to rate a complex constructed response

9
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on a partial-credit scale. To help the learner, a qualitative analysis of the

response should also be provided.

Why score responses on a partial-credit scale? Though partial-credit

models for scoring multiple-choice items have been proposed (Millman & Greene,

1989), standardized tests have traditionally treated responses to these items

as right or wrong. With a complex response, dichotomous scoring throws a rich

data base away thereby potentially reducing test reliability and validity.

Figure 2 presents several incorrect answers generated by GRE General

Test examinees to an algebra word problem (Sebrechts, Bennett, & Rock, in

press). One means of decomposing the problem is in terms of the following

goals: (1) find the time for the first part of the trip, (2) find the missing

distance for the second part, (3) find the time for the second part, (4) add

the two times, and (5) add the total trip time to the starting time. The

first response recapitulates this decomposition exactly. The answer is wrong

only because a minor computational error is made in finding the missing

distance for the second part (line 4).

Insert Figure 2 about here

In the second response, three of the five goals are correctly

structured. The missing distance is generated (as implied from its use in

line 7), the two travel times (though incorrectly derived) are summed (line

13), and the total is added (implicitly) to the start time to produce a finish

time. Structural flaws are present, however, in finding the travel times

(lines 1-5 and 7-11).2

0
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The last response is the most seriously wrong. This response achieves

only one of the five goals, find the missing distance, which is indicated on

line 4.

These three responses differ consi.derably in the extent to which they

approach a correct problem solution, as well as in the understanding of the

problem they imply. Yet each result would have been treated equivalently

under a dichotomous scoring scheme.

In addition to partial credit, an expert would be expected to generate a

qualitative analysis to give individual examinees an indication of where they

went wrong in solving the problem. In applications of intelligent assessment

within major standardized testing programs, this feedback might simply serve

as a more complete explanation of test performance than scores can provide.

In a test preparation system, such feedback would hopefully have more tangible

value, giving examinees the information needed to modify their solution

strategies.

Figure 3 gives examples of item responses that, while very close to a

correct solution, contain qualitatively different errors. Response #1

contains only a simple computational error (line 4). In Response #2, the

error is in considering 6.3 to be the same as 6 and 1/3 (lines 7 and 9).

Response #3's error is in lines 10-11 where 6.30 hours is mistakenly

transformed to 6 hours 30 minutes.

Insert Figure 3 about here

Cognitively Motivated Measurement Models

Though statements about what an examinee did incorrectly on a given item

might be helpful, it would seem that far greater instructional value would
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accrue from more general diagnostic statements based on commonalities in

performance across items. Such commonalities are more likely to be indicative

of stable errors associated with particular skill deficiencies. To guide

aggregations across items, a model, or general set of rules applicable to a

class of assessment purposes, can be used. Measurement models guided

primarily by the semantics of the domain should offer more efficient and

psychologically meaningful statements than ad hoc approaches to aggregation

(Mastsrs & Mislevy, in press). In addition, they might suggest, among other

things, the cognitive and psychometric characteristics of items, which of a

large pool of items should be administered, the order in which they should be

given, and how noise in the data should be dealt with.

Progress Toward Intelligent Assessment

Scoring3

Perhaps the greatest problem in operationalizing intelligent assessment

lies in scoring. Complex constructed-response items are used routinely in

some large-scalc testing programs (e.g., the College Board's Advanced

Placement Program). In these programs, responses are scored t.y human experts.

This method is extremely expensive because judges must be trained, fed,

housed, and paid. Because of the tremendous volume (responses in the hundreds

of thousands for the Advanced Placement Program), scoring is time consuming,

taking hundreds of experts a week or more to complete. Qualitative analyses

are not included and, given the additional time this analysis would take, it

is unlikely that they ever could be. Finally, an appreciable degree of error

is introduced in part because even if a reasonably objective scoring rubric

can be established, judges' accuracy in consistently applying this rubric

often changes during an operational grading (Braun, 1988). These difficulties

argue for attempts to create machine-based methods for scoring complex tasks.
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Machine-scorable tasks would reduce the operational expense associated with

human grading, speed up the scoring process, permit the introduction of

qualitative analyses, and eliminate within-judge inconsistency (because the

machine would apply its rules the same way every time).

Our work toward developing machine-scorable, complex constructed-

response tasks is proceeding in two domains, computer programming and algebra,

using two major standardized testing programs, the College Board's Advanced

Placement Computer Science (APCS) Examination and the Graduate Record

Examinations (GRE) General Test, as settings. In both instances, the

underlying scoring mechanism is an expert system--a computer program that

emulates one or more aspects of the behavior of a master judge. Both systems

were originally built as research tools within the field of intelligent

tutoring (Sleeman & Brown, 1982; Wenger, 1987). Because it is centrally

concerned with issues related to individualizing instruction, this field has

initiated some extremely provocative approaches to instructional diagnosis,

offering useful bases for building intelligent assessment.

Computer programming. The expert system being used in our work in this

domain is MicroPROUST, a derivative of PROUST (Johnson, 1986; Johnson &

Soloway, 1985).4 PROUST was developed to study the conceptual errors made by

students in learning to program in Pascal. MicroPROUST was built as a

portable demonstration of the concepts embodied in PROUST and, consequently,

is less powerful in its analytical techniques.

MicroPROUST attempts to find non-syntactic bugs in Pascal programs. The

system has knowledge to reason about selected programming problems within a

framework called intention-based diagnosis (Johnson, 1986; Johnson & Soloway,

1985). Intention-based diagnosis is derived from an extended research program

on the development of programming expertise (e.g., Soloway & Ehrlich, 1984;

3
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Soloway & Iyengar, 1986). This research suggests that in debugging programs,

experts first attempt to map the program into a deep-structure goal-and-plan

representation. Goals are the objectives to be achieved in a program, whereas

plans are stereotypical means (i.e., step-by-step procedures) for achieving

those goals. Following the lead of experts, MicroPROUST attempts to

"understand" student solutions by identifying the goals and plans that the

student intended to realize in the program, and the bugs produced. The term

"bug" takes its traditional meaning of "programming error" and is

conceptualized as an unsuccessful or incorrectly realized plan for satisfying

a goal. Bugs located are verbally described to the student in hope of

preventing similar errors and of stimulating thinking about how to approach

the problem correctly.

To analyze a problem, MicroPROUST must have what is in essence a

reasonably deep understanding of the problem domain. Developing this

understanding involves a labor-intensive cognitive analysis. For each

problem, student responses are analyzed to derive one or more goal

decompositions, correct plans for achieving the goals, and bug rules

representing faulty plan implementations.

In evaluating a student solution, MicroPROUST first reads the problem

specification contained in its knowledge base. This specification identifies

the goals the student should be attempting to achieve in solving a particular

problem. The system es this goal specification, its plan and bug rule

knowledge bases, and the student's code to construct the solution intended by

the student. For example, the specification for the "rotate array" problem

(see Figure lb) includes the goal, "shift each array element to the right."

The system would use this goal to locate in its knowledge base a set of plans

to achieve the desired result. As of this writing, MicroPROUST's knowledge

4



base had 24 such plan, _Lich varied in their loop control structures, how they

accomplished the shift (using a single array, a pair of arrays, or a pair of

temporary variables), and so on.

Next, the system would attempt to match one of these plans to a portion

of the student's code. If a match is found, inferences about the student's

intentions with respect to this code segment can be made, for instance, what

meaning to attribute to particular variables. On the basis of these

inferences, the system can predict how these variables will be used in

achieving the next goal needed to satisfy the problem specification and, in

addition, where in the program relative to the current segment that next goal

should reside. If an appropriate code segment cannot be found for achieving

that next goal, an attempt is made to match the segment using buggy-plan

rules. This goal-plan matching strategy provides considerable leverage;

correct plans and bug rules can be juxtaposed in different combinations to

handle the variety of responses generated by novice programmers.

Our first study with MicroPROUST examined the extent of agreement

between the program and human readers in diagnostically and numerically

scoring solutions to each of two APCS programming problems (Bennett, Gong,

Kershaw, Rock, Soloway, & Macalalad, in press). Each problem asked the

student to write a short program or procedure to satisfy a given specification

(see the problem statement in Figure la). The rules employed by the high

school and college teachers who operationally grade the APCS exam were used to

develop a rubric for MicroPROUST that deducted points depending upon the

particular bug detected. Solutions were graded by MicroPROUST and by a sample

of teachers drawn from the grading pool. MicroPROUST was able to produce an

analysis for approximately 70% of the solutions (it offered no analysis on the

remaining papers), and for those programs it could analyze, its performance
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wa- indistinguishable from human readers for one problem and not dramatically

different from them for the second (the correlations between the machine and

mean rater scores for the two problems were .96 and .75). In a cross-

validation sample, however, the percentage of papers the program was able to

analyze was aonsiderably lower at 42%, though, again, its scores were very

similar to a human judge's.

To improve MicroPROUST's performance, especially with respect to the

percentage of solutions analyzed, several approaches might be tried. Our

second study looked at one such approach, constraining the constructed-

response task (Braun, Bennett, Frye, & Soloway, in press). The subjects for

this study were two samples of examinees taking the APCS examination. Each

sample was given the same problem specification as in the previous study, but

also an incorrect solution to the problem. The task was to correct the faulty

program instead of writing it ab initio. The corrected programs were scored

by MicroPROUST (without any change to its knowledge base to adapt it to this

new problem type). Results showed, first, a substantial increase in the

percentage of solutions analyzed--from 42% to 83%. Second, those solutions

that MicroPROUST could not analyze were almost always incorrect: 93% had one

or more bugs. Third, reasonable agreement was found between MicroPROUST's

scores and a human rater--the product-moment correlation was .86. Finally,

whereas agreement on scores was good, agreement with the rater on bug

diagnosis was more moderate: the two agreed on the exact nature and location

of individual bugs in 56% of cases. Further work to identify the causes of

this disagreement needs to be undertaken.

Our third study focused on the construct validity of MicroPROUST's

scores for the constrained free-response item, specifically on whether this

item functioned more like multiple-choice or free-response questions (Bennett,
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Rock, Braun, Frye, Spohrer, & Soloway, in press). This issue is important

because our goal was to produce an item type that, while machine-scorable,

retained the cognitive demand characteristics of free-response. To address

this issue, data from the two samples of APCS examinees used in the previous

study were analyzed. (In that study, the two samples were distinguished by

having taken constrained free-response items that differed in the number of

seeded bugs: 1 vs. 3.) Confirmatory factor analysis (Joreskog & Sorbom,

1988) was applied to the data to estimate the relationships among the three

items types (multiple-choice, free-response, constrained free-response).

Results suggested that the proficiency information distilled from the three

item types was essentially the same, implying that the constrained free-

response might constitute a reasonable supplement to the two existing APCS

item formats.

Our ongoing work in computer programming is directed at several goals.

The first is to understand better the reasons for the functional similarity of

the three item types by undertaking additional studies of their structural

relations and cognitive demand characteristics. Second, a successor to

MicroPROUST is being developed that will contain more items and item formats,

and larger knowledge bases. Rather than operating in "batch" mode as

MicroPROUST does, the successor will be linked to a standard programming

environment, thereby forming an interactive system that presents programming

problems, accepts responses, and provides immediate feedback. Finally, a

program is being built to make constructing plan and bug knowledge bases

easier, so that greater coverage of student solutions--and higher analysis

rates--can be efficiently achieved.

Algebra. Our work in this domain is centered upon building constructed-

response formats for algebra word problems adapted from the GRE General Test.
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Student solutions to these problems differ fundamentally from programming

solutions (Sebrechts & Schooler, 1987). First, steps are frequently left out,

oftentimes because they can be mentally computed. Second, syntax is

considerably looser: students use assignment to values, include free

(unbound) expressions, and occasionally use multiple symbols to represent the

same variable or the same symbol to represent different variables. Finally,

the algebraic expressions that compose a solution typically culminate in a

single, easily verifiable result. The nearest analogue in programming is an

output, which varies as a function of the input and which cannot be generated

without compiling the solution. These characteristics of students' algebra

problem solutions make the task of scoring and diagnosis significantly

different from that in programming.

To score solutions to algebra word problems, GIDE, also a derivative of

PROUST, is being used (Selrechts, LaClaire, Schooler, & Soloway 1986). In

keeping with the nature of students' solutions, GIDE was constructed to accept

productions in relatively unconstrained forms.5 Solutions must be written

linearly (though not in a strict order), any names can be used to identify

variables or constants, and there is no restriction on the degree to which

examinees are allowed to deviate from a correct solution path. Though this

lack of constraint makes solutions substantially more difficult to interpret,

it appears to be more consistent with the ways in which problems are solved in

real -world settings.

Like MicroPROUST, GIDE can only analyze responses to problems about

which it is knowledgeable. GIDE's algebra word problem knowledge presently is

enough to handle responses to several variants of three basic problems (see

Figure lb for an example). The knowledge base for these problems was

developed by asking ETS mathematics test developers to specify correct and
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incorrect problem solutions. and by analyzing the written solutions and think-

aloud protocols of university undergraduates.

GIDE's evaluation of responses is guided by several strategies. As with

MicroPROUST, these strategies help it to build an understanding of the

response in terms of a goal-plan structure. For example, consider the "rate x

time" problem in Figure lb, which can be decomposed into the following goals:

(1) find the time for the first part of the trip,

(2) find the missing distance for the second part,

(3) find the time for the second part,

(4) add the times for the two parts to get a total time, and

(5) add the total trip time to the starting time.

In determining if a goal is satisfied, GIDE will attempt to match one of

the several plans it has for that goal to a portion of the examinee's

solution. GIDE does this by matching plans for the form and numerical value

of equations (e.g., for goal #2, part 2 distance = 600 miles - 285 miles, 315

= 600 - 285), for free-standing expressions (e.g., 315 appearing in isolation

as the result of'a mental computation), and for groups (e.g., when a goal

consists of a list of elements that can take on any order, such as group of

numbers to be summed). As a result of this matching, values as well as names

used by the examinee to represent variables or constants, are bound to GIDE's

internal representations. These bindings are available for use in analyzing

subsequent goals.

As part of GIDE's analyses, it attempts to separate conceptual from

computational errors. It does this by noting instances in which erroneous

values are associated with correct symbolic forms and then carrying these

computational errors through to subsequent goals. So, for example, in

Response #1 in Figure 3, the examinee incorrectly computed the distance for



part 2. GIDE would assign the result of this incorrect computation (i.e.,

415) to its internal representation of the part 2 distance for all remaining

computations. In this way, GIDE is able to determine if the rest of the

solution is conceptually correct and if a wrong answer was produced only

because of a low-level mistake.

The above strategies are successful as long as plans representing

conceptually correct solutions to the active goal can be matched to portions

of the examinee's solution. If such a plan cannot be matched to the

E.xaminee's solution, GIDE attempts to match to the solution plans that

incorporate conceptual errors commonly made in achieving that goal or bug

rules that, in GIDE, represent more general errors.

In some cases, however, none of these plans or rules match an examinee

solution. When this occurs, GIDE searches the proposed solution for a name it

has associated with the current active goal to find a clue as to what the

examinee was doing. For goal #2 of the above problem (the distance for part

2), such names might include "part 2 distance," "distance 2," "missing

distance," and "dist 2." If such a name is found, GIDE checks the associated

expression and result to see if they can reasonably be considered deviations

from a correct plan for that goal.

In those cases where GIDE is not able to account for how the examinee

has attempted to satisfy the goal through either correct or incorrect plans,

GIDE waits to see if satisfaction of subsequent goals will fulfill the

currently active goal implicitly. Implicit matching is triggered when

explicit matching has failed and a dependency link is active; that is, a goal

presumes the satisfaction of one or more prior goals. So, for example, in the

above problem, if plans for goals #1-3 (find the missing distance and

calculate the times for the two parts) are not matched--perhaps because the
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examinee did the computations mentally--but a plan satisfying goal #4 is

matched (add the two times together), goals #1-3 would be matched implicitly.

Finally, when no plan, buggy or correct, can be matched to a portion of

the solution, the goal is considered missing. GIDE, in essence, "understands"

this solution component to be physically absent, a presumption which will

likely be correct if the domain analysis has been well done.

After completing its analysis, GIDE issues a brief bug report and a

partial-credit score. The bug report identifies the errors detected. Because

of its experimental nature, GIDE's algebra bug reports are relatively

unrefined, giving only enough detail to permit verification of an error's

existence by an independent source. In any operational implementation, these

descriptions would need to be carefully crafted to communicate clearly the

nature of the error and perhaps a method for resolving it.

GIDE's partial-credit scores are derived from goal-plan analysis. This

linkage is meant to give the scores a principled, cognitive basis. The rubric

awards full credit if all goals are achieved, suggesting the student was able

to decompose the problem, correctly structure each goal, and compute its

solution. Credit is deducted differentially depending on the errors detected

for each goal. The largest deduction is made for missing goals because these

absences suggest the student was unaware that addressing the goal was

necessary to achieving a correct result. Less credit is deducted for

conceptual bugs because such bugs suggest both recognition of the goal's

importance and a coherent, though incorrect, attempt to solve the goal. The

smallest deduction is for computational errors which imply only trivial

procedural slips.

Because students may approach a problem using an alternative

decomposition (see Figure 4), GIDE has the capability to process solutions
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against such alternatives. The mechanisms for handling alternatives are,

however, largely ad hoc and represent one area for the program's further

development.

Insert Figure 4 about here

GIDE's performance in analyzing responses to algebra word problems has

not yet been evaluated. Its success in diagnosing errors in statistical

problem-solving, though, has been reported (Sebrechts & Schooler, 1987). In a

sample of 60 responses, GIDE was able to account for approximately 82% of the

line.3 and 95% of the goals, an imperfect but promising performance.

Cognitively Motivated Measurement Models

In their current experimental states, GIDE and MicroPROUST produce

analyses only for item-level responses. That is, scores and diagnostic

comments are restricted to performance on a single item. These scores and

comments have potential value for describing how an examinee did on that item

and perhaps for helping him or her avoid those same mistakes next time. But,

as noted, more dependable statements about an examinee's skills might be

derived from model-based aggregations of performance made across constructed-

response tasks.

Several approaches can be taken to response modelling. In

psychometrics, methods- like item response. theory (Lord, 1980) have been built

on purely statistical foundations. As Mislevy (in press) notes, these

approaches work well for some assessment purposes (e.g., selection) and far

less well for others (e.g., instructional diagnosis).

Intelligent tutoring, in contrast, has focussed on developing models

incorporating an understanding of the domain in which responses are to be
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aggregated (Wenger, 1987). As a result, these models promise interpretations

of performance that are more clearly tied to instructional decisions. At the

same time, however, these deterministic formulations generally do not deal

well with the inconsistency that often characterizes human performance

(Wenger, 1987).6

Given this situation, it would seem sensible to work toward some

combination of probabilistic methods and the cognitively based diagnosis

exemplified by intelligent tutoring. As suggested by Masters and Mislevy (in

press), the probabilistic methods should be subservient to cognitive

considerations: domain semantics should shape the model's application in any

given case.

Several recent measurement models attempt to fill this requirement,

including the Hierarchically-Ordered Skills Test (HOST) model (Rock & Pollack,

1987), the Hybrid model (Yamamoto, 1987), and Masters' Partial Credit Model

(Masters & Mislevy, in press).? A brief summary of the first two models is

given here as an introduction to how they might be applied in intelligent

assessment (for more complete descriptions see Gitomer & Rock, in press, and

Yamamoto, in press).

In the HOST model, groups of items are written to represent levels of

proficiency, with each succeeding level requiring one or more new cognitive

operations in addition to those of the preceding level. If the model fits,

standing on the scale denotes what operations the examinee is and is not able

to perform. Because individuals often come to proficiency in an area by

different paths, the model provides a measure of fit for each examinee. When

the model does not fit an examinee's performance, that performance can usually

be placed on a more general ability scale. In addition to measu:es of

individual fit, the model provides estimates of the probabilities associated

2 3
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with being at particular skill levels. These probabilities have proven

particularly useful for measuring individual change because the probabilities

seem less sensitive than other metrics to the ceiling and floor effects that

have perennially hampered attempts to measure individual growth (Rock &

Pollack, 1987).

Rock has studied the fit of the HOST model to mathematics achievement

data from the 1980 sophomore High School and Beyond (HS&B) cohort and from the

population taking the SAT (Rock & Pollack, 1987; Gitomer & Rock, in press).

In these studies, the overwhelming majority of examinees fit the model: 90%

for the HS&B sample and 96%-98% for the SAT sample. Further, the model fit

equally well for males and females, and for majority and minority examinees.8

The second approach, Yamamoto's (1987) Hybrid model, combines latent

class models with item response theory (IRT). Latent class models are built

on the idea of a categorical latent variable (Lazarsfeld, 1960). Because a

hierarchy of classes is not required, information can be provided about

unordered qualitative states that characterize examinees (e.g., a tendency

toward a specific error type). In addition, the probability that an

examinee's response pattern belongs to a given class is provided.

In practice, not all examinee response patterns can be captured by a

limited set of classes. More classes may exist than are represented in the

model, or individuals may respond in an extremely inconsistent fashion.

Performance that does not fit one of the hypothesized latent classes may be

modeled by a continuous model that makes no assumptions about examinees'

qualitative understandings. The Hybrid model accounts for this eventuality by

scaling these examinees along a general dimension underlying a problem set,

while simultaneously providing diagnostic information for those individuals

who fit a latent class.

24
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The performance of the Hybrid model has been assessed using data on

electronic technicians' ability to interpret logic gate symbols (Gitomer &

Yamamoto, 1988) Five latent classes were represented based on specific

errors commonly made by technicians. The model's latent class portion was

able to capture 36% of the response patterns, a very respectable performance

given the specificity of the error classes. In addition, for individuals

picked up by the latent classes, the distinction among error classes given

particular response patterns was quite sharp, making class assignments very

clear. Finally, the probability of belonging to any latent class was

unrelated to overall ability estimates, supporting the model's capacity to

represent qualitative states.

Depending upon the domain and the assessment purpose, either the HOST

the Hybrid models might be used. Alternatively, they might be employed

together to provide complementary aggregations of item information. Figure 5

shows four algebra item formats hypothesized to form a hierarchical ordering

(Sebrechts, Bennett, & Rock, in press). The formats are open ended (only the

problem stem is presented), goal specification (the problem stem, a list of

givens, and a list of unknowns, or goals, is preseated), equation setup (the

problem stem and the equations, or plans, needed to derive the unknowns are

given), and faulty solution (the stem and an incorrect plan are presented for

the examinee to correct). The problems presented in each format are isomorphs

(i.e., the same solution process can be applied to all four problems). A

theoretical justification of the hierarchy is presented in Figure 6 as a list

of cognitive operations suggested to underlie each proficiency level. If the

HOST model fit a complete test built around this illustration, examinees who

successfully completed items in the open-ended format would generally succeed

with the other formats (though the reverse would not necessarily be true).

or

2 5
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The operations underlying the levels would form the basis for diagnostic

statements that might be made about individuals whose performance fit the

model.

Insert Figure 5 about here

Insert Figure 6 about here

The Hybrid model might be used on this same test to give information

about the error class to which an examinee's performance belongs. As with

HOST, this classification is semantically driven: error classes derive from

the domain and the nature of examinee performance, not directly from the

measurement model. In Figure 3, three qualitatively different errors were

illustrated in computation, transforming decimals to fractions, and converting

units. These errors could be represented by eight classes: (1) computation

errors only, (2) transformation errors only, (3) unit conversion errors only,

(4) computation and transformation only, (5) computation and unit conversion

only, (6) transformation and unit conversion only, (7) all three error types,

and (8) none of the types. Examinees whose response patterns place them into

one of the seven error classes can be identified, depending on the class, as

needing a specific type of attention if success in the domain is to be

achieved.

Potential Applications

The three components of intelligent assessment--complex constructed

response, intelligent scoring, and cognitively driven measurement models--are

in different states of readiness for operational use. Complex constructed

2 8
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response has, of course been employed for quite some time in large scale

testing programs such as the College Board's Advanced Placement Program. As a

result, much practical experience has accumulated about the item type's

development, administration, and scoring using human judges. As noted,

however, the item format's measurement characteristics have not been fully

explored. Though these items are unarguably more "direct" measures of the

constructs schools aim to teach (J. R. Frederiksen & Collins, 1989), whether

they are in reality more valid measures of these constructs remains an open

question (Traub & MacRury, in press).

Methods for automatically scoring complex constructed responses are

generally not ready for operational use. For example, neither GIDE nor

MicroPROUST can accurately score all the responses encountered. Other scoring

systems are in a similar state (e.g., Bejar, 1988; Freedle, 1988). Due to the

diversity of human performance, perfect accuracy may be far in the future.

Finally, the cognitively motivated measurement models required to

support this notion of assessment are only beginning to emerge (Mislevy, in

press). A considerable period of research will likely be required before

these models begin to see widespread use.

Even though the foundations for intelligent assessment are not yet

firmly established, enough progress has been made to justify building some

initial applications, the study of which should begin to provide the knowledge

to support operational realizations. Three ideas are discussed, ranging from

a heavily constrained implementation that could be quickly built to a fully

featured intelligent assessment system that may take many years to construct.

Each idea is structured so as to explore some of the central issues in

intelligent assessment.
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The least ambitious idea requires as context a computer-delivered

testing program. Several such programs exist (e.g., the College Board's

Computerized Placement Tests), and more aye under development ("ETS research

plan," 1989). Many of these programs will be computerized adaptive tests

(Wainer, Dorans, Green, Flaugher, Mislevy, Steinberg, & Thissen, 1990).

Computerized adaptive tests dynamically home in on the estimated skill level

of the examinee, presenting fewer but more informative items than conventional

tests. Consequently, they take less time to administer while maintaining the

content coverage and reliability of paper-and-pencil analogues.

One profitable way to use some of this saved time might be to supplement

the multiple-choice item pool with a small number of intelligently-scored

complex constructed-response items, such that each examinee encounters one or

two of them. In the event that the constructed responses were found to

measure the same trait as the rest of the test, a plausible occurrence in some

instances (Bennett, Rock, Braun, Frye, Spohrer, & Soloway, in press; Traub &

Fisher, 1977; Ward, 1982), all items might be placed on the same IRT scale

using, for example, the Partial Credit Model (Masters & Mislevy, in press).

Item parameters would be used not only to select constructed responses

appropriate to the examinee's skill level, but also might be employed in

scoring the test. Though chosen adaptively, the constructed-response items

would be presented last to avoid the cognitive disruption that might occur

from mixing item formats. If after analyzing the solution the expert system

was able to account for each goal, a report of the examinee's constructed-

response performance would be displayed. This application leaves content

coverage intact and provides the examinee with information beyond the total

test score. The effects of any potential scoring inaccuracy are mitigated

because item-level feedback is provided (and factored into overall test score)

2S
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only if all parts of the examinee's production are explained. Finally, the

application gives some visibility (though far less than deserved) to the

behaviors that should be the focus of instruction, a feature particularly

important for achievement, college admissions, and other large-scale programs

that can influence school curricula.

A second potential application is a self-assessment intended to help

develop skills and prepaI, students for a particular standardized test. The

self-assessment should make visible the standards for domain performance so

that the student can internalize and use them for judging his or her own

productions (J. R. Frederiksen & Collins, 1989). In the APCS program, such an

assessment might be built around a pool of free-response and constrained tree-

response programming problems that students could access on demand. Responses

to the problems would be analyzed by an expert system, such as MicroPROUST or

its planned successor. For incorrect solutions, the system would print not

only a diagnostic analysis and a partial-credit score, but a goal-plan

decomposition and the rules for judging the item using that decomposition.

The student might then be given two tasks: (1) to verify that the system's

analysis was correct and (2) to revise the solution utilizing the system's

comments and the problem's goal-plan decomposition. For instances in which

the system was not able to produce an analysis, the goal-plan decomposition

would be printed with a direction to consult the classroom teacher (or perhaps

a more skilled peer). Student and teacher might then collaboratively analyze

the solution to see how it diverged from the goal-plan decomposition, bringing

to light other legitimate approaches to the problem or rare errors beyond the

system's understanding. In this instantiation, the system's inability to

flawlessly analyze all responses is a virtue: it forces the student to seek

others' counsel, hopefully encouraging both collaborative problem solving and

2 9
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the internalization by student and teacher of goal-plan analysis as one

approach to problem solution.

The last potential application is a model-governed intelligent

assessment system for instructional diagnosis. Such a system might complement

the College Board's Computerized Placement Tests (CPTs), which are used to

select students needing remedial instruction from the freshmen class entering

an institution.

At the front end of this system would be an adaptive, multiple-choice

assessment module. This module's pUrpose would be to estimate efficiently the

examinee's general skill level in the domain so that appropriate constructed-

response tasks could be presented. Accurate assignment is critical not only

because responses to overly difficult items will almost invariably be wrong,

but because those responses will usually be severely flawed and, as a result,

indecipherable by an expert scoring system. Responses to items that are too

easy will likely be correct, and though decipherable, will contribute no

useful information. This module would not need to be used if a skill estimate

was already available from a companion test, such as the CPTs.

The second component, the constructed-response module, would need to be

built from a deep understanding of the

problems requiring the application and

On top of this domain structure, would

domain. It would be composed of

integration of key knowledge and skill.

rest a measurement model, like HOST or

Hybrid, able to generate diagnostically useful information. On the basis of

constructed-response performance, the model would generate hypotheses about

the examinee's proficiency. Both because of inconsistencies in examinee

performance and because any expert scoring system will sometimes fail to

understand a production, these hypotheses would in many cases be based on

incomplete or contradictory information. To reduce uncertainty, the
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constructed-response module would pass its list of competing, plausible

hypotheses to a verification module.

The verification module would be composed of two parts, called upon as

necessary. One part would consist of a series of testlets, homogeneous

multiple-choice item clusters focused on a specific skill (Wainer & Kiely,

1987). The contents of these testlets would derive from the same

comprehensive analysis of the domain that formed the basis for the

constructed-response module. Only those testlets that might serve to confirm

or disconfirm an active diagnostic hypothesis would be administered. A second

module component would ask the examinee for an estimate of his or her

understanding of the skills in question and use this estimate in the

verification process, a strategy used in rudimentary ways in several

intelligent tutors (Wenger, 1987).

In addition to indicating whether a student is in fact behaving

consistently, this verification process might also confirm whether

consistently manifested errors (e.g., converting 10.63 hours to 11 hours 3

minutes) represent slips or real misunderstandings (Matz, 1982). In one case,

simply pointing out the error to the examinee might resolve it; in the other,

a more extended explanation would be required. An assessment system with such

verification and feedback capabilities begins to take on J. R. Frederiksen and

Collins' (1989) notion of "systemic validity" by helping students improve the

skills it is attempting to test.

Conclusion

This paper has presented a conceptualization of intelligent assessment

as an integration of constructed-response testing, scoring methods based on

artificial intelligence, and cognitively motivated measurement models. To

illustrate progress toward this conception, two intelligent scoring systems--
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MicroPROUST and GIDE--and two measurement models--HOST and Hybrid--were

described. It is worth emphasizing that these approaches take particular

perspectives, especially the scoring systems, which derive from the same

theoretical base. Other approaches to both scoring and response modelling

exist and it is likely to be some time before any individual method becomes

generally accepted.

Second, it should be evident that many unresolved issues are associated

with intelligent assessment. The development of even the least ambitious

realization implies a considerable effort--in domain understanding and

knowledge base development, item writing, scoring rules, feedback contents and

processes, programming, pilot testing, and validation research, among other

things--with no certainty that the result will prove substantially better than

current testing approaches. But the purpose of this paper, the work it

describes, and research generally is to develop and test new ideas, to

discover their effects and the conditions under which they manifest. Only

through this inquiry process will we be able to build the innovative

assessment systems needed to help shape an educational system that meets the

demands of an increasingly complex world.
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Footnotes

1. Bunderson, Inouye, and Olsen (1989) offer a different view of

intelligent assessment as the application of artificial intelligence to any of

the subprocesses of educational measurement: test development, test

administration, and test analysis and research.

2. The examinee's error in computing the travel times was in dividing

when a multiplication vls called for (lines 3 and 9) and multiplying when

division was required (lines 4 and 10).

3. The work described in this section builds upon many years of effort

by our principal collaborators, Elliot Soloway and Marc M. Sebrechts, and

several years of our own work, with central contributions by Henry I. Braun

and Donald A. Rock.

4. The system descriptions in this and the next section are condensed

and consequently simplified. Further, the systems are still evolving, so that

these descriptions may not accurately reflect the programs' current operation.

5. GIDE was originally designed to diagnose student errors in

statistics and automotive mechanics problems.

6. Unfortunately, there have been relatively few attempts within

intelligent tutoring to address this issue and, as a consequence, no generally

applicable models capable of efficiently handling uncertainty have emerged.

7. Masters and Mislevy (in press) offer examples of other appropriate

models.

8. In both the HS&B and SAT studies, the HOST model was fit to a

specially chosen subset of items rather than to the complete mathematical

scale.
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Figure Captions

1. Complex constructed-response items in algebra and programming (with

example correct responses).

2. Wrong answers to a complex constructed-response item.

3. Responses of similar correctness but containing qualitatively

different errors.

4. Alternative goal decompositions fdr an algebra word problem.

5. Four item formats hypothesized to form a hierarchical ordering: (a)

open-ended, (b) goal specification, (c) equation setup, (d) buggy solution.

Note. Print size is reduced, space for writing solutions shortened, and page

arrangement modified for publication purposes.

6. Operations suggested to underlie a proposed hierarchical arrangement

of item formats.
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Figure 1

a. On a 600-mile motor trip, Bill averaged 45 miles per hour for the first 285 miles and 50 miles per hour for the

remainder of the trip. If he started at 7:00 a.m., at what time did he finish the trip (to the nearest minute)?

Example Correct Response:

Time 1 = 285 miles / 45 miles per hour

Time 1 = 6.33 hours

Distance 2 = 600 miles 285 miles

Distance 2 = 315 miles

Time 2 = 315 miles / 50 mile per hour

Time 2 = 6.3 hours

Total time = 6.33 hours + 6.3 hours

Total time = 6 hours 20 min ' 6 hours 18 min

Total time = 12 hours 38 min

End time = 7:00 am + 12 hours 38 min

End time = 7:38 pm

Answer: 7:38 pm

b. Write a procedure that rotates the elements of an array s with n elements so that when the rotation is completed,

the old value of s[1] will be in s[2], the old value of s[2] will be in s(3) the old value of s[n-1] will be in

s[n), and the old value of s[n] will be in s[1). Your procedure should have s and n as parameters. You may assume

that the type Item has been declared and s is of type List which has been declared as List = array[1..Max) of Item.

Example Correct Response:

program foo (input,output);

const

max = 100;

type

item = integer;

list = array[1..max] of item;

var

PassedAsS : list;

PassedAsN : integer;

Procedure RotateArray(var s:list; var n:integer);

var

temp : integer;

i : 1..max;

begin

temp := s[n];

for i := n downto 2 do

begin

s[i] := s[i-1];

end;

s[1] := temp;

end;

begin

RotateArray(PassedAsS,PassedAsN);

end.

{initialize program}

{initialize local variables)

{move last element to temporary storage)

{move each element to the right}

{move last -Lemont from temporary storage to the first position)
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Figure 2

On a 600-mile motor trip, Bill averaged 45 miles per hour for the first 285 miles and 50 miles per hour for the

remainder of the trip. If he started at 7:00 a.m., at what time did he finish the trip (to the nearest minute)?

Response #1:

1. 285 miles/45 miles per hr = 6.33 hrs

2. 6.33 hrs = 6 hrs 20 min

3.

4. 600 285 = 415 miles

5.

6. 415 miles/50 miles per hr = £.3 hrs

7. 8.3 hrs = 8 hrs 18 min

8.

9. 6 hrs 20 min + 8 hrs 18 min = 14 hrs 38 min

10.

11. 7:00 + 14 hrs 38 min = 9:38 pm

Answer: 9:38 pm

Response #2

1. 285/x = 45/60

2. 285/x = 3/4

3. 285/4 = 71.25

4. 71.25 * 3 = 213.75

5. 213.75/60 = 3.56

6.

7. 315/x = 50/60

8. 315/x = 5/6

9. 315/6 = 52.5

10. 52.5 * 5 = 262.5

11. 262.5/60 = 4.375

12.

13. 3.56 hours + 4.38 hours = 7.94

Answer: approximately 3 pm

Response #3

1. On a 600 mile motor trip

2. 285 miles = 45 miles/hr

3.

4. 285 + 315 = 600

5.

6. 315 = 50 miles/hr

7.

8. 45 * 50 = 22.50 = 22:50 minutes

Answer: 22:50 minutes

I BEST COPY AVAILABLE
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Figure 3

On a 600-mile motor trip, Bill averaged 45 miles per hour for the first 285 miles and 50 miles per hour for the

remainder of the trip. If he started at 7:00 a.m., at what time did he finish the trip (to the nearest minute)?

Response #1:

1. 285 miles/45 miles per hr = 6.33 hrs

2. 6.33 hrs = 6 hrs 20 min

3.

4. 600 - 285 = 415 miles

5.

6. 415 miles/50 miles per hr = 8.3 hrs

7. 8.3 hrs = 8 hrs 18 min

8.

9. 6 hrs 20 min + 8 hrs 18 min = 14 hrs 38 min

10.

11. 7:00 + 14 hrs 38 min = 9:38 pm

Answer: 9:38 pm

Response #2

1. 600 mile 285 = miles at 50 mi/hr

2.

3. time at 45 mi/hr = 285 mi * 1 hr/45 mi

4. time at 45 mi/hr = 6 and 1/3 hrs

5.

6. time at 50 mi/hr = 315 * 1 hr/ 50 mi

7. time at 50 mi/hr = 6.3

8.

9. total time = 12 + 2/3 hrs

10. 2/3 hr = 2/3 hr * 60 min/hr

11. total time = 12 hrs 40 min

Answer: 7:40 pm

Response #3

1. 600 285 = 315

2.

3. 45 : 285

4. 50 : 315

5.

6. 285 mi /45 mi per hr = 6.33

7. 315 /50 = 6.30

8.

9. 6.33 hrs : 285 miles

10. 6.30 hrs : 315 miles

11. 6 hrs 20 min + 6 hrs 30 min = 12 hrs 50 min

12.

13. 7 am + 12 hrs 50 min = 7:50 pm

Answer: 7:50 pm

42
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Figure 4

The active ingredient is 0.25 percent of a 3-ounce dose of a certain cold remedy.
What is the number of doses a patient must take before receiving the full 3 ounces
of the active ingredient?

Correct Answer 400 doses

a. 1. 0.25% .0025
2. Active Ingredient per dose .0025 * 3 oz

Active Ingredient per dose .0075 oz
3. Number of doses required 3 oz/.0075,oz per dose

Number of doses required = 400 doses

b. 1. .25%x dose 100% dose
x dose 100% dose/.25% dose
x 400 doses
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Figure 5

a. On a 600 -rile motor trip, Bill averaged 45 miles per hour for the first 285 miles and 50 miles per hour for the

remainder of the trip. If he started at 7:00 a.m., at what time did he finish the trip (to the nearest minute)?

ANSWER:

b. 800 gallons of a 2,400 gallcn tank flow in at the rate of 75 gallons per hour through a clogged hose. After the

hose is unclogged, the rest of the tank is filled at the rate of 250 gallons per hour. At what time to the nearest

minute will the filling of the tank be finished if it starts at 5:30 a.m.?

Givens
Tank Capacity
Filling Rate 1
Filling Amount 1
Filling Rate 2
Start Time for Filling

Unknown
Filing Time 1
Filling Amount 2
Filling Time 2
Total Filling Time
Ending Time for Filling

ANSWER:

c. Of the 720 pages of printed output of a certain program, 305 pages are printed on a printer that prints 15 pages
per minute and the rest are printed on a printer that prints at 50 pages per minute. If the printers run one after
the other and printing starts at 10 minutes and 15 seconds after the hour, at what time to the nearest second after
the hour will the printing be finished?

Equations that Will Provide a Solution:

Time for Printing on Printer 1 = Number of Pages on Printer 1 / Printing Rate of Printer 1
Number of Pages on Printer 2 = Ttal Number of Pages Number of Pages on Printer 1
Time for Printing on Printer 2 = Number of Pages on Printer 2 / Printing Rate of Printer 2
Total Printing Time = Time for Printing on Printer 1 + Time for. Printing on Printer 2
Time Print Job Finished = Starting Print TIME + Total Printing Time

Your Solution:

ANSWER:

d. A Department of Transportation road crew paves 15 mile city portion of a 37.4 mile route at the rate of 1.8 miles
per day and paves the rest of the route, which is outside the city, at a rate of 2.1 miles per day. If the
Department of Transportation starts the project on day 11 of its work calendar, on what day of its work calendar
will the project be completed?

Time for Portion 1 = 15 miles/1.8 miles per day
Time for Portion 1 = 8 and 1/3 days
Time for Portion 2 = 37.4 miles/2.1 miles per day
Time for Portion 2 = 17.81 days
Total Time = 8.30 days + 17.81 days
Total Time = 26.11 days
Completion Day = 27

Your Corrected Solution:

ANSWER:
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Figure 6

Format Operations

Open ended Identify givens and unknowns.
Create representation for problem based
on knowns and unknowns.
Map equations onto problem statement.
Solve equations.
Check solution, detect error(s), and
recover.

Goal specification Create representation for problem based
on knowns and unknowns.
Map equations onto problem statement.
Solve equations.
Check solution, detect error(s), and
recover.

Equation setup Map equations onto problem statement.
Solve equations.
Check solution, detect error(s), and
recover.

1 Buggy solution Check solution against problem
statement, detect error(s), and
recover.


