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Introduction
The current emphasis in the development of a pharmaceu-
tical product is on shortening development time, reducing
development costs, and improving the process design to en-
sure higher flexibility. Commercial scale product and pro-
cess development typically goes through the following stages
after the viability of a newly discovered molecule is estab-
lished: laboratory scale, pilot plant scale, and commercial
scale manufacturing. Laboratory scale experiments are used
to determine the physical and chemical properties of a drug,
the desired dosage form, and critical quality attributes. Se-
lected pilot plant experiments, typically guided by design-
of-experiment methodologies, are carried out to provide a

Toward intelligent decision support
for pharmaceutical product
development
Chunhua Zhao, Ankur Jain, Leaelaf Hailemariam, Pradeep Suresh, Pavankumar
Akkisetty, Girish Joglekar, Venkat Venkatasubramanian, Gintaras V. Reklaitis,
Ken Morris, and Prabir Basu
School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
Corresponding author: Venkatasubramanian, V. (venkat@ecn.purdue.edu).

detailed understanding of the processing steps in the se-
lected route and to generate the data needed for scale-up to
commercial manufacturing. The end-point determination
criteria and the preliminary design space are determined at
this stage. The next stage involves the testing and revision
of the design space. The information related to manufactur-
ing is used in troubleshooting and productivity improvement
studies. The three stages are closely related through the
information they exchange. For example, information gen-
erated at the laboratory scale can be used to improve manu-
facturing; problems identified in the manufacturing stage
are communicated to the laboratory scale to identify root
causes and develop measures to avoid similar problems in

Developing pharmaceutical product formulation in a timely manner and
ensuring quality is a complex process that requires a systematic, sci-
ence-based approach. Information from various categories, including
properties of the drug substance and excipients, interactions between
materials, unit operations, and equipment is gathered. Knowledge in
different forms, including heuristics, decision trees, correlations, and
first-principle models is applied. Decisions regarding processing
routes, choice of excipients, and equipment sizing are made based on
this information and knowledge. In this work, we report on the devel-
opment of a software infrastructure to assist formulation scientists in
managing the information, capturing the knowledge, and providing in-
telligent decision support for pharmaceutical product formulation.
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future product development.
Pharmaceutical product development is an information

and knowledge intensive process. Use of new process ana-
lytical technologies (PAT) [1] has enabled scientists to get a
better understanding of the underlying physical and chemi-
cal phenomena. The knowledge created from the learning
process can be in different forms: reports on paper, data in
electronic format, and experience gained by scientists. Be-
cause more information and knowledge become available,
it is clear that more-powerful and intelligent software sys-
tems to manage and access them effectively for efficient
decision making are needed.

Pharmaceutical product development involves the in-
tegration of process modeling tools, effective handling of labo-
ratory generated information and knowledge, development
of technical specifications, and an information base to sat-
isfy regulatory requirements. To support the activities and
decision-making processes in pharmaceutical product devel-
opment, a systematic and integrated informatics framework
based on formal and explicit modeling of related informa-
tion is required. These information models should be easily
accessible by humans and software tools and should pro-
vide a common understanding for information sharing. Vari-
ous forms of knowledge, including heuristic rules, guidelines,
and mathematical models need to be handled in a system-
atic manner so that the knowledge can be easily created,
used independently or in an integrated fashion. Only with
such a framework can intelligent decision-support systems
be developed to provide decision support proactively.

Several intelligent systems have been developed in the
past two decades to capture the heuristic knowledge and sup-

port the pre-formulation activity in pharmaceutical product
development. During pre-formulation, one or more formula-
tions that meet the product specifications are generated. A
formulation comprises the dose of the drug substance along
with excipients and their quantities, a manufacturing pro-
cess to produce the associated dosage form, and key operat-
ing conditions of the process. In designing a formulation, the
formulator has to consider the properties of the ingredients
and possible interactions between the ingredients. This re-
quires navigation through a large and complex design space
wherein the relations between the properties are frequently
ill defined. Experts are frequently adept at navigating through
the design space; however, their knowledge and thought pro-
cesses are difficult to quantify and explain, and to transmit
[2]. Decision-support tools to capture this knowledge, such as
rule-based expert systems, have been proposed in the litera-
ture and are reviewed in the following section.

Decision-support tools
In rule-based systems, knowledge is modeled as a series of
rules utilizing items of information: for example, if a system
recognizes certain condition (e.g., if the drug substance is in-
soluble), then it proposes an action (e.g., use a soluble filler).
Other examples include: ‘If the functional group of the drug
substance is highly acidic, then it needs a moderate binder’
and ‘If the melting point of the drug substance is low (<75°C),
it needs a diluent’ [3]. In addition, a user interface and an
inference engine are required to provide the decision support
(Figure 1). Knowledge about the domain is gathered by in-
terviewing experts or using machine learning technologies
such as neuro-fuzzy logic-based learning, which generates
rules based on historical data [4]. The effectiveness and span
of applications of a rule-based system depend on the amount
and validity of the data in the knowledge base.

Rule-based systems are commonly used in tablet and
capsule formulation to select excipients based on the prop-
erties of the drug substance. The user inputs the relevant
physical, chemical, and mechanical properties of the drug
substance along with the product specification. Using the
knowledge base and inference engine, the system predicts
the type and quantity of excipients required to meet the
specifications. The formulator tests the conformance of the
predicted formulations with product specification and feeds
the information back to the expert system, modifying the
formulation if necessary. A technique that is often used in
knowledge acquisition is rapid prototyping. In this approach,
the knowledge engineer quickly builds a prototype, which is
then shown to the experts and users, who suggest incre-
mental modifications [5].

Possibly the earliest expert system for pharmaceutical
formulation was the one developed by Podczeck [6]. Mix-
tures of predetermined composition were used in experi-
ments to explore the relationships between the set of de-

Figure 1. Schematic diagram of a simple expert system showing its
interaction with user, developer (knowledge engineer), and domain
expert. The three main components are a user interface, an inference
engine, and a knowledge base [35].
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pendent and independent factors by multivariate statistics.
These relationships were converted to rules, and these rules
were used in conjunction with other rules developed inde-
pendently to determine which mixture should be used for
each formulation.

Logica’s Product Formulation Expert System (PFES)
was developed as a reusable software kernel to support a
generic formulation task [7]. The formulation process is
driven by a hierarchy of tasks. At the level of a task are the
formulation object (defining the current composition of the
formulation) and the specification object (defining the cur-
rent state of knowledge about the formulation problem). The
knowledge in the specification object is used to move the
formulation process forward. Provision was made for devel-
opment and maintenance of knowledge via a rule template.
In the Boots/SOLTAN System [8], knowledge that was
gained from interviews with senior formulators was used
with PFES. Existing information sources, such as databases,
were presented in a frame-based semantic network that can
be manipulated by the problem-solving knowledge of the
domain. Bateman et al. [9] developed the Sanofi System for
the formulation of hard-gelatin capsules based on specific
pre-formulation data of the active ingredient. Using PFES,
the system generated one formulation with as many subse-
quent formulations as desired to accommodate an experi-
mental design and the knowledge of the user. Rowe et al.
[10] implemented a film-coating formulation system using
PFES. A later version of PFES, Formulogic [2,9], is com-
prised of a three-level architecture: physical, task, and con-
trol levels. The physical level contains the domain knowl-
edge in several objects with attributes, and is accessed from
the task level through a query interface. The control level is
tasked with executing the tasks.

Ramani et al. [3] developed the Cadila System for tab-
let formulation. Excipients that are compatible with the drug
substance are selected in two steps: selection of the proper-
ties that are desirable in excipients for compatibility with
the drug substance and selection of the excipients that have
the required properties. Typically, several feasible formula-
tions are generated, from which the best is selected.

The Galenical Development System Heidelberg (GSH)
was originally developed by Stricker et al. [11] and aimed at
giving knowledge-based assistance in one phase of the phar-
maceutical development, namely the galenical routine devel-
opment of drug products. Galenical development deals with
the development of a recipe for a certain drug and its manu-
facturing technology. Each development step is broken down
into weighted actions, and the objective is to move from ac-
tion to action based on predefined rules, while improving a
scoring function without violating the constraints that are
imposed by previous steps or forming incompatible combina-
tions. Rowe et al. [12] modified the Galenical Development
System to formulate a parenteral product. The system first

attempts to optimize the solubility and/or stability of the drug
before choosing suitable additives. Frank et al. [13] attempted
to improve the Galenical System by building a subset of ac-
tions associated with a development step that is considered
capable of solving the respective problem and using a prede-
termined ordering of development steps.

Hybrid systems
Rowe [14] suggested the possibility of integrating artificial
neural networks (ANN) with expert systems. Neural net-
works might be used to comb through large databases for
patterns that are then converted into rules. Rowe and
Colburn [4] developed a way to generate rules from an al-
ready available formulation using fuzzy logic and automated
rule induction (determination of rules) from experimental
knowledge and the NEUfuzzy software.

Case-based reasoning (CBR) systems
Another approach to capture and reuse knowledge, a case-
based reasoning (CBR) system, recognizes certain situations
and from its case (knowledge) base recalls an action that
was taken when similar problems were encountered. The
solution is either used directly or adapted to account for dif-
ferences between the current and previous problems. The
proposed solution is then stored for future use. A convenient
and concise description of the CBR process is ‘retrieve, re-
use, revise, and retain’ [5].

CBR has been proposed as a response to the difficulties
encountered in using rule-based systems, such as the need
for an expert to encode the rules. Lai et al. [15,16] described
an expert system for the formulation of hard-gelatin capsules
based on previous formulations, trends in formulation, infor-
mation on the drug and excipients in the form of rules de-
rived from experimental analysis (the Capsugel system). Rowe
et al. [17] presented a CBR approach to tablet formulation
using the commercial software ReCall, which includes a case
library of formulations depicted by an object-oriented repre-
sentation, an induction engine, and an engine to check for
similarity of the retrieved case with the new formulation. Guo
et al. [18] proposed linking the Capsugel system to an ANN.
The ANN predicted dissolution performance based on initial
training. The Capsugel Expert System provided candidate
formulations, the fitness of which was tested through the ANN
against the required dissolution performance until the best
formulation is achieved.

Expert systems have several important benefits [2]: (i)
the knowledge they store is protected and available; (ii) there
is consistency in the formulation process by expert systems,
which is an important concern from a regulatory standpoint;
(iii) expert systems can be used as training aids for both
novices and professionals; (iv) such systems can reduce time
of development [8] and thus facilitate cost savings; (v) hu-
man experts, freed from training and formulation develop-

Continued on page 26.
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ment, can devote more time to innovation; and (vi) better
communication within the company occurs with the expert
system being a common platform for discussion and identi-
fication of crucial research areas.

Expert systems provide some of the functionality re-
quired by a decision-support system. However, to support
decision making in product development effectively, several
other components are also important. For example, infor-
mation and knowledge must be shared among all the stages
in pharmaceutical product development for improved manu-
facturing, problem diagnosis, and product design. The above
goals make it very important for the decision support sys-
tem to integrate information, effectively manage informa-
tion from multiple sources (the developer, experiments, and
computer tools), use functionalities between tools, and inte-
grate different types of knowledge (heuristics and math-
ematical knowledge in the form of equations). There is
awareness of the above issues in existing formulation ex-
pert systems. Hohne and Houghton [19] provided access to
the modeling calculations performed by synthetic chemists
with the expert system acting as an interface. In Formulogic,
the objects in a knowledge database can be accessed through
a query interface [2]. However, these efforts were not com-
prehensive. Effective product development can only be
brought about through a seamless integration of informa-
tion, knowledge in various forms, and diverse computer tools.

In this work, we adopt ontology as a foundation for de-
veloping an integrated framework. Ontology defines and se-
mantically describes the data and information. Ontology is
also the basis for modeling different forms of knowledge.
We consider knowledge to be organized or contextualized
information that can be used to produce new meanings and
generate new information. We have concentrated on two dif-
ferent types of knowledge: mathematical knowledge, which
is concise, precise, and abstract, and knowledge to guide de-
cision making, including decision trees and heuristic, which
can be modeled as guidelines.

The remainder of this article discusses: (i) ontology-
based information modeling; (ii) the use of information mod-

eling to support information management during the pre-
formulation stage of drug development (examples are used
to compare the proposed approach with existing solutions);
(iii) the modeling of knowledge in the form of guidelines and
modeling of mathematical knowledge; and (iv) the integrated
decision-support system architecture.

Information modeling
Information can be divided into two types: unstructured and
structured. Information that can only be processed by hu-
mans is categorized as unstructured information; for ex-
ample, experimental results that are reported as Word docu-
ments. This type of information cannot be used directly by
software tools for information processing or drawing infer-
ences. For the information to become machine processable,
it has to be in a syntax that is semantically rich, and there-
fore, understandable by machines and by humans. This type
of information is called structured information. Examples
of structured information are meta-data for files, such as
the predefined set of terms to describe the title, subject,
author, and other information, and data generated from in-
struments, which are typically in tabular form with speci-
fied meaning to each column. Formal information models
are the foundation of structured information.

Several approaches exist to model the information. How-
ever, such information models are usually designed for spe-
cific applications and only provide a limited view of the in-
formation. An information-centric approach has been pro-
posed [20] in which information is modeled using ontology.
Ontology is a formal and explicit specification of a shared
abstract model of a phenomenon through identification of
its relevant concepts [21]. For example, as shown in Fig-
ure 2, material has several properties, and the property
values can be determined from experiments. The ontology
for material properties captures relations such as
‘hasProperties’ and ‘hasExperiments’. The relations are
specified by defining ranges for the properties. Thus, the
range of the property ‘hasProperties’ of the class ‘Material’
is the class ‘Properties’. Such relations are usable by both
humans and computer tools. Compared with a database,
which targets physical data independence, and an XML
schema, which targets document structure, ontology targets
agreed-upon and explicit semantics of the information, and
directly describes the concepts and their relations. Web on-
tology language (OWL, http://www.w3.org/TR/owl-features/)
was used in this work to create ontologies.

Ontology building for pharmaceutical product
development
Ontology building is an evolutionary design process that con-
sists of proposing, implementing and refining classes and
properties that comprise an ontology [22]. The steps involved
include: (i) determining the domain and scope of the ontol-

Figure 2. Concepts and their relations. Concepts are associated with
a set of properties, and a range of a property might be an instance of
another concept, thus defining their interrelationships.
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ogy; (ii) reusing existing ontologies; (iii) enumerating im-
portant terms in the ontology; and (iv) defining the classes
and class hierarchy.

The central concept in the abstraction described above is
material, which can be a pure substance or a mixture. A ma-
terial has several properties (e.g., specific heat capacity), can
have several roles (e.g., drug substance and flow aid) and can
be involved in several experiments (e.g., Hosokawa Tests).
The concepts, such as material, roles, and experiments, are
defined as classes in ontology. The list of material properties
might be classified into engineering properties, compound
properties, particle properties, and powder properties. Engi-
neering properties include those that are used in engineer-
ing calculations, such as thermal conductivity. Compound
properties include molecular properties, such as molecular
mass, and a description of chemical stability. Particle prop-
erties include crystalline properties and a description of the
physical stability (if crystalline, the crystal system). Powder
properties describe the behavior of several particles of the
material, such as flow characteristics or deformation of the
powder when pressed into tablets. Each property is repre-
sented by a class with its own set of attributes. A material
property value can be measured experimentally, calculated
mathematically, or retrieved from the literature. If measured
experimentally, the conditions under which an experiment is
performed defines its context, which might consist of tem-
perature, pH, relative humidity, and so on. The description
of an experiment includes the materials involved, the experi-
menter, the location of the experiment, the date and time of
the experiment, the equipment used, the procedure followed,
and the experimental data.

The relations between the experiments, the materials
on which they are performed, and the properties that are
measured are explicitly described. Modeling of the domain
information (i.e., creating the domain ontology) requires an
understanding of the ontology-building techniques and of
the domain being modeled. In this project, we collaborated
with colleagues in the Department of Industrial and Physi-
cal Pharmacy at Purdue University and with external ex-
perts. The current ontology is the result of several itera-
tions of the propose–discuss–revise steps. The visualization
tools provided by the Protégé ontology editor (http://
protege.stanford.edu/), such as plug-ins to view class hier-
archy graphs and automatically generated forms for infor-
mation entry, facilitate ontology development.

The concept of ‘development state’ is defined to charac-
terize systematically the sequence of steps that lead to the
final product (i.e., selection of a dosage form, processing
route, excipient roles, specific excipients, and excipient com-
positions). In addition, it contains the description of the drug
substance, excipients, and the dose amount.

The ontologies are the foundation for the information
repository and are used to provide access to information for

various tools, including an engine to execute guidelines and
an engine to utilize mathematical knowledge. Ontologies
for material, formulation, processing route, experiment, and
unit operations have been developed. The top-level concepts
of these ontologies and their relations are shown in Figure 3.

Information management
Voluminous information is generated during drug-product
development, including raw data from analytical instruments,
pictures from scanning electron microscopes (SEMs), experi-
mental set-ups, experiment notes and reports, mass and en-
ergy balance results from simulation tools. The information
also can be in different formats, such as plain-text files, Word
documents, Excel worksheets, JPEG files, MPEG movies, and
PDFs. Some of these formats generate unstructured infor-
mation. Structured information must be generated from un-
structured information before it can be used by the decision-
making tools. How to gather information effectively from dif-
ferent resources and organize it for its end use are key infor-
mation-management tasks. The key functionalities and short-
comings of various categories of information-management
systems are discussed in the next section.

Current information-management solutions
Laboratory information-management system (LIMS)
Laboratory information-management system (LIMS) con-
sists of database applications that are used to store and
manage information in a laboratory setting [23]. Typical
LIMS functionalities include sample tracking, data entry,
sample scheduling, quality analysis, and quality control (en-
abling users to generate control charts and trend analysis
graphs), automatic electronic data transfer (from analytical
equipment to the LIMS), chemical and reagent inventory,
personnel and equipment management, and maintenance
of the database. A LIMS stores information in relational
databases such as Oracle, DB2 or MS SQL [24]. Most LIMS
have interfaces that give access to the database for infor-
mation retrieval or storage. As discussed earlier, the data-

Figure 3. Ontologies and their relations. Ontologies can be modular
and imported into other ontologies. For example, formulation ontology
can import material ontology.
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base schemas provide only limited semantics. Relational da-
tabase structures also limit the capability for describing com-
plex relations between information.

E-laboratory notebook (ELN)
An E-laboratory notebook (ELN) can provide functionalities,
including browsing online libraries, databases, and remote
sources, such as the Web, writing documents and datasets,
managing data, publishing and sharing information, and
creating records [25]. With an electronic notebook, the
records are shared by collaborators and reviewers. The util-
ity of an ELN to provide a collaborative environment has
proven inadequate for industry, especially when quality
assurance and control is important [26]. Quality assurance
demands experiments to be performed according to stan-
dard operational procedures. This might be accomplished
by an automated interface for data entry. However, auto-
mated data-entry interfaces and integrated-information
systems are not readily available for ELNs.

Content management system (CMS)
Content management system (CMS) supports the process
of publishing, maintaining, and disseminating documents
[27]. The major components of CMS are the data repository,
user interface, workflow scheme, editorial tools, and output
utilities. They enable writers to create or update content
and track changes, and publish contents to make them avail-
able to all users in various configurations.

Ontology-driven information management
Without specifying the semantics of the information, it is
difficult to provide functionalities beyond sharing the infor-
mation among users and keyword-based search on the in-
formation. From our experience in implementing informa-
tion-management systems in this project, we found two major
problems with the current systems: organization of related
information and lack of an open and systematic way to man-
age meta-data. These problems are directly related to the
lack of the semantics of the information.

Although ontology defines the semantics of the infor-
mation, an ‘instance’ or ‘individual’ contains information
organized according to the semantics. For example, infor-
mation about each experiment performed by an experi-
menter is stored as an ‘individual’ of the experiment con-
cept. To manage the information associated with experi-
ments, an experiment instance is created and is linked to
the raw files generated from the experiment. Similarly, as
shown in Figure 4a, an ‘instance’ of material properties is
also created in which the links to relevant experiment in-
stances are specified. Figure 4b shows a graphical view of
the concepts and relations with respect to material, prop-
erty, and context. The system can automatically locate these
individuals and provide an integrated view of the informa-
tion. For example, from a specific material, all the experi-
ments performed with it and the associated properties are
summarized.

The information infrastructure described above enables
effective management of experimental files, which might
exist in different forms with non-descriptive names and
folder locations. A system for managing experimental data
was developed based on the Alfresco (http://www.alfresco.
org/) content management system. Because Alfresco is Web
based, it provides ready access to information through a
browser. It also enables search by keyword and on the hier-
archy. Forms for creating, viewing, and editing instances
were developed for the current domain. Several
functionalities provided by Alfresco were directly applicable
for the current application, such as user management,
workflow, and security.

The semantic richness of the information provides sev-
eral benefits. For example, a user can find all the experi-
ments that have been performed on the micromeritics of the
drug substance that are potentially affected by the relative

Figure 4. (a) Interface for creation of material properties. (b) Rela-
tions between concepts.
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humidity. In the current case study, the micromeritics of 39
materials (including mixtures) were studied, each with 18
micromeritic properties. There were on average five experi-
ments for each property for every material, and each ex-
periment had an average of three files associated with it. In
semantic search, identification of relative humidity as an
instance of context would lead to all instances of properties
in which that context appeared. Through the relations be-
tween property and material, instances are further filtered
based on the specified drug substance. The instances of these
properties, which are subclasses of micromeritic properties,
are found given the explicit definition of class–subclass re-
lationships in the ontology. The individual experiments that
are performed with these properties are identified through
the part–whole relationship with the property. The experi-
ment files that are linked to these experiments are presented
as the search results. The semantic search engine found eight
experiments conducted to determine the flow rate of a pow-
der through an orifice for the particular drug substance as
the micromeritic experiments affected by relative humid-
ity. By contrast, without the ontology to provide the seman-
tics, a keyword-based search would not be able to navigate
using the relationships. Search using keywords ‘relative
humidity micromeritics’ did not identify any of the experi-
ments, whereas a similar search using ‘relative humidity’
identified many documents, most of which had very little to
do with the experiments. Although it is acknowledged that
such results are not indicative of all experimental work, they
point to challenges faced by humans and machines in pro-
cessing large amounts of information with little or no se-
mantics. Conversely, they serve to illustrate the utility of
semantic search made possible through the development of
material, property, and experiment ontologies.

Presentation of information
Another important component of information management
is the presentation of information to the user. To achieve
the goals of accessing information anywhere on the Web and
working on the information collaboratively, a Web-browser-
based thin-client architecture is preferred. Forms and graphs
are the two most widely used views of information and con-
stitute the presentation layer. Typically, presentation for-
mat is interspersed with the presented information. How-
ever, they should be completely separated so that presenta-
tion format can be changed independently of information to
satisfy user requirements. In the most widely used HTML
forms, presentation and data are closely related. HTML
forms are usually created manually and validated using
scripts on the client side or code at the server side. Because
information represented in OWL has explicit syntax and
semantics, forms for the information should be generated
and validated automatically. The look and feel of the forms
should be controlled separately by a style sheet.

For this purpose, we used the XForms technology to gen-
erate forms for data entry and viewing purpose automati-
cally. XForms is an XML-based technology that is consid-
ered to be the next generation of Web forms. In XForms,
presentation and data (in XML format) are separated. Given
an XML schema, an XForms form can be generated auto-
matically using an editor (such as XFormation) and further
modified for layout design. Given an XML instance, the form
is automatically populated. Validation is handled by the
XForms processor on client side, eliminating interactions
with the server and screen refreshing. Output of the form is
also an XML instance validated by XML schema. To use
this technology, the conversion between OWL ontology and
XML has to be carried out. OWL ontology has to be pushed
down to XML schema, whereas OWL instances are converted
into XML instances based on the schema. Bicer et al. [28]
have developed a tool – OWLmt – that facilitates this con-
version step.

In summary, in this ontology-driven information man-
agement approach, ontology has been created to model the
information related to pharmaceutical drug development.
It forms a structured information layer on top of the un-
structured information layer. With the help of the struc-
tured information layer, tools can and have been developed
to use the structured information to provide support to us-
ers of the information in the areas of management, access,
and search.

Knowledge modeling
Knowledge can be classified into two categories: implicit
knowledge, which is in the mind of a domain expert, and
hence, usable only by the expert, and explicit knowledge,
such as decision trees and procedures, mathematical mod-
els of operations, and guidelines from the Food and Drug
Administration (FDA) or International Conference on
Harmonisation (ICH). Explicit knowledge can be shared and
used by all. As the body of knowledge and information grows,
its management becomes more difficult. To get maximum
benefit, we believe that knowledge should be modeled in
the form that can be directly interpreted by computers, which
in turn can be used by software tools in decision making.
The conventional ways to model knowledge, either program-
ming-based or rule-based, have severe limitations. In pro-
gramming-based methods, the logic is hard-coded using a
suitable programming language, and therefore, it is not ac-
cessible to a user. To make any changes, a user needs access
to the source code, which sometimes might not be available
or the user might not have the understanding of the par-
ticular programming language used. In rule-based expert
systems, unorganized collections of rules are used to model
the pieces of knowledge. Often, it is difficult to determine
the purpose of individual rules and to envision potential
interactions between rules. These issues greatly limit the

Continued on page 30.
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scalability and maintainability of rule-based systems.
Regardless of the forms of the knowledge, the users of

the knowledge can be generally divided into two categories:
the users who rely on the knowledge to make decisions and
the experts who develop the knowledge. To support knowl-
edge gathering, the system has to be able to present the
knowledge in the most intuitive way, while taking care of
most of the details. Furthermore, once the knowledge is gath-
ered, it should be ready to be used in decision making. For
users, the knowledge should be readily integrated with the
information resources and other forms of knowledge. In the
following discussion of modeling various forms of knowledge,
we concentrate on approaches for gathering the knowledge,
using the knowledge, and developing the engine to handle
the underlying complexity to deal with integration issues
and to provide decision support in an intelligent and proac-
tive manner.

Guideline-knowledge modeling
A guideline models procedural knowledge, which mainly
consists of decision logic, information look-up, and evalua-
tion of decision variables. For example, to determine whether
direct compression is appropriate for a particular drug sub-
stance, values of several properties, such as flowability and
compressibility are examined. Systematically modeling pro-
cedural knowledge makes it possible to provide a standard-
ized approach for product development and can be easily
reused to ensure the quality of product development.

An ontology based approach is developed to model
knowledge in the form of guidelines. A particular set of
knowledge, such as how to select a processing route, is mod-
eled as an instance of the guideline ontology. Furthermore,
the ontology based approach provides a natural link between
the knowledge and the information it utilizes, in addition to
the knowledge and tools used. Various guidelines were de-
veloped for the selection of excipients and processing routes
for pharmaceutical product formulation. The guidelines were
based on the knowledge gathered from detailed discussions
with the faculty in the department of Industrial and Physi-
cal Pharmacy at Purdue University.

Guidelines were created based on GuideLine Interchange
Format (GLIF) [29], which is a specification developed mainly
for structured representation of clinical guidelines. GLIF was
developed to facilitate sharing of clinical knowledge and was
designed to support computer-based guideline execution.
GLIF guidelines are computer interpretable and human read-
able, and are independent of computing platforms. In GLIF,
each guideline is represented as an instance of the guideline
concept. The steps that are involved in decision making are
modeled as an algorithm of that guideline. An algorithm is
represented as a flowchart of nodes connected by directed links
(Figure 5). Each node represents a ‘guideline step’, and a di-
rected link denotes the order of execution of the steps. A step
can be one of the five step types. An ‘action step’ represents a
domain-specific or computational action; a ‘decision step’ rep-
resents a decision point; a ‘state step’ is used to specify the

Figure 5. Details of a specific guideline. A guideline is encoded using five basic steps: state step, action step, decision step, branch step, and
synchronization step. The guideline shown in the figure is used to select the processing route for manufacturing the dosage form based on
mechanical properties of drug substance.
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state of product development in the specific context of a
guideline’s application; a ‘branch step’ is used to initiate
multiple actions in parallel; and a ‘synchronization step’ is
used to coordinate concurrent steps or steps with arbitrary
execution order. The decision-making process can be nested
using subguidelines, and thus, multiple views to the process
with different granularities can be defined. Figure 5 shows
the different steps of a specific guideline.

A state step defines the starting or end point of a guide-
line. In this work, state step points to an instance of devel-
opment state that contains the information about the cur-
rent state of pharmaceutical product development. To use a
guideline, first an instance of drug development state is cre-
ated. A new development state instance contains the name
of the active pharmaceutical ingredient (API) in the phar-
maceutical product, which is an instance of the material
ontology and the dose amount.

Every decision in a guideline is represented by a deci-
sion step (Figure 6). The main attribute of a decision step is
a logical expression. For example, the decision step
‘Is_Flowability_Very_Bad’ is based on the expression
‘Hausner_Ratio>1.75’, where ‘Hausner_Ratio’ is the prop-
erty of the material under consideration. Once the material
is known, the property value can be retrieved from the ma-
terial ontology. The value of the decision step can be either
true or false. A decision step also specifies the options se-
lected based on the value of the logical expression.

To use the information repository directly in the guide-
lines, connections have to be established between the guide-
line knowledge and the information repository. For example,
in the decision step ‘Is_Flowability_Very_Bad’, the Hausner
ratio of the API is used. The Universal Resource Identifier
(URI) in the ontology provides a mechanism to identify a
class, a property and an individual uniquely. For example,

the class ‘Hausner_Ratio’ is identified by the URI http://
pharma.rcac.purdue.edu/pharma/material/Property.owl#
Hausner_Ratio, whereas the property ‘hasAverageValue’,
which links the ‘Hausner_Ratio’ with a literal, is identified
by http://pharma.rcac.purdue.edu/pharma/material/
Property.owl#hasAverageValue.

Execution of guidelines
The decision-support system requires an engine for the ex-
ecution of guidelines. The engine is linked to the guideline
ontology. As a case study, guidelines were developed and
used for the product development of a drug to treat multi-
drug-resistant tuberculosis (MDRTB). The guidelines were
used for recommending processing route and route-depen-
dent excipients to manufacture the drug product as imme-
diate release solid oral dosage form.

The properties of the API were experimentally measured
and stored in an information repository as instances of
classes in the material ontology. Some of the important prop-
erties are Hausner ratio, angle of repose, compressibility,
density, and stability. Also, instances of excipient proper-
ties based on values available in the literature were created
in the repository. When applied to the materials in the re-
pository, the ‘Selection_of_Processing_Route’ guideline se-
lected roller compaction as the feasible processing route. It
eliminated direction compression because of poor flowability
of the API and wet granulation because of poor chemical
stability of the API. As the first step in selecting excipients,
the ‘Excipient_Selection_for_Roller_ Compaction’ guidelines
identified the type of excipients needed in this case (flow
aid, filler and lubricant).

In summary, the guideline modeling framework pro-
vides a systematic approach to gather and present the pro-
cedural knowledge. The core-building blocks were defined

Figure 6. Details of a decision step in a guideline. Decision criterion of decision step is represented as an instance of expression. Also the
property value used in expression is directly linked to material ontology.
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as ontology, and the Protégé ontology editor was used for
creating and viewing the guidelines. Compared with human
experts, knowledge in the form of guidelines is permanent
and transferable. In a large search space, decision making
is faster and more consistent. The semantics embedded in
the ontology facilitates automatic execution of a guideline
through the guideline engine. Apart from helping domain
experts in decision making, guidelines also can help them
to understand better the development process and training.

Mathematical-knowledge modeling
A large amount of knowledge used in pharmaceutical prod-
uct development is in the form of mathematical equations.
This is referred to as mathematical knowledge. Compared
with other forms of knowledge, such as rules and guidelines,
mathematical knowledge is more abstract and highly struc-
tured [30]. So far, most of the mathematical knowledge is
either embedded in specific software tools, such as unit op-

eration models in simulation software, or has to be entered
into a more-general mathematical tool following a specific
syntax, such as MATLAB or Mathematica. However, much
of this knowledge concerns specific applications and is ex-
pressed procedurally rather than declaratively.

As an example to illustrate a widely adopted approach,
Figure 7 shows the solubility of a drug substance as a func-
tion of temperature using the Schroeder Van Laar equation
embedded in Excel [31]. To calculate the solubility, values of
properties such as heat of fusion, heat capacity, and melting
point of solute are specified in cells, and the Van Laar equa-
tion is embedded in each cell that contains the solubility. The
only way to use this model is to run it in Excel, by manually
changing the values of variables and observing solubility as
a function of temperature. In general, it is difficult to use
knowledge embedded in a mathematical model for decision
support or carry out what-if analysis automatically.

Another common practice is to implement a model in
general mathematical tools, such as MATLAB or
Mathematica, to use the equation-solving and visualization
capability of these tools. For example, Figure 8 shows the
equations and variables for a fluid-bed drying model [32].
In this model, the drying process is divided into two stages:
the first stage is the vaporization of moisture on the sur-
face, whereas the second stage is the diffusion of water out
of the particles. These two equations describe the relations
between the moisture content and time for the two stages.
The relations also depend on material properties, equipment
parameters, and operating conditions.

In this approach, the model equations are written in a

Figure 7. Mathematical knowledge stored in Excel.

Figure 8. Model for fluid-bed drying [32]. First two equations model
the first stage of drying process, which is vaporization of moisture on
the surface, and the last equation models the second stage, which is
diffusion of water out of particles.



Research Article

September/October 2006   |   Journal of Pharmaceutical Innovation 33

Journal of Pharmaceutical Innovation
©2006 ISPE. All rights reserved.   |   www.ispe.org/jpi

syntax that is specific to the solver. Therefore, the users
have to be familiar with the use of the syntax designed for
the solver being used. In summary, the severe limitation of
the two approaches used in modeling mathematical knowl-
edge is the re-usability. It would be difficult for users other
than the developers and decision-support systems to utilize
the knowledge in these forms.

The information technologies are transforming how
mathematical knowledge is modeled, communicated, and ap-
plied. Mathematical-knowledge management, a new inter-
disciplinary field of research, has attracted researchers from
mathematics, computer science, library science, and scien-
tific publishing. Marchiori [33] provides a general account
of technologies such as XML, RDF, and OWL to foster the
integration of mathematical representation and semantic
Web. By doing so, it becomes possible to integrate various
mathematical sources, to search globally for existing mod-
els, to associate metadata as context, and to integrate with
other forms of knowledge. Caprotti et al. [34] discussed a
mechanism for encoding information on mathematical Web
services to identify automatically a tool that satisfies the
requirement for performing a particular task. This mecha-
nism uses OWL and Description Logic reasoning capabil-
ity. The management of mathematical knowledge can be
divided into four activities [30]:

• Access: searching and making queries, performing de-
ductions and computations.

• Dissemination: the mathematical knowledge needs to
be disseminated so that it can be distributed as text in
traditional journals and textbooks, or digitally stored
and provided on the Web, and incorporated into math-
ematical software systems such as computer theorem-
proving systems and computer-algebra systems.

• Organization: articulated mathematical knowledge
needs to be carefully organized to capture connections
and avoid redundancy.

• Articulation: using an expression language with the
context within that is understood and a representation
by which it is conveyed.

The proposed approach
In the proposed approach, the declarative and procedural
parts of the mathematical knowledge are separated. The
declarative part consists of the information required by the
model to run, the information generated from the model,
and the model equations. The variables used in the model
equations are formally defined consisting of the correspond-
ing symbols in the equations and the link to the informa-
tion resources. Model ontology is created to describe infor-
mation related to a model, including input, output, assump-
tions, and equation sets. A specific model is created as an
instance of the model ontology. Mathematical markup lan-
guage (MathML), which is based on XML, has been created
as a standard way of describing mathematical equations.
There are two dialects in MathML (http://www.w3.org/TR/

Figure 9. The proposed approach for modeling mathematical knowledge. Fluid-bed drying model shown in Figure 8 is represented using model
ontology that is independent of solver.
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MathML2/): the presentation markup, which concentrates
on displaying the equations, and the content markup, which
concentrates on the semantics (meaning) of the equations.
OpenMath, which is another XML-based language, is de-
veloped to extend Content MathML beyond its basic scope,
by defining an abstract model for constructing mathemati-
cal objects from combinations of these symbols.

The procedural part consists of solving the model equa-
tions. Mathematica was used as a general purpose solver. It
has several features that can be used directly in the pro-
posed approach: (i) symbolic processing capability, which
handles equations in MathML formats without translating
them into procedures as in other general mathematical pack-
ages; (ii) extensibility with programming languages such as
Java, which facilitates communication between the
Mathematica kernel and the engine; and (iii) Web enabled,
which provides through a Web browser an environment to
access the functionalities of the mathematical models.

Each model is an instance of the model class of the model
ontology (Figure 9). A model ontology enables representa-
tion of mathematical equations in a form that is indepen-
dent of the solver. The solution of the model equation is gov-
erned by the context in which that model is used. For ex-
ample, suppose that the drying model described earlier is to
be solved in a stand-alone mode using Mathematica. An
engine must be written to translate all model equations into
Mathematica statements, and to retrieve values for param-
eters describing the given dryer and operating conditions
from information repository. With this information, the en-

gine invokes the Mathematica kernel, which solves the equa-
tions and returns the values to the engine. The engine then
displays the computed values in the desired form. A similar
engine must be developed if a different solver is used. In
this work, an engine was written as a middle layer to inter-
act with the Mathematica kernel and Web pages from which
information on a model instance is presented. Additionally,
the output generated by Mathematica in tabular or graphi-
cal form is displayed on the Web page.

This approach provides a systematic way for model cre-
ators to describe the models in terms of equations with the
help of the intuitive and visual equation editor, and the vari-
ables that are described using the ontology and linked to
the information resources. The MathML description of the
equations and the ontologies provide an open and solid foun-
dation for the engine to understand the equations and vari-
ables, along with the links to access the values of the vari-
ables during execution of the model. The equation solving is
performed by Mathematica.

Integrated decision-support system
The scope of the proposed infrastructure and the decision-
support system are summarized in Figure 10. The major com-
ponents deal with unstructured information, structured in-
formation, and various forms of knowledge. Only with ex-
plicit and formal semantics, which makes the information
machine processable, tools can better use the information and
provide better functionalities. Ontology was used to model
the information. We also have demonstrated an ontology-

Figure 10. The scope of the proposed integrated decision support system.
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driven information management approach based on the de-
veloped ontology. A structured information layer, based on
the ontologies to model the information in pharmaceutical
product development, is created on top of unstructured infor-
mation to provide the semantics. Structured information can
be used directly by tools that assist decision making.

Various forms of knowledge are modeled. Ontology is used
for modeling the declarative part of the knowledge. We have
demonstrated that ontology based modeling of the guideline
knowledge and mathematical knowledge makes creation of
the knowledge intuitive, and its utilization convenient for
users and by knowledge engines. The proposed intelligent
decision-support system has been developed and demon-
strated using the reformulation of an MDRTB drug. This sys-
tematic approach to model and use the information and knowl-
edge in pharmaceutical product development makes it pos-
sible to capture the rationale for the development process.
This rationale can support development of new products us-
ing case-based reasoning or data-mining technologies.

Conclusions
We have described an integrated framework that facilitates
the flow of ideas through information modeling, broadening
the search horizon through incorporation of mathematical
modeling and heuristics. The proposed system also archives
the knowledge from successes and failures through knowl-
edge modeling, thereby accelerating product development
and ensuring quality of design. The system that has been
developed provides an ontological, information-centric ap-
proach to model information and knowledge with Semantic
Web providing a general framework for implementing the
infrastructure. The ontological informatics infrastructure
proposed in this article is the dawn of a new paradigm for
representing, analyzing, interpreting, and managing large
amounts of complex and varied information for product de-
velopment and manufacturing. Considerable intellectual and
implementation challenges lay ahead but the potential re-
wards will completely transform how to develop and manu-
facture pharmaceutical products in the future.
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