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Abstract—This paper proposes an interactive approach to
object categorization that is consistent with the principle that
a robot’s object representations should be grounded in its
sensorimotor experience. The proposed approach allows a robot
to: 1) form object categories based on the movement patterns
observed during its interaction with objects, and 2) learn a
perceptual model to generalize object category knowledge to
novel objects. The framework was tested on a container/non-
container categorization task. The robot successfully separated
the two object classes after performing a sequence of interactive
trials. The robot used the separation to learn a perceptual model
of containers, which, which, in turn, was used to categorize novel
objects as containers or non-containers.

I. INTRODUCTION

Object categorization is one of the most fundamental pro-
cesses in human infant development [1]. Yet, there has been
little work in the field of robotics that addresses object catego-
rization from a developmental point of view [2]. Traditionally,
object categorization methods have been vision based [3].
However, these disembodied approaches are missing a vital
link, as they leave no way for a robot to verify the correctness
of a category that is assigned to an object. Instead, the robot’s
representation of object categories should be grounded in its
behavioral and perceptual repertoire [4] [5].

This paper proposes an embodied approach to object cat-
egorization that allows a robot to ground object category
learning in its sensorimotor experience. More specifically, the
robot’s task is to detect two classes of objects: containers and
non-containers. In the proposed framework, interaction and
movement detection are used to ground the robot’s perception
of these two object categories. First, the robot forms a set of
outcome classes from the detected movement patterns during
its interactions with different objects (both containers and non-
containers). Second, objects are grouped into object categories
by the frequency that each outcome class occurs with each
object. Third, a perceptual model is learned and used to
generalize the discovered object categories.

The framework was tested on a container/non-container
categorization task, in which the robot dropped a block
above the object and then pushed the object. First, the robot
identified three outcomes after interacting with the objects:
co-movement outcomes, separate movement outcomes, and
noisy outcomes. Second, the robot identified that co-movement
outcomes occurred more often with containers than with non-
containers and thus separated containers from non-containers
using unsupervised clustering. Third, a perceptual model was

learned and was shown to generalize well to novel objects. Our
results indicate that the robot can use interaction as a way to
detect the functional categories of objects in its environment.

II. RELATED WORK
A. Developmental Psychology

The theories postulated by developmental psychologists
often lay the groundwork for the approaches taken in devel-
opmental robotics. This is most certainly the case with this
paper. We believe that robots could be better equipped to
categorize objects by investigating how infants acquire the
same ability. According to Cohen [1], infants form object
categories by processing the relationships between certain
events (e.g., movement patterns).

Infants have an innate ability to perceive objects as con-
nected, bounded wholes (cohesion principle), which allows
them to predict when an object will move and where it will
stop moving [6]. The cohesion principle could be violated in
two ways: 1) objects that are perceived as separate entities are
observed to move together; and 2) objects that are perceived
as a single entity are observed to move separately. Therefore,
it is reasonable to assume that infants learn move together
and move separately events from experiences that violate
the cohesion property. It follows that if a robot can sense
the duration of movement and the co-movement patterns of
objects, it could learn from these events.

An infant’s perception of objects affects whether the cohe-
sion property is violated or not. Needham et al. [7] showed
that at 7.5 months infants expect a key ring and keys to
move separately, while at 8.5 months infants expect them to
move together. This shows that with experience, infants are
able to associate the move together outcome with some object
categories. Thus, it is reasonable to assume that a robot could
discover object categories by interacting with multiple objects.

This paper tests two assumptions: 1) a robot can learn from
the co-movement patterns of two different objects; and 2) a
robot can discover object categories from these movement
patterns. It does so by testing whether a robot can discover
what humans naturally call containers as an object category.
A container has the property that objects in the container move
with it, whereas objects beside it do not. We suggest that this
property is one embodied definition of containers that a robot
can easily learn. In fact, several studies in psychology have
relied on this phenomenon to determine infants’ knowledge
of containers [8] [9] [10].
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a) b) c)

Fig. 1. The robot’s vision system: a) the ZCam from 3DV Systems [11]; b)
color image of the red bucket captured by the camera when mounted on the
robot; c) the depth image corresponding to b).

B. Developmental Robotics

The work of Pfeifer and Scheier [12] is one of the ear-
liest examples of object categorization by an autonomously
exploring robot. They showed that the problem of categorizing
three differently-sized objects was greatly simplified when
the robot’s own movements and interactions were utilized. In
particular, a robot could grasp and lift small objects, push
medium objects but not lift them, and do nothing with large
objects. The robot ignored large objects that it could not
manipulate, which allowed it to learn faster.

Additionally, Metta and Fitzpatrick [13] [14] found that
object segmentation and recognition could be made easier
through the use of a robotic arm. The arm scanned the
scene and when it hit an object it detected a unified area of
movement. The detected movement was used to delineate the
object and construct a model for recognition. Furthermore,
the robot poked the object to associate different movement
outcomes (e.g., rollable and non-rollable) with the object
model. Complex internal models were avoided because “the
environment can be probed and re-probed as needed” [15].

Interaction-based methods can also work well for learning
relations among objects, a problem closely related to object
categorization. Sinapov and Stoytchev [16] showed that a
simulated robot could infer the functional similarity between
different stick-shaped tools using a hierarchical representation
of outcomes. They also showed [17] that a robot could learn to
categorize objects based on their acoustic properties. Similarly,
in Montesano et al. [18], a robot that interacted with sphere-
and cube-shaped objects discovered relationships between its
actions, the objects’ perceptual features (e.g., color, size,
and shape descriptors), and the observed effects. The robot
modeled the relationships with Bayesian networks.

Finally, in Ugur et al. [19], a simulated robot traversed
environments that had random dispersions of sphere-, cylinder-
and cube-shaped obstacles. It learned a perceptual model
which identified the obstacles that could be traversed (spheres
and lying cylinders in certain orientations) from the obstacles
that could not be traversed (boxes and cylinders in upright
positions). However, none of the robots in [16], [17], [18] or
[19] learned explicit object categories.

This paper examines movement detection as a way to
ground robot learning of object categories, specifically con-
tainers and non-containers. Edsinger and Kemp [20] have
identified container manipulation as an important problem in
robotics. In particular, they showed that two-armed robots have
the precise control required to insert objects into containers.
Following, this paper shows how robots can acquire the ability
to identify containers from non-containers using interaction.

a)

b)

Fig. 2. The objects used in the experiments: a) the five containers: big red
bucket, big green bucket, small purple bucket, small red bucket, small white
bowl; b) these containers can easily become non-containers when flipped over.

III. EXPERIMENTAL SETUP

A. Robot

All experiments were performed with a 7-DOF Whole Arm
Manipulator (WAM) by Barrett Technologies coupled with the
three-finger Barrett Hand as its end effector. The WAM was
mounted in a configuration similar to that of a human arm.

The robot was equipped with a 3-D camera (ZCam from
3DV Systems [11]). The camera captures 640x480 color
images and 320x240 depth images. The depth resolution is
accurate to ±1-2 cm. The camera captures depth by: 1) pulsing
infrared light in two frequencies; 2) collecting reflected pulses
of light; and 3) discretizing observed depth into pixel values.
Figure 1 shows the 3-D camera and the camera’s field of view
when mounted on the robot.

B. Objects

The robot interacted with different container and non-
container objects that were placed on a table in front of it
(see Fig. 2). The containers were selected to have a variety
of shapes and sizes. Flipping the containers upside-down
provided a simple way for the robot to learn about non-
containers. Therefore, the robot interacted with 10 “different”
objects, even though there were only 5 real objects. During
each trial the robot grasped a small block and dropped it in
the vicinity of the object placed in front of it. The object was
then pushed by the robot and the movement patterns between
the block and the object were observed.

C. Robot Behaviors

Four behaviors were performed during each trial: 1) grasp
the block; 2) position the hand in the area above the object;
3) drop the block; and 4) push the object. A person placed the
block and the object at specific locations before the start of
each trial. Figure 3 shows a sequence of interactions for two
separate trials. The four behaviors are described below.

1) Grasp Behavior: The robot grasped the block at the start
of each trial. The grasp behavior required the robot to open
its hand, move next to the block, and close its hand.

2) Position Behavior: The robot positioned its hand in the
area above the object after grasping the block. Drop positions
were uniformly selected from a 40cm×40cm area relative to
the center of the object. The object was consistently placed in
the same location.
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a) b) c) d) e)

f) g) h) i) j)
Fig. 3. The sequence of robot behaviors for two separate trials: a) before each trial a human experimenter placed the block and the container at a marked
location; b) the robot carried out each trial by grasping the block and positioning the hand in the area above the container; c) dropping the block; d) starting
the push behavior; e) and ending the push behavior. f)-j) The same as a)-e) but for a non-container object.

3) Drop Behavior: The robot dropped the block once its
hand was positioned in the area above the object. The block
either fell into the object (except when the trial involved non-
container objects), or fell beside it. In some cases the block
rolled off the table (approximately 5% of 1000 trials). In
these situations, a human experimenter placed the block at
the location on the table where it rolled off.

4) Push Behavior: The robot pushed the object after drop-
ping the block. The pushing direction was uniformly selected
between two choices: push-toward-self or push-toward-right-
of-self. The robot pushed the object for 10 cm with an open
hand (see Fig. 3.d and 3.e).

IV. METHODOLOGY

A. Data Collection

Experimental data was collected during the push behavior.
This interaction was captured from the robot’s 3-D camera
as a sequence of 640x480 color images and 320x240 depth
images recorded at roughly 20 fps. The push behavior lasted
approximately 3.5 seconds for a single trial. A total of roughly
3.5 × 20 = 70 images were recorded per trial.

For each of the 10 objects shown in Fig. 2 the robot
performed 100 interaction trials for a total of 1000 trials.

B. Movement Detection

The robot processed the frames from the 3-D camera to
detect movement and to track the positions of the block
and the object. To locate each object, the color images were
segmented based on the object’s color and the coordinates of
the largest blobs were calculated. The value for z was found
at the corresponding [x, y] position in the depth image. The
last known position was used if the block or the object was
occluded.

Movement was detected when the [x, y, z] position of the
block or the [x, y, z] position of the object changed by more

than a threshold, δ, over a short temporal window [t′, t′′].
The threshold, δ, was empirically set to 10 pixels per two
consecutive frames. A box filter with a width of 5 was used
to filter out noise in the movement detection data.

C. Acquiring Interaction Histories

Once a trial, i, was executed, the robot constructed the
triple (Bi, Oi, Fi), indicating that the behavior Bi ∈ B
was used to interact with object Oi ∈ O and outcome
vector Fi was observed. The behavior represented with Bi

was either push-toward-self or push-toward-right-of-self. Also,
O = {O1, . . . , O10} denoted the set of objects (containers and
non-containers) used in the experiments. Finally, each outcome
was represented with the numerical feature vector Fi ∈ R

2.
The outcome Fi = [f i

1, f
i
2] captured two observations: 1)

whether the object Oi and the block moved at the same time,
and 2) whether the object Oi and the block moved in the
same direction. Hence, f i

1 equaled the number of time steps
in which both the object and the block moved together divided
by the number of time steps in which the object moved. In
other words, the value of f i

1 will approach 1.0 if the object
and the block move at the same time, but it will approach 0.0
if the object and the block do not move at the same time.

Additionally, the second outcome feature, f i
2, was de-

fined as f i
2 = ||Δposi(object) − Δposi(block)||, where

Δposi(object) ∈ R
3 and Δposi(block) ∈ R

3 are equal to
the detected change in position of the object and the block,
respectively, while they are pushed during trial i. In other
words, the value of f i

2 will approach 0.0 if the object and the
block move in the same direction, but it will become arbitrarily
large if the object and the block move in different directions.
Both f i

1 and f i
2 are required in order to represent whether the

block and the object move together or move separately (see
Fig. 4).
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Fig. 4. An example of co-movement (left) and separate movement (right). Co-
movement outcomes occur when the block falls into a container. In this case,
the block moves when the container moves. Separate movement outcomes
occur when the block falls to the side of the container or during trials with
non-containers. In these instances the movements of the two objects are not
synchronized.

D. Discovering Outcome Classes

Various co-movement patterns can be observed by acting
on different objects in the environment. Outcome classes can
be learned to represent these patterns. The robot’s interaction
history would change over time, gradually growing more
robust to outliers. A variety of factors affect the number of
possible outcome classes (e.g., number of perceptual obser-
vations). Let {Fi}1000

i=1 be the set of observed outcomes after
performing 100 interaction trials with each of the 10 objects.
We used unsupervised clustering with X-means to categorize
the outcomes, {Fi}1000

i=1 , into k classes, C ={c1, . . . , ck}. X-
means extends the standard K-means algorithm to estimate
the correct number of clusters of the dataset [21]. Section V.A
describes the results.

E. Discovering Object Categories

Certain outcome classes are observed more often with some
objects than with others. This difference can be used to form
object categories. For example, compared to non-containers, a
container will more often exhibit the co-movement outcome
when a small block is dropped above it. Therefore, the
robot can use its interaction history with objects to discover
different object categories, which might be how infants go
about achieving this task [1].

Let us assume that the robot has observed a set of outcome
classes C ={c1, . . . , ck} from its interactions with several
objects, O = {O1, . . . , O10}. Let Hi = [hi

1, . . . , h
i
k] define

the interaction history for object i, such that hi
j is the number

of outcomes from outcome class cj that were observed when
interacting with the ith object.

The interaction histories were normalized using zero mean
and unit standard deviation. Let the normalized interaction
history, Zi, for interaction history Hi be defined as Zi =
[zi

1, . . . , z
i
k], such that zi

j = (hi
j − μj)/(σj), where μj is

the average number of observations of cj , and σj is the
standard deviation of observations of cj . Through this for-
mulation, the ith object is described with the feature vector
Zi = [zi

1, . . . , z
i
k].

To discover object classes, the robot clustered the feature
vectors Z1, . . . , Z10 (one for each of the 10 objects shown
in Fig. 2) using the X-means clustering algorithm. Clusters
found by X-means were interpreted as object categories. X-
means was chosen to learn both the individual outcome classes
and object classes because: 1) it is an unsupervised clustering
algorithm; and 2) it does not require the human programmer
to know the number of clusters in advance. The results are
described in section V.B.

F. Categorizing Novel Objects

It is impractical for a robot to categorize all novel objects by
interacting with them for a long time. However, the robot can
interact with a few objects to form a behavior-grounded object
category and then learn a generalizable perceptual model from
these objects. This method allows a robot to quickly determine
the category of a novel object.

The predictive model could classify novel objects once it
is trained with automatically labeled images. In this case, the
robot interacted with 10 objects, so 10 depth images were
used to train the predictive model, as shown in Figure 5
(only one image of each object was necessary since the robot
viewed objects from a single perspective). The labels assigned
to the 10 images were automatically generated by X-means
during the object categorization step. For each depth image,
let si ∈ R

n be a set of perceptual features extracted by the
robot. The robot learns a predictive model M(si) → ki, where
ki ∈ {0, 1, . . . ,K} is the predicted object category for the
object described by features si, and K is the number of object
categories detected by the X-means clustering algorithm.

The task, then, is to determine a set of visual features
that can be used to discriminate between the learned clusters
of objects. These objects have been grouped based on their
functional features, i.e., co-movement and non-co-movement.
It is reasonable to assume that other features, like the shape of
the objects, might be related to these functional properties, and
therefore allow for the quick classification of novel objects into
these categories. Presumably, as children manipulate objects
and extract their functional features, they are also correlating
visual features with their observations. Accordingly, the robot
also attempted to build a perceptual model of containers
by extracting relevant visual features and associating these
features with the functional clusters.

To do this, the robot used the sparse coding feature ex-
traction algorithm, which finds compact representations of
unlabeled sensory stimuli. It has been shown that sparse coding
extracts features similar to the receptive fields of biological
neurons in the primary visual cortex [22], which is why it was
chosen for this framework. The algorithm learns a set of basis
vectors such that each input stimulus can be approximated as
a linear combination of these basis vectors. More precisely,
given input vectors xi ∈ R

m, each input xi is compactly
represented using basis vectors b1, . . . , bn ∈ R

m and a sparse
vector of weights si ∈ R

n such that the original input
xi ≈ ∑

j bjs
i
j . The weights si ∈ R

n represent the compact
features for the high-dimensional input image xi. We used the
algorithm and MATLAB implementation of Lee et al. [23] for
learning the sparse coding representation.
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Fig. 5. The 10 depth images of the objects used as input to the sparse
coding algorithm. The 320x240 ZCam depth images were scaled down to
30x30 pixels before the algorithms generated sparse coding features from
them.

Fig. 6. The two basis vectors that were computed as a result of the sparse
coding algorithm. These visual features were later used to classify novel
objects as ‘containers’ or ‘non-containers.’

The robot extracted 2 features (i.e., n = 2 in the formulation
above) from the 10 objects used during the trials, as shown
in Figure 6. The figure shows that the algorithm extracted
a feature characteristic of container objects and a feature
characteristic of non-container objects. Each input xi consisted
of a 30 x 30 depth image of the object, as shown in Figure 5.

Given a novel object, Otest, the robot extracted a 30 x 30
depth image of it, xtest, and found the feature weight vector
stest ∈ R

2 such that xtest ≈
∑

j bjs
test
j . The robot then used

the Nearest Neighbor algorithm to find the training input xi

(a 30 x 30 depth image of one of the 10 training objects) such
that the Euclidean distance between its sparse feature weight
si and stest is minimized. The robot subsequently categorizes
the novel object (as either ‘container’ or ‘non-container’) with
the same class label as the nearest neighbor training data point.

V. RESULTS

A. Discovering Outcome Classes

Figure 7 shows the results of unsupervised clustering using
X-means to group trials with similar outcome classes. The
figure also shows the frequency with which each outcome class
occurred for each container and non-container. X-means found
three outcome classes among all of the trials: one cluster of
co-movement events, one cluster of separate movement events,
and a third cluster corresponding to noisy observations.

The first two outcome classes were expected. We found that
the third outcome class had several causes. Sometimes the
human experimenter was placing the block on the table after it
fell off, sometimes the block was slowly rolling away from the
container, and sometimes the movement detection noise was
not completely filtered out. However, the fact that the robot
formed a co-movement outcome class meant that it could find
meaningful relationships among its observations. This result
suggests that the robot could possibly categorize objects in a
meaningful way.
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Fig. 7. The result of unsupervised clustering using X-means to categorize
outcomes. X-means found three outcome classes: co-movement (black),
separate movement (light gray), and cases of noise (dark gray). The co-
movement outcome occurred more often with containers compared to non-
containers. Movement duration and movement vector features were extracted
from the robot’s detected movement data and used during the clustering
procedure.

B. Discovering Object Categories

The result of unsupervised clustering using X-means to
categorize objects resulted in two object categories: one cluster
with the five containers (Fig. 2 a) and another cluster with the
five non-containers (Fig. 2 b).

This result shows that a robot can successfully acquire an
experience-grounded concept of containers. In other words,
this grounded knowledge of containers could be verified at any
time by re-probing the environment using the same sequence
of interactions. But this also means that further experience with
containers could enhance the robot’s container categorization
ability.

The result also supports the claim that co-movement patterns
can provide the robot with an “initial concept” [24] of contain-
ers when the interaction involved dropping a block from above
and pushing the object. In this case, the functional properties of
the objects were more salient than other variables that affected
the outcome (e.g., size and shape).

C. Evaluation on Novel Objects

The robot was tested on how well it could detect the correct
object category of 20 novel objects (see Fig. 8). The set of
novel objects included 10 containers and 10 non-containers.
Using the extracted visual features and the Nearest Neighbor
classifier (see section IV.F), the robot was able to assign the
correct object category to 19 out of 20 test objects. This
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Novel Containers

Novel Non-containers

Fig. 8. The result of using a Nearest Neighbor classifier to label novel objects
as ‘containers’ or ‘non-containers’. The flower pot (outlined in red) was the
only misclassified object. Sparse coding features were extracted from the 10
training objects and used in the classification procedure.

implies that the robot not only has the ability to distinguish
between the containers and non-containers that it interacts
with, but it can also generalize its grounded representation of
containers to novel objects that are only passively observed.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a framework that a robot could use
to successfully form simple object categories. The proposed
approach is based on the principle that the robot should ground
object categories in its own sensorimotor experience. The
framework was tested on a container/non-container categoriza-
tion task and performed well. First, the robot identified co-
movement outcomes, separate movement outcomes, and noisy
outcomes from the movement patterns of its interactions with
objects. Second, the robot perfectly separated containers from
non-containers using the pattern that co-movement outcomes
occurred more often with containers than non-containers.
Third, the robot used this separation to learn a perceptual
model, which accurately detected the categories of 19 out of
20 novel objects.

These results demonstrate the feasibility of interaction-
based approaches to object categorization. In other words, a
robot can use interaction as a method to detect the functional
categories of objects in its environment. Furthermore, a robot
can also learn a perceptual model to detect the category of
objects with which the robot has not interacted. Therefore,
when the perceptual model is in question, the robot can interact
with the object to determine the object category.

Numerous results in developmental psychology laid the
groundwork for the framework presented in this paper. Future
work should continue to build on this foundation by relaxing
several assumptions at the center of this approach. An obvious
extension would be to find methods of interaction-based object
categorization that go beyond co-movement detection. Another
interesting extension would be to modify the current frame-
work so that the robot learns category-specific interactions

(e.g., dropping a block above an object and pushing the object)
through imitation. We also plan to evaluate the approach
presented in this paper in a richer environment with more
objects, behaviors, and more categories of objects.
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